Новости что находится за вселенной

«Где-то под «сердцем» Плутона находятся осколки массивного тела, которое он так и не смог полностью переварить». Top Day News» Новости Науки и техники» Новости науки» Астрономы объяснили, что находится за пределами видимой Вселенной. РБК Life рассказывает, что на данный момент ученым известно о Вселенной и Солнечной системе. На границах обитаемых части Вселенных находятся Вселенные которым очень