Новости нервные импульсы поступают непосредственно к железам по

В эти центры поступают все нервные импульсы и протягиваются все афферентные чувствительные пути, которые (за немногими исключе-ниями) предварительно проходят через один общий центр – таламус. По нисходящим волокнам нервные импульсы от нейронов головного мозга проводятся вниз – к нижерасположенным сегментам спинного мозга. По аксонам нервные импульсы поступают к. Нервный Импульс в нейронах. медиаторов нервного импульса.

Нервная регуляция работы надпочечников

  • Тест «Нервная система» — 4ЕГЭ
  • Содержание
  • Физиология мышечного сокращения
  • Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных ...

Как устроена периферическая нервная система человека?

Рефлекс отдергивания руки от горячего предмета рефлекторная дуга. Схема рефлекторной дуги отдергивания руки от горячего предмета. Схема рефлекторной дуги отдергивания руки. Схема рефлекторной дуги двигательного рефлекса. Периферический двигательный Нейрон расположен. Анатомия центрального двигательного нейрона. Функции центрального и периферического двигательных нейронов. Нейроны головного мозга строение. Звенья рефлекторной дуги 5 звеньев.

Рефлекс звенья рефлекторной дуги. Рефлекторная дуга 5 звеньев рефлекторной дуги. Таблица звенья рефлекторной дуги функции звенья. Нейронные головного мозга. Нейронные связи в мозге. Нейропластичность мозга. Вставочный Нейрон строение. Вставочные Нейроны передают нервные импульсы.

Вставочный Нейрон схема. Чувствительный Нейрон Импульс вставочный Нейрон. Передача нервного импульса. Передача импульса в нервной системе. Движение нервного импульса по нейрону. Рефлекторные механизмы регуляции дыхания. Рефлекторная саморегуляция вдоха и выдоха. Рефлекторная регуляция механизм регуляции.

Рефлексы регуляции дыхания. Строение рефлекторной дуги мигательного рефлекса. Схема рефлекторной дуги мигательного рефлекса. Дуга мигательного рефлекса физиология. Нервные импульсы от рецепторов. Синапс место контакта между двумя нейронами. Передача импульса между нервными клетками. Нейроны передача импульсов.

Передача импульса между нейронами. Рефлекторная дуга внутри ЦНС. Рефлекторная дуга и ее компоненты. Рефлекторная дуга путь рефлекса. Рефлекторная дуга начинается с рецепторов. Ответную реакцию организма на раздражение осуществляемую. Ответная реакция организма осуществляемая ЦНС. Ответные реакции на раздражитель.

Ответная реакция на раздражение. Продолговатый мозг центры регуляции. Регуляция нервной системы. Нервные центры продолговатого мозга. Продолговатый мозг нервная система. Супрахиазменные ядра гипоталамуса. Супрахиазматическое ядро гипоталамуса строение. Супрахиазмальное ядро головного мозга..

Ретиногипоталамический тракт. Передача нервного импульса в ЦНС. Путь передачи нервного импульса в центральную нервную систему. Сигналы нейронов. Рефлекторный механизм деятельности нервной системы. Рефлекторный принцип функционирования ЦНС. Рефлекторный принцип деятельности нервной системы человека.. Рефлекс нервная система.

Синапс механизм синаптической передачи импульса. Механизмы модуляции эффективности синаптической передачи. Механизм межнейронной синаптической передачи. Экзоцитоз нейромедиатора. Нейроны физиология Аксон. Строение нейрона коллатерали. Функции нервной клетки физиология. Функциональные структуры нейрона.

Дендрит двигательного нейрона. Строение спинного мозга анатомия Нейроны. Дендрит это периферический отросток клетки. Нейроны строение передача импульса. Нейрон передает Импульс. Названия нейронов.

На этой странице можно обсудить все варианты ответов с другими пользователями сайта и получить от них наиболее полную подсказку. Последние ответы Iamintelligent 28 апр. Октябрина2 28 апр. Nutaustinskaya1 28 апр. Это просто... Viki0110 28 апр. Angelapavlik 28 апр.

Назовите три органа. Слюнные железы — это железы внешней секреции, потому что 1 в их составе имеются дезинфицирующие вещества 2 они смачивают сухую пищу 3 в них содержатся гормоны 4 их секрет выводится по протокам в ротовую полость Лейкоциты, в отличие от других форменных элементов крови, способны 1 сохранять форму своего тела 2 вступать в непрочное соединение с кислородом 3 вступать в непрочное соединение с углекислым газом 4 выходить из капилляров в межклеточное пространство В каком из перечисленных сосудов кровеносной системы наблюдается наиболее высокое давление крови?

Совершенно другой результат был бы, если бы в глаз попала соринка. Беспокоящая информация достигла бы головного мозга и усилила бы реакцию на раздражение. По всей вероятности, мы попытались бы извлечь соринку.

Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов 2) аксо…

Основные пути дифференцировки клеток ганглионарной пластинки и нервной трубки Развитие нейробиологии в начале 1990-х годов привело к обнаружению "новорожденных" нейронов в головном мозге взрослых крыс и мышей. Их находили большей частью в эволюционно древних отделах головного мозга: обонятельных луковицах и коре гиппокампа, которые отвечают главным образом за эмоциональное поведение, реакцию на стресс и регуляцию половых функций млекопитающих. Так же, как у птиц и низших позвоночных, у млекопитающих нейрональные стволовые клетки располагаются поблизости от боковых желудочков мозга. Их перерождение в нейроны идет очень интенсивно. Продолжительность жизни таких нейронов очень высока - до 112 дней. Стволовые нейрональные клетки преодолевают длинный путь около 2 см. Они также способны мигрировать в обонятельную луковицу, превращаясь там в нейроны. Стволовые клетки можно извлечь из мозга и пересадить в другой участок нервной системы, где они превратятся в нейроны.

Профессор Гейдж с коллегами провел несколько подобных экспериментов, наиболее впечатляющим среди которых был следующий. Участок мозговой ткани, содержащий стволовые клетки, пересадили в разрушенную сетчатку глаза крысы. Пересаженные стволовые клетки мозга превратились в нейроны сетчатки, их отростки достигли зрительного нерва, и крыса прозрела! Нейрогенез идет не только у грызунов, но и у человека. В этом убедились на основе анализа результатов эксперимента. В одной из американских онкологических клиник группа больных, имеющих неизлечимые злокачественные новообразования, принимала химиотерапевтический препарат бромдиоксиуридин. У этого вещества есть важное свойство - способность накапливаться в делящихся клетках различных органов и тканей.

Бромдиоксиуридин включается в ДНК материнской клетки и сохраняется в дочерних клетках после деления материнской. Патологоанатомическое исследование показало, что нейроны, содержащие бромдиоксиуридин, обнаруживаются практически во всех отделах мозга, включая кору больших полушарий. Значит, эти нейроны были новыми клетками, возникшими при делении стволовых клеток. Находка безоговорочно подтвердила, что процесс нейрогенеза происходит и у взрослых людей. Но если у грызунов нейрогенез идет только в гиппокампе, то у человека, вероятно, он может захватывать более обширные зоны головного мозга, включая кору больших полушарий. Исследования показали, что новые нейроны во взрослом мозге могут образовываться не только из нейрональных стволовых клеток, но и из стволовых клеток крови. Оказалось, что стволовые клетки действительно проникают в мозг, но они не превращаются в нейроны, а сливаются с ними, образую двуядерные клетки.

Затем «старое» ядро нейрона разрушается, а его замещает «новое» ядро стволовой клетки крови. Согласно одной из гипотез, стволовые клетки несут новый генетический материал, который, попадая в «старую» клетки мозжечка, продлевает его жизнь. Итак, новые нейроны могут возникать из стволовых клеток даже в мозге взрослого человека. Этот феномен уже достаточно широко применяется для лечения различных нейродегенеративных заболеваний заболеваний, сопровождающихся гибелью нейронов головного мозга. Препараты стволовых клеток для трансплантации получают двумя способами. Первый - это использование нейрональных стволовых клеток, которые и у эмбриона, и у взрослого человека располагаются вокруг желудочков головного мозга. Второй подход - использование эмбриональных стволовых клеток.

Эти клетки располагаются во внутренней клеточной массе на ранней стадии формирования зародыша. Они способны превращаться практически в любые клетки организма. Наибольшая сложность в работе с эмбриональными клетками — заставить их трансформироваться в нейроны. Новые технологии позволяют сделать это. Трансплантация стволовых клеток, несомненно, будет одним из главных подходов в терапии таких нейродегенеративных заболеваний, как болезни Альцгеймера и Паркинсона. Термин «нейроглия» ввел в обиход немецкий патологоанатом Рудольф Вирхов для описания связывающих элементов между нейронами. Эти клетки составляют половину объема мозга.

Нейроны — это высокоспециализированные клетки, существующие и функционирующие в строго определенной среде. Такую среду им обеспечивает нейроглия. Нейроглия — вспомогательная и очень важная составная часть нервной ткани, связанная с нейронами. По мере специализации нейрона как индивидуальной клетки в процессе эволюции возникла организация более высокого порядка — межклеточное «сообщество» нейрона и нейроглии. Нейроглия не принимает непосредственного участия генерации и проведении нервных импульсов и, тем не менее, нормальное функционирование нейрона невозможно в отсутствии или при повреждении глии. Нейроглия выполняет следующие функции: опорную, трофическую, разграничительную, поддержание постоянства среды вокруг нейронов, защитную, секреторную. Клетки нейроглии не образуют синапсов.

Различают глию центральной и периферической нервной системы. Клетки глии центральной нервной системы делятся на макроглию и микроглию. Макроглия развивается из глиобластов нервной трубки и включает: эпендиму, астроглию и олигодендроглию. Эпендимоциты выстилают желудочки головного мозга и центральный канал спинного мозга. Эти клетки цилиндрической формы. Они образуют слой типа эпителия, носящий название эпендимы. Между соседними клетками эпендимы имеются щелевидные соединения и пояски сцепления, но плотные соединения отсутствуют, так что цереброспинальная жидкость может проникать между эпендимоцитами в нервную ткань.

Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости. Базальная поверхность большинства эпендимоцитов ровная, но некоторые клетки имеют длинный отросток, идущий глубоко в нервную ткань. Такие клетки называются таницитами. Они многочисленны в дне III желудочка. Считается, что эти клетки передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза. Эпендимный эпителий сосудистых сплетений желудочков продуцирует цереброспинальную жидкость ликвор. Астроглию образуют астроциты.

Астроциты — клетки отростчатой формы, бедные органеллами. Они выполняют в основном опорную и трофическую функции. Различают два типа астроцитов - протоплазматические и волокнистые. Протоплазматические астроциты локализуются в сером веществе центральной нервной системы, а волокнистые астроциты - преимущественно в белом веществе. Протоплазматические астроциты характеризуются короткими сильно ветвящимися отростками и светлым сферическим ядром. Отростки астроцитов тянутся к базальным мембранам капилляров, к телам и дендритам нейронов, окружая синапсы и отделяя изолируя их друг от друга, а также к мягкой мозговой оболочке, образуя пиоглиальную мембрану, граничащую с субарахноидальным пространством. Подходя к капиллярам, их отростки образуют расширенные «ножки», полностью окружающие сосуд.

Астроциты накапливают и передают вещества от капилляров к нейронам, захватывают избыток экстрацеллюлярного калия и других веществ, таких как нейромедиаторы, из экстрацеллюлярного пространства после интенсивной нейрональной активности. Олигодендроглию образуют олигодендроциты. Олигодендроциты — имеют более мелкие по сравнению с астроцитами и более интенсивно окрашивающиеся ядра. Их отростки немногочисленны. Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов. В белом веществе их отростки образуют миелиновый слой в миелиновых нервных волокнах, причем, в противоположность аналогичным клеткам периферической нервной системы — нейролеммоцитам, один олигодендроглиоцит может участвовать в миелинизации сразу нескольких аксонов.

Микроглия образуют микроглиоциты, которые представляют собой фагоцитирующие клетки, относящиеся к системе мононуклеарных фагоцитов и происходящие из стволовой кроветворной клетки возможно, из премоноцитов красного костного мозга. Функция микроглии — защита от инфекции и повреждения, и удаление продуктов разрушения нервной ткани. Клетки микроглии характеризуются небольшими размерами, телами продолговатой формы. Их короткие отростки имеют на своей поверхности вторичные и третичные ответвления, что придает клеткам «колючий» вид. Описанная морфология характерна для типичной ветвистой, или покоящейся микроглии полностью сформированной центральной нервной системы. Она обладает слабой фагоцитарной активностью. Ветвистая микроглия встречается как в сером, так и в белом веществе центральной нервной системы.

В развивающемся мозгу млекопитающих обнаруживается временная форма микроглии — амебоидная микроглия. Клетки амебоидной микроглии формируют выросты — филоподии и складки плазмолеммы. В их цитоплазме присутствуют многочисленные фаголизосомы и пластинчатые тельца. Амебоидные микроглиальные тельца отличаются высокой активностью лизосомальных ферментов. Активно фагоцитирующая амебоидная микроглия необходима в раннем постнатальном периоде, когда гематоэнцефалический барьер еще не вполне развит и вещества из крови легко попадают в центральную нервную систему. Считают также, что она способствует удалению обломков клеток, появляющихся в результате запрограммированной гибели избыточных нейронов и их отростков в процессе дифференцировки нервной системы. Полагают, что, созревая, амебоидные микроглиальные клетки превращаются в ветвистую микроглию.

Реактивная микроглия появляется после травмы в любой области мозга. Она не имеет ветвящихся отростков, как покоящаяся микроглия, не имеет псевдоподий и филоподий, как амебоидная микроглия. В цитоплазме клеток реактивной микроглии присутствуют плотные тельца, липидные включения, лизосомы. Есть данные о том, что реактивная микроглия формируется вследствие активации покоящейся микроглии при травмах центральной нервной системы. Рассмотренные выше глиальные элементы относятся к центральной нервной системе. Глия периферической нервной системы в отличие от макроглии центральной нервной системы происходит из нервного гребня. К периферической нейроглии относятся: нейролеммоциты или шванновские клетки и глиоциты ганглиев или мантийные глиоциты.

Нейролеммоциты и шванновские клетки формируют оболочки отростков нервных клеток в нервных волокнах периферической нервной системы. Мантийные глиоциты ганглиев окружают тела нейронов в нервных узлах и участвуют в обмене веществ этих нейронов. В отличие от нейронов нейроглия содержит малодифференцированные клетки способные к регенерации, размножению и развитию в течении всей жизни. Тема 4. Нервные узлы. Нервные волокна. Нервные стволы нервы Нервные узлы ганглии.

Нервные узлы, или ганглии, это скопления нейронов вне центральной нервной системы. Нервные узлы, расположенные в пределах центральной нервной системы, называются ядрами. Выделяют чувствительные и вегетативные нервные узлы. Чувствительные нервные узлы лежат по ходу задних корешков спинного мозга и по ходу черепно-мозговых нервов. Афферентные нейроны в спиральном и вестибулярном ганглии являются биполярными, в остальных чувствительных ганглиях - псевдоуниполярными. Спинномозговой узел спинальный ганглий. Спинномозговой узел имеет веретеновидную форму, окружен капсулой из плотной соединительной ткани.

От капсулы в паренхиму узла проникают тонкие прослойки соединительной ткани, в которой расположены кровеносные сосуды. Нейроны спинномозгового узла характеризуются крупным сферическим телом и светлым ядром с хорошо заметным ядрышком. Клетки располагаются группами, преимущественно по периферии органа. Центр спинномозгового узла состоит главным образом из отростков нейронов и тонких прослоек эндоневрия, несущих сосуды. Дендриты нервных клеток идут в составе чувствительной части смешанных спинномозговых нервов на периферию и заканчиваются там рецепторами. Аксоны в совокупности образуют задние корешки, несущие нервные импульсы в спинной мозг или продолговатый мозг. Дендриты и аксоны клеток в узле и за его пределами покрыты миелиновыми оболочками из нейролеммоцитов.

Тело каждой нервной клетки в спинномозговом узле окружено слоем уплощенных клеток олигодендроглии, которые здесь называются мантийными глиоцитами, или глиоцитами ганглия, или же клетками-сателлитами. Они расположены вокруг тела нейрона и имеют мелкие округлые ядра. Снаружи глиальная оболочка нейрона покрыта тонковолокнистой соединительнотканной оболочкой. Клетки этой оболочки отличаются овальной формой ядер. Нейроны спинномозговых узлов содержат такие нейромедиаторы, как ацетилхолин, глутаминовая кислота. Автономные вегетативные узлы. Вегетативные нервные узлы располагаются следующим образом: вдоль позвоночника, впереди от позвоночника, в стенке органов - сердца, бронхов, пищеварительного тракта, вблизи поверхности этих органов.

К вегетативным узлам подходят миелиновые преганглионарные волокна, содержащие отростки нейронов центральной нервной системы. По функциональному признаку и локализации вегетативные нервные узлы разделяют на симпатические и парасимпатические. Большинство внутренних органов имеет двойную вегетативную иннервацию, то есть получает постганглионарные волокна от клеток, расположенных как в симпатических, так и в парасимпатических узлах. Реакции, опосредуемые их нейронами, часто имеют противоположную направленность так, например, симпатическая стимуляция усиливает сердечную деятельность, а парасимпатическая ее тормозит. Общий план строения вегетативных узлов сходен. Снаружи узел покрыт тонкой соединительнотканной капсулой. Вегетативные узлы содержат мультиполярные нейроны, которые характеризуются неправильной формой, эксцентрично расположенным ядром.

Часто встречаются многоядерные и полиплоидные нейроны. Каждый нейрон и его отростки окружены оболочкой из глиальных клеток-сателлитов - мантийных глиоцитов. Наружная поверхность глиальной оболочки покрыта базальной мембраной, кнаружи от которой расположена тонкая соединительнотканная оболочка. Нейроны вегетативных нервных ганглиев, как и спинномозговых узлов, имеют эктодермальное происхождение и развиваются из клеток нервного гребня. Тела нейронов образуют серое вещество головного и спинного мозга, а также нервные ганглии беспозвоночных и позвоночных животных. Связь ЦНС и ганглиев с органами осуществляется при помощи проводящих элементов — нервов, основу которых составляют нервные волокна. Нервы, или нервные стволы, связывают нервные центры головного и спинного мозга с рецепторами и рабочими органами, или же с нервными узлами.

Отростки нервных клеток, окруженные плазмалеммой олигодендроцитов или шванновских клеток, называются нервными волокнами рис. Отросток нервной клетки в составе нервного волокна называются осевым цилиндром, а глиальные клетки, формирующие оболочку волокна, называются леммоцитами, или шванновскими клетками. Нервные волокна образуют в головном и спинном мозге проводящие пути, а на периферии — нервы. В пределах ЦНС нервные волокна входят в состав белого вещества мозга. По нервным волокнам осуществляется проведение нервных импульсов. Толщина соматических нервных волокон равна 12-14 мкм, автономных - 5-7 мкм. В зависимости от строения покрывающих оболочек нервные волокна подразделяются на два вида: безмякотные немиелиновые и мякотные миелиновые рис.

Безмякотные немиелиновые нервные волокна входят в состав периферических нервов, идущих к внутренним органам, но многие сенсорные волокна также являются безмякотными. Они имеют несколько осевых цилиндров 3-5, иногда до 12 , окруженных шванновскими клетками. В электронных микрофотографиях видно, что каждый осевой цилиндр погружен в леммоцит, ее клеточная мембрана смыкается и образует мезаксон — сдвоенные мембраны шванновской клетки. Каждая шванновская клетка подобным образом окружает несколько осевых цилиндров, погруженных в леммоцит, может быть в разное количество мезаксонов в нервном волокне. Миелин отсутствует. Шванновские клетки на всем протяжении окутывают безмякотное волокно, препятствуя его соприкосновению с окружающей средой. Строение нерва А и нервного волокна Б.

Поперечное строение нерва а , нервного волокна б. Поскольку отростки нервных клеток покрыты плазмалеммой шванновских клеток только один раз, то нервный импульс при прохождении рассеивается.

Формировать и отправлять эти импульсы может не только головной мозг, так как в головной мозг часто приходят сигналы. Нервный импульс может быть сформирован раздражением нерва или действием некоторых специфичных факторов на рецептор организма. К железам нервные импульсы поступают по нервным нитям.

Нервное волокно, состоящее из одного осевого цилиндра и расположенных вокруг него шванновских клеток, называют мякотным, или миелиновым.

Характерная особенность шванновских клеток — наличие в них липоидного вещества миелина, который образует вокруг осевого цилиндра мякотную миелиновую оболочку. Каждая шванновская клетка миелинизирует небольшой сегмент только одного аксона. Мякотная, или миелиновая, оболочка примыкает к осевому цилиндру и окружает его чехлом. Она выполняет роль изолятора. Этим объясняется большая скорость проведения нервных импульсов мякотными нервными волокнами, т. Миелин регулярно прерывается через определенные промежутки.

Фактически эти участки, лишенные миелина, являются границами между двумя соседними клетками, где они соединяются при помощи коротких отростков и называются узлами нервного волокна перехват Ранвье. В перехвате Ранвье аксолемма осевого цилиндра не покрыта миелиновой оболочкой. По этой же причине в миелиновых волокнах в отличие от не имеющих перехватов немиелиновых волокон скорость проведения нервных импульсов выше. Участок между узлами называется межузловым сегментом. Они называются «насечками миелина» Шмидтлантермановскими насечками. Шмидтлантермановские насечки — это участки расслоения миелина, образовавшиеся при миелинизации.

Функция насечек неясна. В зависимости от длины миелинового сегмента количество насечек миелина бывает различным. Они отсутствуют в пределах ЦНС. Осевой цилиндр содержит митохондрии, элементы гладкой ЭПС, элементы цитоскелета — микротрубочки, нейрофиламенты и микрофиламенты. Скорость проведения нервного импульса зависит от диаметра аксона, а сам диаметр определяется количеством содержащихся в нем нейрофиламентов. В нормальных и патологических условиях количество нейрофиламентов и диаметр аксона тесно коррелируют.

Аксонный транспорт обеспечивает кинезии микротрубочек. Основной материал антероградного транспорта — белки, синтезированные в перикарионе например, белки ионных каналов, ферменты синтеза нейромедиаторов. Внешняя плазмалемма шванновских клеток окружена базальной мембраной. Выше изложено особенности строения мякотного периферического нервного волокна. Мякотные нервные волокна ЦНС построены сходным образом. Однако оболочка их образована не леммоцитами, а олигодендроцитами.

Насечки и перехваты в них отсутствуют, нет и базальных мембран. Нервные стволы нервы образованы пучками мякотных и безмякотных нервных волокон, которые объединяются соединительной тканью, образующей соединительнотканные оболочки. В нерве может быть множество волокон только мякотных только или безмякотных. Есть нервы, в которых встречаются и те и другие. Наружная оболочка нерва — эпиневрий - состоит из волокнистой соединительной ткани, объединяющей все пучки в составе нерва. Периневрий — соединительнотканная оболочка, окружающая каждый отдельный пучок нервных волокон.

Эндоневрий — рыхлая соединительная ткань между отдельными нервными волокнами. Эта ткань связывает отдельные нервные волокна в пучки, соединяясь с их базальной мембраной. Нервы образованы пучками нервных волокон, которые объединены соединительнотканными оболочками. Большинство нервов - смешанные, то есть включают афферентные и эфферентные нервные волокна. Периневриальный барьер необходим для поддержания гомеостаза в эндоневрии. Барьер контролирует транспорт молекул через Периневрий к нервным волокнам, предотвращает доступ в эндоневрий инфекционных агентов.

Периферический нерв содержит разветвленную сеть кровеносных сосудов. В эпиневрии и в наружной части периневрия содержатся артериолы и венулы, а также лимфатические сосуды. В эндоневрии проходят кровеносные капилляры. Периферический нерв иннервирован — имеет специальные нервные волокна. Тема 5. Нервные сети.

Соединение нервов между собой синапсы. Нейроны, как отдельные единицы нервной системы, функционируют не изолированно. Они соединены между собой и образуют единую сеть, которая передает возбуждение от рецепторов в ЦНС и от нее в различные органы рис. Специализированные контакты нейронов между собой, а также нейронов с клетками исполнительных органов, называются синапсами. Несмотря на разнообразие синапсов, в их строении имеются общие черты. В синапсе выделяют пресинаптическую и постсинаптическую мембраны и пространство между ними - синаптическую щель шириной от 2 до 30 нм.

Толщина каждой мембраны не превышает 5-6 нм. Пресинаптическая мембрана является продолжением поверхностной мембраны аксонального окончания. Она не сплошная, в ней имеются отверстия, через которые цитоплазма аксонального окончания сообщается с синаптическим пространством. Постсинаптическая мембрана менее плотная, в ней отсутствуют отверстия. Синаптические входы нейрона. Синаптические бляшки окончаний пресинаптичесиих аксонов образуют соединения на дендритах и теле соме - постсинаптического нейрона.

Схема выброски медиатора и процессов, происходящих в гипотетическом центральном синапсе. Конечные участки аксонов и дендритов в области синапса не имеют мякотной оболочки и расширены в пресинаптический мешочек. Мешочек характерен для синаптических пузырьков, имеющих диаметр 40-59 нм. В них содержится медиатор. В зависимости от типа выделяемого медиатора различают синапсы: а холинэргические — выделяют ацетилхолин; б адренэргические — выделяют норадреналин, дофамин катехоламины ; в серотонинэргические — выделяют серотонин; г пептидэргические — выделяют пептиды эндорфины, энкефалины и аминокислоты глицин, глутамат, ГАМК. В таких синапсах передача нервного импульса осуществляется при помощи химического вещества — медиатора.

Такие синапсы называются синапсами с химической передачей. При изменении мембранного потенциала в терминалях нейромедиаторы выходят в синаптическую щель через поры диаметром 4-5 нм, имеющиеся в пресинаптической мембране экзоцитоз и связываются со своими рецепторами в постсинаптической мембране, вызывая изменение мембранного потенциала постсинаптического нейрона. Основными медиаторами являются: 1. Ацетилхолин — один из первых выявленных медиатора. Он известен как «вещество блуждающего нерва» из-за своего воздействия на сердечную деятельность. Представляет собой наиболее распространенный медиатор ЦНС.

Аминокислота глицин, оказывающая тормозное действие на мотонейроны. Кислая аминокислота глутамат, является самым распространенным возбуждающим медиатором ЦНС. Адреналин, норадреналин и дофамин — представляют собой семейство медиаторов, передающих возбуждение или торможение в ЦНС, так и в периферической нервной системе. В пресинаптической части расположены синаптические пузырьки и митохондрии. Синаптические пузырьки содержат нейромедиатор. Постсинаптическая мембрана располагает рецепторами нейромедиатора и ионными каналами.

Синаптическая передача — сложный каскад событий. Она возможна при реализации ряда последовательных процессов: синтез нейромедиатора, его накопление и хранение в синаптических пузырьках вблизи пресинаптической мембраны, высвобождение нейромедиатора из нервной терминали, кратковременное взаимодействие нейромедиатора с рецептором, встроенным в постсинаптическую мембрану, разрушение нейромедиатора или захват его нервной терминалью. Многие неврологические и психические заболевания сопровождаются нарушениями синаптической передачи. Медиаторы связываются со специфическими рецепторами постсинаптической мембраны. Вокруг рецептора формируется область высокой концентрации вещества того или иного медиатора. Соответственно повышается или понижается вероятность открывания ионного канала, так как изменяется его проводимость.

В синапсах возбуждение проводится только в одном направлении, но гораздо медленней, чем по нервному волокну. Однако передача информации осуществляется исключительно точно. В некоторых синапсах синаптическая щель отсутствует и его структурной основой является плотный контакт. В таком синапсе возбуждение может передаваться без участия медиатора, так как мембраны клеток соприкасаются. Эти синапсы называются синапсами с электрической передачей. В синапсах такого строения пресинаптическая мембрана также имеет поры, но они в 5 раз меньше, чем в синапсах с химической передачей возбуждения.

Поры электрических синапсов являются межклеточными диффузионными каналами, соединяющими соприкасающиеся клетки. По структуре и локализации синапсы подразделяются на 3 группы: межнейронные, рецепторно — нейрональные и нейроэффкторные. Межнейронные синапсы подразделяются на аксодендритические, аксосоматические и аксо-аксональные. Межнейронные синапсы являются синапсами между двумя нейронами. Если аксон одного нейрона контактирует с дендритом другого постсинаптического нейрона, то такие синапсы называются аксодендритическими. Аксодендрическая связь представлена синапсами двух типов.

Один тип — это синапсы с широкой синаптической щелью и сами мембраны более утолщены. Такие синапсы характерны для возбуждающих нейронов. Другие синапсы принадлежат тормозным нейронам. Если аксон одного нейрона контактирует с перикарионом другого постсинаптического нейрона, то такой синапс называется аксосоматическим. Если же аксон одного нейрона контактирует с аксоном другого постсинаптического нейрона, то такой синапс называется аксо-аксональным. Межнейронные синапсы очень многочисленны.

На поверхности перикариона и отростков одного пирамидного нейрона в коре больших полушарий головного мозга имеется около 104 синапсов. Рецепторно — нейрональные рецепторно - дендритные синапсы являются синапсами между рецепторными клетками, сходными с нейронами, специализированными эпителиальными, нейроглиальными клетками, с одной стороны, и дендритами чувствительных нейронов — с другой. Примером синапсов такого типа у позвоночных являются синапсы вкусовых сосочков, боковой линии рыб, внутреннего уха, кожи, соединительной ткани. Нейроэффкторные аксоэффекторные синапсы являются контактами между аксоном двигательных эффекторных нейронов и клетками, не принадлежащими к нервной системе. У человека и млекопитающих хорошо изучены двигательные и секреторные нейроэффекторные синапсы, или эффекторные нервные окончания. Первые представляют собой синаптические соединения между аксоном двигательного нейрона и поперечнополосатыми мышечными волокнами, поперечнополосатыми и гладкомышечными клетками, а вторые — между аксонами двигательного нейрона с секреторными клетками.

Существуют многочисленные синапсы между аксоном эфферентного нейрона и другими клетками — жировыми, ресничными и др. Для того чтобы мозг нормально функционировал, потоки нервных сигналов должны находить надлежащие пути среди клеток различных функциональных систем и межрегиональных объединений. Однако до сих пор остается загадкой, каким образом аксоны и дендриты той или иной нервной клетки растут именно в том направлении, чтобы создавались специфические связи, необходимые для ее функционирования. Высокая специфичность структуры мозга имеет важное значение. Общий диапазон связей для большинства нервных клеток, по-видимому, предопределен заранее, причем эта предопределенность касается тех клеточных свойств, которые ученые считают генетически контролируемыми. Набор генов, предназначенных для проявления в развивающейся нервной клетке, каким-то еще до конца не установленным образом определяет как будущий тип каждой нервной клетки, так и принадлежность ее к той или иной сети.

Концепция генетической детерминированности приложима и ко всем остальным особенностям данного нейрона, например к используемому им медиатору, к размерам и форме клетки. Как внутриклеточные процессы, так и межнейронные взаимодействия определяются генетической специализацией клетки. Типы нервных сетей. Существуют три генетически детерминированных типа нервных сетей. Чтобы сделать концепцию генетической детерминации нейронных сетей более понятной, давайте уменьшим их число и представим себе, что наша нервная система состоит всего лишь из 9 клеток см. Это абсурдное упрощение поможет нам проявляется в наличии трех основных типов сетей, которые встречаются повсюду, — иерархические, локальные и дивергентные с одним входом.

Иерархические сети. Наиболее распространенный тип межнейронных связей встречаются в главных сенсорных и двигательных путях. В сенсорных системах иерархическая организация носит восходящий характер. В нее включаются различные клеточные уровни, по которым информация поступает в высшие центры — от первичных рецепторов к вторичным вставочным нейронам, затем к третичным и т. Двигательные системы организованы по принципу нисходящей иерархии, где команды «спускаются» от нервной системы к мышцам: клетки, расположенные, фигурально говоря, «наверху», передают информацию специфическим моторным клеткам спинного мозга, а те в свою очередь — определенным группам мышечных клеток. Иерархические системы обеспечивают очень точную передачу информации.

В результате конвергенции когда несколько нейронов одного уровня контактируют с меньшим числом нейронов следующего уровня или дивергенции когда контакты устанавливаются с большим числом клеток следующего уровня информация фильтруется и происходит усиление сигналов. Но, подобно любой цепи, иерархическая система не может быть сильнее своего самого слабого звена. Инактивация любого уровня, вызванная ранением, заболеванием, инсультом или опухолью, может вывести из строя всю систему. Конвергенция и дивергенция, однако, оставляют цепям некоторый шанс уцелеть даже при их серьезном повреждении. Если нейроны одного уровня будут частично уничтожены, сохранившиеся клетки смогут все-таки поддерживать функционирование сети. Локальные сети.

Нейроны локальных сетей действуют как фильтры, удерживая поток информации в пределах какого-то одного иерархического уровня. Они, по всей видимости, широко распространены во всех мозговых сетях. Локальные сети могут оказывать на нейроны-мишени возбуждающее или тормозящее действие. Сочетание этих особенностей с дивергентным или конвергентным типом передачи на данном иерархическом уровне может еще более расширять, сужать или снова фокусировать поток информации. Дивергентные сети с одним входом. В некоторых нервных сетях имеются скопления или слои нейронов, в которых один нейрон образует выходные связи с очень большим числом других клеток в таких сетях дивергенция доведена до крайних пределов.

Изучение сетей такого типа начато лишь недавно, и единственные места, где они встречаются насколько нам сейчас известно , — это некоторые части среднего мозга и ствола мозга. Преимущества подобной системы в том, что она может оказывать влияние на множество нейронов сразу и иногда осуществлять связь со всеми иерархическими уровнями, нередко выходя за пределы специфических сенсорных, двигательных и других функциональных объединений. Сфера воздействия таких сетей не ограничена какой-либо системой с определенными функциями. Дивергирующие пути этих сетей иногда называют неспецифическими и поэтому такие сети могут влиять на самые различные уровни и функции. Они играют большую роль в интеграции многих видов деятельности нервной системы. Кроме того, медиаторы, используемые в дивергентных системах с одним входом, — это медиаторы с «условным» действием: их эффект зависит от условий, в которых он осуществляется.

Подобные воздействия весьма важны и для интегративных механизмов. Однако дивергентные сети такого типа составляют лишь небольшую часть всех нервных сетей. Тема 6. Концевые нервные аппараты и их классификация. Рефлекторная дуга и динамическая поляризация нейронов Связь нейронов с различными тканями и органами устанавливается при помощи нервных волокон, которые образуют в них концевые нервные аппараты нервные окончания. Окончания аксонов периферических нервов подразделяют на чувствительные афферентные и двигательные эфферентные.

Приспособления, которые воспринимают раздражения, называются рецепторными аппаратами, или чувствительными нервными окончаниями, а нервы, проводящие возбуждение — чувствительными. Реализация нервных импульсов осуществляется эффекторными аппаратами двигательными нервным окончаниями , а проведения возбуждения к ним происходит по двигательным нервам. Концевые нервные аппараты — сложные образования. В их состав входят не только нервные волокна, но и ткани, в которых они оканчиваются. Структура концевых аппаратов разнообразна, меняется в зависимости от условий, в которой они находятся.

У человека насчитывается более 100 млрд нейронов. Взаимодействие между нейронами представляет собой передачу нервных сигналов нервного возбуждения. Свойства нервных клеток: возбудимость и проводимость. Строение нейрона Рис. Нейрон Нейрон состоит из тела сомы и отростков. Тело нейрона содержит ядро с большим количеством ядерных пор и органеллы. Органеллы в нервной клетке те же, что и в других клетках. Нейрон имеет развитый цитоскелет, проникающий в его отростки. Цитоскелет состоит из микрофиламентов и микротрубочек. Его функция: поддержание формы клетки, транспорт органелл и упакованных в мембранные пузырьки веществ например, нейромедиаторов — молекул — передатчиков нервных импульсов. Из специфических органелл присутствует тигроид тельца Ниссля и нейрофибриллы. Тигроид состоит из сильно развитой шероховатой ЭПС с активными рибосомами и аппарата Гольджи; его функция — синтез специфических белков. Выглядит эта структура как «мелкая зернистость и полосатость» в теле и дендритах нейрона отсюда и название. Длительное голодание или стресс приводит к разрушению тигроида и прекращению синтеза специфических белков. Связь нейрона с другими клетками Нейрофибриллы нейрофиламенты состоят из микротрубочек и являются основным структурным компонентом цитоскелета. Их функция — аксональный транспорт перемещение веществ по аксону. Аксональный транспорт Помимо своей специфической функции в качестве проводника нервных импульсов аксон является каналом для транспорта веществ.

Топ вопросов за вчера в категории Биология

  • Задание №9 ОГЭ по Биологии • СПАДИЛО
  • Нервная регуляция работы надпочечников
  • Рефлекторная дуга. Рецептор, кондуктор и эфферентный нейрон
  • Рефлекторная дуга. Рецептор, кондуктор и эфферентный нейрон
  • Нервные импульсы поступают непосредственно к железам по... -

Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов 2) аксо…

Спрашивает Трошицева Светлана. нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам. Дендриты проводят нервный импульс к телу нервной клетки; их, как правило, несколько. Добавить в избранное 0. Вопрос пользователя. Нервные импульсы поступают непосредственно к железам по. Ответ эксперта. аксонам двигательных нейронов. Когда по аксону нервные импульсы дойдут до синапса, пузырьки лопаются и жидкость, содержащая медиаторы, попадает в синаптическую щель. Функция нервной системы. направляет импульсы к скелетным мышцам. По нисходящим волокнам нервные импульсы от нейронов головного мозга проводятся вниз – к нижерасположенным сегментам спинного мозга.

Химическая передача нервного импульса

Нервные импульсы поступают непосредственно к железам по 1. аксонам двигательных нейронов. Нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных. Нервные импульсы поступают непосредственно к железам по. 1)аксонам двигательных нейронов. Эффектор — это нервное окончание эфферентного нейрона, передающее нервный импульс к рабочему органу (мышца, железа).

Информация

Во втором задании правильным ответом является и 2 и 3, так как нервные импульсы могут образовываться в аксонных холмиках в телах нейронов. В 11 задании отмечен ответ 2, но правильным является 3, тк червь - образование между полушариями мозжечка, а для коры характерны серое вещество, извилины и борозды. В вопросе B1 не подходит ответ 4, так как внутренними органами управляет вегетативная нервная система, а у вас получается прям как в фильме "Формула любви", по желанию бьется сердце, по желанию не бьется.

Гормоны гипоталамуса поступают к гипофизу по кровеносному руслу и там воздействуют на его функции. Статины и либерины не всегда действуют строго избирательно. Так, соматостатин может подавлять выработку не только соматотропина, но также тиротропного гормона, инсулина и пролактина. Нервная регуляция работы надпочечников Надпочечники — парные железы, которые у человека расположены в области верхнего полюса почек. В их строении выделяют две составляющих: корковое и мозговое вещество. Кора выполняют эндокринную функцию и вырабатывает гормоны в кровь, а мозговой слой представляет собой промежуточное звено между нервной и эндокринной системами. Одна из функций мозгового вещества надпочечников — выработка катехоламинов. Это группа биологически активных соединений, которая включает адреналин и норадреналин.

Они максимально активируются в стрессовых ситуациях, когда необходимо срочно привести организм в тонус, и запускают ряд изменений: ускорение сердцебиения;.

Нарушения функции эндокринных желёз. Классификация желёз внутренней секреции. Топография эндокринных желёз, особенности строения. Механизмы действия гормонов, биологический эффект. Механизмы регуляции физиологических функций подразделяют на нервные и гуморальные, они образуют единую регуляторную систему, обеспечивающую поддержание гомеостаза и приспособительную деятельность организма. Гормоны доставляются кровью к органам-мишеням, это гуморальная регуляция по принципу обратной связи.

В результате такой связи уровень гормонов в крови поддерживается на оптимальном уровне. Все процессы, протекающие в организме контролируются ЦНС, такую двойную регуляцию деятельности органов называют нейрогуморальной. При осуществлении простейшего рефлекса как элементарного механизма нервных регуляций передача сигнализации с одной клетки на другую осуществляется посредством гуморальных факторов - нейромедиаторов. Нервная система может запускать или выполнять коррекцию гуморальных регуляций. Железы внутренней секреции — специализированные, топографически разного происхождения железы, не имеющие выводных протоков и выделяют в кровь и лимфу секрет — гормоны. Гормоны — сильнодействующие агенты, для достижения эффекта необходимы в небольшом количестве. Анатомически обособленные железы внутренней секреции оказывают влияние друг на друга. Гормональная регуляция осуществляется эндокринной системой.

В это функциональное объединение входят эндокринные органы или железы щитовидная железа, надпочечники и др. Эндокринная ткань в органе скопление эндокринных клеток, например, островки Лангерганса в поджелудочной железе. Клетки органов, обладающие кроме основной, одновременно и эндокринной функцией например, мышечные клетки предсердий наряду с сократительной функцией образуют и секретируют гормоны, влияющие на диурез. Аппарат управления гормональной регуляцией. Гормональная регуляция имеет аппарат управления. Один из путей такого управления реализуется отдельными структурами ЦНС, непосредственно передающими нервные импульсы к эндокринным элементам. Это нервный мозг — железа путь. Другой путь управления эндокринными клетками нервная система реализует через гипофиз гипофизарный путь.

Важным путем управления деятельностью некоторых эндокринных клеток является местная саморегуляция например, секреция сахаррегулирующих гормонов островками Лангерганса регулируется уровнем глюкозы в крови; кальцитонина — уровнем кальция. Центральной структурой нервной системы, регулирующей функции эндокринного аппарата, является гипоталамус, гипофиз, шишковидная железа. Их функция связана с наличием в них групп нейронов, обладающих способностью синтезировать и секретировать специальные регуляторные пептиды — нейрогормоны. Гипоталамус является одновременно и нервным и эндокринным образованием. Свойство нейронов гипоталамуса, синтезировать и секретировать регуляторные пептиды, получило название нейросекреция. Все процессы, протекающие в организме, находятся под контролем ЦНС. Такую двойную регуляцию деятельности органов называют нейрогуморальной. К периферическому звену внутренней секреции относятся зависимые от передней доли гипофиза — щитовидная железа, кора надпочечников, половые железы, и независимые от него — околощитовидные железы, мозговое вещество надпочечников и гормонопродуцирующие клетки неэндокринных органов.

Гормоны депонируются в тех тканях, где образуются фолликулы щитовидной железы, мозговое вещество надпочечников. Транспорт гормонов осуществляется жидкостями внутренней среды кровью, лимфой, микроокружением клеток в двух формах — связанной и свободной. Связанные с мембранами эритроцитов, тромбоцитов и белками гормоны имеют низкую активность. Свободные — наиболее активные, проходят через барьеры и взаимодействуют с клеточными рецепторами. Метаболические превращения гормонов приводят к образованию новых информационных молекул с отличающимися от основного гормона свойствами. Осуществляется метаболизм гормонов с помощью ферментов в самих эндокринных тканях, печени, почках и в тканях — эффекторах. Выделение информационных молекул гормонов и их метаболитов из крови происходит через почки, потовые железы, слюнные железы, желчь, пищеварительные соки. По химическому строению гормоны делятся: Белки и пептиды; Пептидные гормоны — гипоталамические нейропептиды, гормоны гипофиза, островкового аппарата поджелудочной железы, околощитовидные гормоны.

Стероиды; Стероидные гормоны — образуются из холестерина — гормоны надпочечников, половые гормоны, гормон почечного происхождения — кальцитрол. Производные аминокислот. Производные аминокислот — тиреоидные гормоны, адреналин, гормоны эпифиза. Для структурно-функциональной эндокринной системы характерно: Иерархический принцип взаимодействия — 1 уровень - железы, 2 уровень — тропные гормоны, регулирующие деятельность этих желёз, 3 — выделение тропных гормонов, которые контролируются нейрогормонами гипоталамуса; Наличие системы обратных связей — обеспечивает активность эндокринных желёз. В связи с тем. Что это влияние обеспечивается гормонами, доставленными кровью к органам-мишеням, говорят о гуморальной регуляции этих органов по принципу обратной связи. В результате такой связи содержание гормонов в крови поддерживается на оптимальном для организма уровне. Изменение функций желёз внутренней секреции вызывает тяжёлые нарушения и заболевания организма, в том числе и психические расстройства.

К важным элементам системы жизнедеятельности человека относятся гормоны. Гормоны человека — биологически активные вещества. Это химические вещества, которые содержит организм человека, имеющие большую активность при небольшом своём содержании. Они образуются и функционируют внутри клеток желез внутренней секреции. К ним относятся: гипофиз; гипоталамус; эпифиз; щитовидная железа; паращитовидная железа; вилочковая железа — тимус; поджелудочная железа; надпочечники; половые железы. Принимать участие в выработке гормона могут и органы: почки, печень, плацента у беременных женщин, ЖКТ и другие. Координирует функционирование гормонов гипоталамус — отросток главного мозга небольшого размера. Гормоны переносятся через кровь и регулируют процессы по обмену веществ и работе органов и систем.

Определение «гормон» использовалось в первый раз У. Бейлиссом и Э. Старлингом в своих работах в 1902 году в Англии. В регуляции физиологических процессов важнейшее значение принадлежит эндокринной системе. Специфическая функция эндокринных желез гипофиза, щитовидной, половых, надпочечных желез и др. Этиология и патогенез эндокринных нарушений Среди разнообразия эндокринных нарушений выделяют основные: психическая травма, некроз, опухоль, воспалительный процесс, бактериальные и вирусные инфекции, интоксикация, местные расстройства кровообращения кровоизлияние, тромбоз , алиментарные нарушения дефицит йода и кобальта в пище и питьевой воде, избыточное потребление углеводов , ионизирующая радиация, врожденные хромосомные и генные аномалии. В возникновении эндокринных нарушений велика роль наследственных факторов, например, больные сахарным диабетом и их родственники. Возникновение врожденных аномалий полового развития дисгенезия гонад, истинный и ложный гермафродитизм связано с нарушением распределения хромосом или с генной мутацией в эмбриональном периоде развития.

Ведущее значение в патогенезе большинства эндокринных расстройств имеет недостаточная гипофункция или повышенная гиперфункция активность эндокринных желез. Каждый эндокринный орган является источником двух или более гормонов. В гипофизе вырабатывается не менее десяти различных гормонов белковой и полипептидной природы. Из коркового вещества надпочечных желез выделено около пятидесяти стероидных соединений, многие из которых обладают гормональной активностью. Одни эндокринные заболевания обязаны возникновением усилению или ослаблению продукции гормонов, вырабатываемых данной железой. Например, некроз аденогипофиза передней доли гипофиза , возникающий вследствие воспалительного процесса или кровоизлияния, ведет к прекращению выработки всех его гормонов тотальная аденогипофизарная недостаточность. Для других эндокринных расстройств характерным является изолированное нарушение секреции гормона, которое обозначают как гипер- или гипофункцию. Все звенья эндокринной системы функционируют в тесном взаимодействии.

Нарушение функции одной эндокринной железы приводит к цепной реакции гормональных сдвигов. Так возникают сопряженные эндокринные расстройства — недостаточность половых желез при сахарном диабете, функциональное перенапряжение, а затем истощение 3-клеток панкреатических островков при гиперфункции коркового или мозгового вещества надпочечных желез. Удаление щитовидной железы влечет за собой угнетение функциональной активности половых и коркового вещества надпочечных желез. После кастрации развивается гипертрофия коркового вещества надпочечных желез. Ответная реакция эндокринной железы на первичное повреждение звена эндокринной системы является компенсаторной и направлена на сохранение гомеостаза. Действие гормонов на эффекторные органы-мишени реализуется по трем направлениям: влияние на биологические мембраны; стимуляция или угнетение активности ферментов; влияние на генетический аппарат клетки. Нарушение гормональной рецепции в клетках органов-мишеней изменяет биологические эффекты гормонов. Например, при врожденном отсутствии циторецепторов андрогенов развивается синдром тестикулярной феминизации.

Он характеризуется появлением женских вторичных половых признаков у лиц с мужским генотипом и наличием яичек, продуцирующих достаточное количество тестостерона. Идиопатический гирсутизм Гирсутизм — избыточный рост волос по мужскому типу у женщин женщин связывают с повышенной чувствительностью волосяных фолликулов к эндогенным андрогенам. Основные свойства гормонов: биологическая активность несмотря на невысокую концентрацию; удалённость действия. Если гормон образуется в одних клетках, то это не означает, что он регулирует именно эти клетки; ограниченность действия. Каждый гормон играет свою строго отведённую ему роль. Механизм действия гормонов Действие гормонов направлено на деятельность ферментов или на процессы проницаемости клеточных мембран. Так, инсулин влияет на проницаемость мембран клеток для глюкозы. Механизм действия гормонов на активность ферментов - гормон взаимодействует с определенным участком клеточной мембраны - рецептором.

Сигнал об этом передается внутрь клетки и приводит к образованию органического соединения, производного АТФ, выполняющего роль вторичного посредника, который вызывает активацию ферментов. У каждого гормона есть свои клетки, находящиеся в органах и тканях, к которым они стремятся. Другие гормоны могут растворяться в воде, поэтому для них нет надобности присоединяться к белкам-носителям. Эти вещества оказывают воздействие на клетки и тела в момент соединения с нейронами, находящимся внутри клеточного ядра, а также в цитоплазме и на плоскости мембраны. Для их работы необходимо посредническое звено, которое обеспечивает ответную реакцию от клетки. Они представлены ионами кальция. Поэтому недостаток кальция в организме оказывает неблагоприятное воздействие на гормоны в организме человека. После того, как гормон передал сигнал, он расщепляется.

Расщепляться он может в клетке, к которой перемещался; в крови; в печени. Либо может выводиться из организма вместе с мочой. Химический состав гормонов 1. Половые классифицируются на: эстроген — женский и андрогенов — мужской. Разновидность андрогенов представлена их видами: тестостерон, андростендион и другие. В состав стероидов входят гормоны: кортизол, кортикостерон и альдостерон. Соматотропин - разновидность белкового гормона. В их состав можно отнести: тироксин, адреналин и норадреналин.

Пептидные гормоны сложнее остальных по своему составу. Вазопрессин — это гормон, сформировавшийся в гипофизе. Глюкагон, находящийся в поджелудочной железе. Гормоны вырабатываются не только клетками желез внутренней секреции, но и специализированными клетками, расположенными в органах, формально не относящихся к гормонам и эндокринной системе. Тканевые гормоны — имеют «местное» значение, оказывая влияние не на весь организм в целом, а на процессы регуляции деятельности органа или клетки где они образуются, рассеяны по органам, располагаются поодиночке или группами. Обладают действием на собственные клетки паракринное , из которых эти вещества секретируются и оказывают действие на соседние клетки дистанционное в данном органе. Эндокринные клетки встречаются в дыхательной, мочеполовой, ССС, слюнных железах, органах чувств и тд. Эти клетки имеют широкое основание и более узкую верхушечную часть, которая в одних случаях доходит до просвета органа, а в других - с ним не контактирует.

Общее количество эндокринных клеток превышает в несколько раз число клеток эндокринных органов. Тканевые гормоны пищеварительного тракта. Эндокринных клеток особенно много в стенках желудка и кишечника — энтероэндокринные клетки. Энтероэндокринная система регулирует множество функций пищеварительной системы: гастрин — стимулирует секрецию соляной кислоты, секретин - стимулирует выделение бикарбоната и воды из секреторных клеток 12пёрстной кишки и поджелудочной железы, холецистокинин — панкреозимин — стимулирует сокращения желчного пузыря и усиливает желчеотделение в печени и выделение пищеварительных ферментов поджелудочной железой. Эндокриноциты стенки пищеварительного тракта образуют гастро-энтеропанкреатическую систему эндокринных клеток, оказывающую регулирующее влияние на секрецию пищеварительных желёз, моторику стенок тонкой и толстой кишок. Они синтезируют и выделяют ряд пептидов и биоаминов, играющих роль нейромедиаторов и гормонов, влияющих на моторику гладкомышечных органов, секрецию экзо- и эндокринных желёз. Тканевые гормоны, влияющие на сосудистую систему. Кроме адреналина, норадреналина, вазопрессина, АД может измениться при действии ряда биоактивных веществ.

К ним относится ренин, вырабатываемый юкстагломерулярным аппаратом почки, который стимулирует сокращение гладких мышц артериол. Из подчелюстной слюнной железы, легких и поджелудочной железы выделено активное вещество — калликреин, который вызывает расщепление одной из фракций глобулина плазмы крови, вследствие чего образуется гормон каллидин - вызывает расслабление гладкой мускулатуры артериол, понижает АД. Сосудорасширяющим действием обладает полипептид брадикинин. Брадикинин появляется в коже при действии тепла и является одним из факторов, обусловливающих расширение сосудов при согревании. Кроме расширения сосудов, вызывает ощущение боли, являясь раздражителем болевых рецепторов. Сходным действием обладает и гистамин, возникающий в коже при различных, в том числе и болевых, ее раздражениях, в желудке во время пищеварения, в мышцах при их работе. Появление гистамина является одной из причин расширения артериол и капилляров в работающих мышцах, которое обеспечивает усиленное их кровоснабжение. Гистамин при действии на болевые рецепторы, так же, как и брадикинин, участвует в возникновении чувства боли и зуда.

Гистамин увеличивает проницаемость капиллярной стенки и способствует выходу транссудации воды и белков плазмы в ткани. К числу веществ, суживающих артериолы и повышающих артериальное давление, принадлежит серотонин. Он образуется в нервной ткани, в кишечнике, эпифизе, в клетках ретикуло-эндотелия, в кровяных пластинках. Серотонин обладает широким спектром действия, принимает участие в передаче нервных импульсов в центральной нервной системе. Другие биологически активные вещества. Имеется еще ряд тканевых гормонов, принимающих участие в регуляции различных физиологических процессов. В экстрактах подчелюстных желез -паротин — вещество, стимулирующее трофику питание хрящевой ткани, развитие дентина зубов и костной ткани. До наступления половой зрелости зобная железа выделяет вещество, тормозящее деятельность щитовидной и половых желез.

Эндокринные железы и их гормоны тесно связаны с нервной системой, образуя общий механизм регуляции.

Нервы — пучки длинных отростков, покрытые общей оболочкой, выходящие за пределы головного и спинного мозга. Если информация по нерву идет от рецепторов в головной или спинной мозг, то такие нервы называют чувствительными, центростремительными или афферентными.

Эти нервы состоят из дендритов чувствительных нейронов. Если информация по нерву идет из центральной нервной системы к исполнительным органам мышцам или железам , то нерв называется двигательным или эфферентным. Двигательные нервы образованы аксонами двигательных нейронов.

В смешанных нервах проходят как чувствительные, так и двигательные волокна. Нервные узлы — это скопления тел нейронов вне ЦНС. Нервные окончания — разветвления отростков нейронов, служат для приема или передачи сигналов.

Классификация нервной системы по функциям По функциям нервная система подразделяется на соматическую и вегетативную автономную. Соматическая нервная система от греческого «сома» — «тело» регулирует работу скелетных мышц. Благодаря ей организм через органы чувств поддерживает связь с внешней средой.

С ее помощью мы можем произвольно по собственному желанию управлять деятельностью скелетной мускулатуры. Деятельностью внутренних органов, реакциями обмена веществ, поддержанием постоянства внутренней среды организма человека управляет автономная или вегетативная нервная система. Ее название происходит от греческого слова «автономия» — самоуправление.

Работа этой системы не подчиняется воле человека. Нельзя, например, по желанию ускорить процесс пищеварения или сузить кровеносные сосуды. Автономная нервная система Автономная система представлена двумя отделами — симпатическим и парасимпатическим.

Симпатический отдел система сложных ситуаций включается во время интенсивной работы, требующей затраты энергии что-то услышал неожиданное — расширяются зрачки, возрастает частота сокращений сердца, замедляется деятельность пищеварительной системы, учащается дыхание. Парасимпатический отдел можно назвать системой отбоя. Она возвращает организм в состояние покоя, создает условия для отдыха и восстановления организма.

Роль гипоталамуса

  • Тест «Нервная система»
  • Нервные импульсы поступают непосредственно к железам по...?
  • Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов 2) аксо…
  • Последние опубликованные вопросы
  • Нервная регуляция работы надпочечников
  • Человек и его здоровье (стр.51-75)

Регуляция желудочной секреции.

При введении АХ внутрь мышечных волокон в районе концевой пластинки, никаких электрических изменений не наблюдалось. Благодаря способности кальция передавать внутриклеточным биохимическим системам сигналы, которые в форме электрических импульсов или фармакологических соединений поступают извне ему отдана роль «вторичного мессенджера», обладающего способностью прочно и с высокой специфичностью связываться со своим белком-мишенью. В результате этого связывания конформация молекулы белка-мишени изменяется так, что он переходит из неактивного состояния в активное или наоборот. Входящий кальциевый ток оказывает клетке значительное воздействие. Согласно описанной схеме, в процессе передачи информации от клеточной поверхности внутрь клетки, кальций действует как простой переключатель, который создает только два состояния системы: «включено» и «выключено», что особенно проявляется при секреции медиатора.

Лауреат Нобелевской премии — сэр Бернард Катц с сотрудниками обнаружили, что медиатор выделяется из нервных окончаний порциями квантами. Было отмечено, что каждая освободившаяся порция вызывает на мембране мышечной клетки слабое изменение потенциала в сторону деполяризации, часто называемыми миниатюрными потенциалами концевой пластинки МПКП. Выяснено, что нейромедиатор хранится в секреторных пузырьках в плотноупакованном виде, находящихся внутри нервного окончания около пресинаптической мембраны. В нашей лаборатории установлено, что МПКП возникают только под воздействием целой порции медиатора и эта порция должна быть сильно сконцентрирована и выброшена очень близко к рецепторам в случайные моменты времени по типу «все или ничего».

Известно, что один квант медиатора — АХ открывает около 1000 каналов ионной проводимости. Изучение длинных последовательностей до нескольких тысяч МПКП показало, что распределение интервалов t между импульсами вокруг среднего значения tх симметрично, а частота, с которой встречаются интервалы t, следуют простому экспоненциальному закону, характерному для случайного процесса. Этот разброс связан, прежде всего с тем, что места возникновения МПКП находятся на разном расстоянии от регистрирующего электрода. МПКП регистрируются внеклеточным микроэлектродом от наружной поверхности мышечных мембран, от различных, но строго локальных участков синапса, что свидетельствует о выделении АХ не диффузно, а в определенных активных точках.

При изучении возникновения постсинаптического потенциала концевой пластинки ПКП многие исследователи пришли к выводу, что ПКП возникает вследствие резкого увеличения частоты МПКП и, что между частотой и силой поляризующего тока имеется линейная зависимость. Деполяризация пресинаптических окончаний на 60 мВ увеличивает частоту в 104 раз, что вызывает появление ПКП. Однако, в последние годы появилось много убедительных данных, в которых показано, что временное распределение интервалов не подчиняется закону Пуассона. Обнаружено существование низко- и высокоамплитудных МПКП, которые возникали в той же самой концевой пластинке.

Анализ встречаемости обоих видов МПКП в односекундные и 100миллисекундные непрерывающиеся интервалы показал, что имеются существенные отклонения от пуассоновского распределения, тем большие, чем меньше диаметр волокна и частота МПКП. Этот статистический подход представляет интерес, поскольку позволяет подтвердить предположение о квантовом характере освобождения медиатора. Библиографическая ссылка M. Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания» Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления Резюме по рефлекторной дуге Деятельность нервной системы носит рефлекторный характер, а сама нервная система построена по принципу рефлекторных дуг.

Рефлекс — это реакция организма на то или иное раздражение, которая происходит при участии нервной системы. В ней нервные клетки, контактируя друг с другом при помощи синапсов, образуют цепи различной длины и сложности. Цепь нейронов, обязательно включающую первый нейрон чувствительный и последний нейрон двигательный или секреторный , называют рефлекторной дугой. В состав рефлекторной дуги входят афферентный нейрон с его чувствительными окончаниями — рецепторами, один или более вставочных нейронов, залегающих в центральной нервной системе, и эфферентный нейрон, чьи эффекторные окончания заканчиваются на рабочих органах мышцах и др.

В 11 задании отмечен ответ 2, но правильным является 3, тк червь - образование между полушариями мозжечка, а для коры характерны серое вещество, извилины и борозды. В вопросе B1 не подходит ответ 4, так как внутренними органами управляет вегетативная нервная система, а у вас получается прям как в фильме "Формула любви", по желанию бьется сердце, по желанию не бьется. В общем тест и ответы весьма странные.

В поперечно-полосатых мышечных волокнах миофибриллы разделены на правильно чередующиеся участки диски , обладающие разными оптическими свойствами. Одни из этих участков анизотропны, то есть обладают двойным лучепреломлением. В обычном свете они выглядят темными, а в поляризованном - прозрачными в продольном и непрозрачными в поперечном направлении. Другие участки изотропны, и выглядят прозрачными при обыкновенном свете. Анизотропные участки обозначаются буквой А, изотропные - I.

В середине диска А проходит светлая полоска Н, а посередине диска I проходит темная полоска Z, представляющая собой тонкую поперечную мембрану, сквозь поры которой проходят миофибриллы. Благодаря наличию такой опорной структуры параллельно расположенные однозначные диски отдельных миофибрилл внутри одного волокна во время сокращения не смещаются по отношению друг к другу. Установлено, что каждая из миофибрилл имеет диаметр около 1 мк и состоит в среднем из 2500 протофибрилл, представляющих собой удлиненные полимеризованные молекулы белком миозина и актина. Миозиновые нити протофибриллы вдвое толще актиновых. Их диаметр составляет примерно 100 ангстрем. В состоянии покоя мышечного волокна нити расположены в миофибрилле таким образом, что тонкие длинные актиновые нити входят своими концами в промежутки между толстыми и более короткими миозиновыми нитями. В таком участке каждая толстая нить окружена 6 тонкими. Благодаря этому диски I состоят только из актиновых нитей, а диски А еще и из нитей миозина.

Светлая полоска Н представляет собой зону, свободную в период покоя от актиновых нитей. Мембрана Z, проходя через середину диска I, скрепляет между собой нити актина. Важным компонентом ультрамикроскопической структуры миофибрилл являются также многочисленные поперечные мостики на миозине. В свою очередь на нитях актина имеются так называемые активные центры , в покое прикрытые, как чехлом, специальными белками - тропонином и тропомиозином. В основе сокращения лежит процесс скольжения нитей актина относительно миозиновых нитей. Такое скольжение вызывается работой т. При сокращении мышечного волокна нити актина и миозина не укорачиваются, а начинают скользить друг по другу: актиновые нити вдвигаются между миозиновыми, в результате чего длина дисков I укорачивается, а диски А сохраняют свой размер, сближаясь друг с другом. Полоска Н почти исчезает, так как концы актина соприкасаются и даже заходят друг за друга.

Роль ПД в возникновении мышечного сокращения процесс электромеханического сопряжения. В скелетной мышце в естественных условиях инициатором мышечного сокращения является потенциал действия, распространяющийся при возбуждении вдоль поверхностной мембраны мышечного волокна. Если кончик микроэлектрода приложить к поверхности мышечного волокна в области мембраны Z, то при нанесении очень слабого электрического стимула, вызывающего деполяризацию, диски I по обе стороны от места раздражения начнут укорачиваться. Раздражение других участков мембраны такого эффекта не вызывает. Из этого следует, что деполяризация поверхностной мембраны в области диска I при распространении ПД является пусковым механизмом сократительного процесса. В механизме мышечного сокращения особую роль играет та часть ретикулюма, которая локализована в области мембраны Z. Электронно-микроскопически здесь обнаруживается т. ПД, распространяющийся вдоль поверхностной мембраны, проводится вглубь волокна по поперечным трубочкам триад.

Начало мышечного сокращения приурочено к первой трети восходящего колена ПД, когда его величина достигает примерно 50 мв. Такой механизм назван "кальциевым насосом". Для осуществления его работы используется энергия, получаемая при расщеплении АТФ. Роль АТФ в механизме мышечного сокращения. Миозин обладает свойствами фермента АТФ-азы. При расщеплении АТФ освобождается около 10 000 кал. Под влиянием АТФ изменяются и механические свойства миозиновых нитей - резко увеличивается их растяжимость. Полагают, что расщепление АТФ является источником энергии, необходимой для скольжения нитей.

Кроме того, энергия АТФ используется для работы кальциевого насоса в ретикулюме. В соответствии с этим ферменты, расщепляющие АТФ, локализуются в этих мембранах, а не только в миозине. Ресинтез АТФ, непрерывно расщепляющейся в процессе работы мышц, осуществляется двумя основными путями. КФ содержится в мышце в значительно больших количествах, чем АТФ, и обеспечивает ее ресинтез в течение тысячных долей секунды. Однако при длительной работе мышцы запасы КФ истощаются, поэтому важен второй путь - медленный ресинтез АТФ, связанный с гликолизом и окислительными процессами. Окисление молочной и пировиноградной кислот, образующихся в мышце во время ее сокращения, сопровождается фосфорилированием АДФ и креатина, то есть ресинтезом КФ и АТФ. Нарушение ресинтеза АТФ ядами, подавляющими гликолиз и окислительные процессы, ведет к полному исчезновению АТФ и КФ, вследствие чего кальциевый насос перестает работать. Теплообразование при сократительном процессе.

По своему происхождению и времени развития теплообразование это делится на две фазы. Первая во много раз короче второй и носит название начального теплообразования. Она начинается с момента возбуждения мышцы и продолжается в течение всего сокращения, включая и фазу расслабления. Вторая фаза теплообразования происходит в течение нескольких минут после расслабления, и носит название запаздывающего , или восстановительного теплообразования. В свою очередь начальное теплообразование может быть разделено на несколько частей - тепло активации, тепло укорочения, тепло расслабления. Тепло, образующееся в мышцах, поддерживает температуру тканей на уровне, обеспечивающем активное протекание физических и химических процессов в организме. Виды сокращений. В зависимости от условий, в которых происходит сокраще- ние, различают два его типа - изотоническое и изометрическое.

Изотоническим называется такое сокращение мышцы, при котором ее волокна укорачиваются, но напряжение остается прежним. Примером является укорочение без нагрузки. Изометрическим называется такое сокращение, при котором мышца укорачиваться не может когда ее концы неподвижно закреплены. В этом случае длина мышечных волокон остается неизменной, но напряжение их растет подъем непосильного груза. Естественные сокращения мышц в организме никогда не бывают чисто изотоническими или изометрическими. Одиночное сокращение. Раздражение мышцы или иннервирующего ее двигательного нерва одиночным стимулом вызывает одиночное сокращение мышцы. В нем различают две основные фазы: фазу сокращения и фазу расслабления.

Сокращение мышечного волокна начинается уже во время восходящей ветви ПД. Длительность сокращения в каждой точке мышечного волокна в десятки раз превышает продолжительность ПД. Поэтому наступает момент, когда ПД прошел вдоль всего волокна и закончился, волна же сокращения охватила все волокно и оно продолжает быть укороченным. Это соответствует моменту максимального укорочения или напряжения мышечного волокна. Сокращение каждого отдельного мышечного волокна при одиночных сокращениях подчиняется закону "все или ничего". Это означает, что сокращение, возникающее как при пороговом, так и при сверхпороговом раздражении, имеет максимальную амплитуду. Величина же одиночного сокращения всей мышцы зависит от силы раздражения. При пороговом раздражении сокращение ее едва заметно, с увеличением же силы раздражения оно нарастает, пока не достигнет известной высоты, после чего уже остается неизменной максимальное сокращение.

Это объясняется тем, что возбудимость отдельных мышечных волокон неодинакова, и поэтому только часть их возбуждается при слабом раздражении. При максимальном сокращении они возбуждены все. Скорость проведения волны сокращения мышцы совпадает со скоростью распространения ПД. Суммация сокращений и тетанус.

Как спустя 10 минут изменится содержание углеводов А в первом растворе, Б во втором растворе, В в третьем растворе? Для каждой величины определите соответствующий характер её изменения: 1 увеличилась 2 уменьшилась 3 не изменилась. Ответ 333 4. Исследователь проанализировал состав плазмы крови у человека до еды и через полчаса после еды. Как изменилось А содержание инсулина, Б содержание глюкозы, В содержание гликогена? Определите эти два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.

Нервная система. Общие сведения

Он подчиняется гипоталамусу, который координирует всю вегетативную систему. Под его контролем находится и деятельность некоторых отделов мозга, а также внутренние органы. Гипоталамус регулирует: частоту сердечных сокращений; температура тела; белковый, жировой и углеводный обмен; количество минеральных солей; объем воды в тканях и крови. Деятельность гипоталамуса осуществляется на основе нервных связей и кровеносных сосудов. Именно через них происходит руководство гипофизом. Нервные импульсы, поступающие из мозга, преобразуется гипоталамусом в эндокринные стимулы. Они усиливаются или ослабляются под воздействием гуморальных сигналов, которые, в свою очередь, поступают в гипоталамус из желез, находящихся в его подчинении.

Вопрос Как нервная система регулирует работу эндокринной системы? Ответ: Эндокринная и нервная системы с их регулирующими и интегрирующими функциями являются отдельными, но параллельно действующими системами. Нейроны выделяют свои химические передатчики — медиаторы — в синаптическую щель для регуляции активности других нейронов. Эндокринные клетки секретируют свои химические передатчики — гормоны — в кровь, которая разносит их ко всем клеткам, имеющим специфические рецепторы. Некоторые вещества действуют в обеих системах; они могут быть и гормонами то есть Продуктами эндокринных желез , и медиаторами продуктами определенных нейронов. Такую двоякую роль выполняют норадреналин, соматостатин, вазопрессин и окситоцин, а также передатчики диффузной нервной системы кишечника, например холецистокинин и вазоактивный кишечный полипептид.

Пример: Нейроны гипоталамуса вырабатывают кортиколиберин, который попадает в переднюю долю гипофиза через систему воротного кровообращения. Нейроны гипофиза в ответ на это выделяют кортикотропин актг , стимулирующий секрецию кортикостероидов — адреналина или норадреналина — корой надпочечников. Уровень кортикостероидов в крови, действуя как сигнал обратной связи, заставляет гипофиз или центральную нервную систему в целом продолжать или приостанавливать этот процесс. Вопрос Как эндокринная система влияет на развитие головного мозга? Ответ: Большое влияние на становление и развитие головного мозга оказывает щитовидная железа и ее гормоны. При недостатке этих гормонов гипотиреозе развивается заболевание кретинизм.

Больные этой болезнью страдают умственной и физической отсталостью. Вопрос Каковы функции гипофиза и щитовидной железы? Ответ: гипофиз — это железа внутренней секреции непосредственно связанная с мозгом. Гипофиз вырабатывает гормон роста воздействующий на рибосомы клеток, которые вырабатывают клеточные белки. В результате клетки быстрее растут и делятся. Гормоны гипофиза и их функции обеспечивают важнейшее одно явление во всяком живом развитом организме — гомеостаз.

Гипофиз регулирует работу щитовидной, паращитовидной, надпочечниковой железы, контролирует состояние водно — солевого баланса. Функция щитовидной железы — это выработка гормонов, которые поддерживают нормальный обмен веществ во всем организме.

Скорость передачи нервных импульсов в теле человека. Скорость передачи импульса в нейронах. Нейроны афферентных путей. Нейрон структурно-функциональная единица нервной системы. Функциональное строение нервной системы. Структурно-функциональная характеристика нейронов. Нейрон строение и функции.

Нейрон направление нервного импульса. Нейромедиатор это гормон. Нейромедиаторы представители. Нейромедиаторы мозга. Медиаторы и нейромедиаторы. Распространение нервного импульса по аксону. Нервные импульсы к телу нейрона идут по. Медиаторы нервных клеток. Медиаторы нервного импульса.

Роль медиаторов в передаче импульсов.. Передача нервного импульса биохимия. Нервная клетка. Нейроны головного мозга. Двигательный Нейрон. Проводниковая функция спинного мозга. Проводниковая функция спинного мозга схема. Проводниковой функции спинного мозга. Схема проводниковой функции спинного мозга.

Функции вставочного нейрона рефлекторной дуги. Рефлекс вставочные Нейроны. Нейрон, проводящий нервный Импульс от рецептора к ЦНС. Путь рефлекторной дуги. Рефлекторная и проводниковая функции спинного мозга. Рефлекторная и проводниковая функции. Рефлекторная функция спинного мозга. Строение нейрона. Строение тела нейрона.

Отросток нервной клетки. Строение отростков нейрона. Передача импульса с нейрона на Нейрон. Передача нервного импульса в клетке. Этапы и механизмы синаптической передачи. Синаптическая передача нервного импульса механизм. Синапс этапы синаптической передачи. Структурные компоненты и функциональные участки нейрона. Структурно-функциональной единицей нервной ткани является.

Схема строения двигательного нейрона. Нейрон основная структурно-функциональная единица нервной системы. Путь нейрона по рефлекторной дуге. Путь нервного импульса по рефлекторной дуге. Рефлекторная дуга по порядку нервного импульса. Порядок элементов рефлекторной дуги. Чувствительный вставочный и двигательный Нейроны. Чувствительный Нейрон вставочный Нейрон двигательный Нейрон. Дыигалетные, чувствительные вставочнвставочные Нейроны.

Чувствительный вставочный и двигательный Нейроны функции. Мембрана нервной клетки схема. Схема передачи импульса нейрона. Распределение зарядов и ионов на мембране нервной клетки. Схема проведения импульса в нейроне. Рефлекторная дуга чувствительный Нейрон. Рецепторная рефлекторная дуга. Рефлекторная дуга вставочный Нейрон чувствительный Нейрон. Коленный рефлекс вставочный Нейрон.

Строение рефлекторной дуги кратко. Строение рефлекторной дуги чувствительности. Рефлекторная дуга нервной системы анатомия. Рефлекторная дуга строение и функции. Схема сложной рефлекторной дуги соматического рефлекса. Рефлекторная дуга сгибательного рефлекса схема. Структура и функции рефлекторной дуги. Схема рефлекторной дуги соматического рефлекса. Нейрон структурная и функциональная единица нервной системы.

Нейроны центральной нервной системы.

Ганглии выполняют роль связующего звена между разными структурами нервной системы. Нервное сплетение — это сетчатое скопление нервных волокон, которые связывают центральные отделы нервной системы с органами, мышцами и кожей.

Рефлекс и рефлекторная дуга Помнишь, что является основной формой деятельности нервной системы? Если забыл, подскажу: в основе нашей нервной деятельности лежит рефлекс. На нём мы остановимся чуть подробнее.

Рефлекс — это ответная реакция организма на действие внутреннего или внешнего раздражителя. Любой рефлекс осуществляется на базе рефлекторной дуги — совокупности нервных элементов, необходимых для проведения нервного импульса. Иными словами, рефлекторная дуга — это путь, по которому проходит нервный импульс при осуществлении рефлекса.

Самый простой пример рефлекторной дуги — дуга коленного рефлекса. Вспомни стандартную процедуру в кабинете невролога: доктор ударяет чуть ниже колена специальным молоточком, и нога резко дёргается «сама», без твоего сознательного участия. Как это происходит?

Молоточек попадает по сухожилию, расположенному под твоей коленной чашечкой — там находится особый рецептор, который реагирует на внешнее раздражение и трансформирует энергию в нервный импульс. Затем этот импульс передаётся по аксону чувствительного нерва в спинной мозг, где попадает к находящемуся в нём двигательному нейрону. Этот нейрон непосредственно связан с мышцей, движение которой ты и наблюдаешь после удара молоточком по сухожилию.

Ну как, загрузила тебя? Понимаю, анатомия — тема очень сложная! Но её необходимо выучить, если хочешь сдать ЕГЭ по биологии на высокий балл.

Рефлекторные механизмы регуляции дыхания. Рефлекторная саморегуляция вдоха и выдоха. Рефлекторная регуляция механизм регуляции. Рефлексы регуляции дыхания. Строение рефлекторной дуги мигательного рефлекса. Схема рефлекторной дуги мигательного рефлекса. Дуга мигательного рефлекса физиология. Нервные импульсы от рецепторов. Синапс место контакта между двумя нейронами. Передача импульса между нервными клетками.

Нейроны передача импульсов. Передача импульса между нейронами. Рефлекторная дуга внутри ЦНС. Рефлекторная дуга и ее компоненты. Рефлекторная дуга путь рефлекса. Рефлекторная дуга начинается с рецепторов. Ответную реакцию организма на раздражение осуществляемую. Ответная реакция организма осуществляемая ЦНС. Ответные реакции на раздражитель. Ответная реакция на раздражение.

Продолговатый мозг центры регуляции. Регуляция нервной системы. Нервные центры продолговатого мозга. Продолговатый мозг нервная система. Супрахиазменные ядра гипоталамуса. Супрахиазматическое ядро гипоталамуса строение. Супрахиазмальное ядро головного мозга.. Ретиногипоталамический тракт. Передача нервного импульса в ЦНС. Путь передачи нервного импульса в центральную нервную систему.

Сигналы нейронов. Рефлекторный механизм деятельности нервной системы. Рефлекторный принцип функционирования ЦНС. Рефлекторный принцип деятельности нервной системы человека.. Рефлекс нервная система. Синапс механизм синаптической передачи импульса. Механизмы модуляции эффективности синаптической передачи. Механизм межнейронной синаптической передачи. Экзоцитоз нейромедиатора. Нейроны физиология Аксон.

Строение нейрона коллатерали. Функции нервной клетки физиология. Функциональные структуры нейрона. Дендрит двигательного нейрона. Строение спинного мозга анатомия Нейроны. Дендрит это периферический отросток клетки. Нейроны строение передача импульса. Нейрон передает Импульс. Названия нейронов. Передача сигналов в нервной системе.

Тела нейронов находятся в. Тело нейрона функции. Передачи нервного импульса по звеньям рефлекторной дуги. Рефлекторная дуга характеристика ее звеньев. Афферентное звено рефлекторной дуги выполняет функции. Аксон нервной клетки. Нейроны аксоны дендриты. Нейроны передающие импульсы. Аксон двигательного нейрона. Возбуждение нервной клетки.

Строение чувствительного нейрона. Возбудимость нейрона. Проведение возбуждения в нервной клетке. Афферентные и эфферентные нервные пути. Афферентный путь и эфферентный путь. Проводящие пути афферентные и эфферентные. Афферентные двигательные пути. Образование спинномозговых нервов схема. Схема формирования спинномозгового нерва. Симпатический ствол и спинномозговые нервы.

Образование и ветви спинномозгового нерва схема :.

ГДЗ по биологии 8 класс Драгомилов | Страница 47

2294 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по. 1)аксонам двигательных нейронов. проведение нервного импульса в ЦНС. Нервные импульсы от рецепторов желудка по афферентным волокнам блуждающего нерва поступают в продолговатый мозг к ядрам блуждающих нервов.

Похожие новости:

Оцените статью
Добавить комментарий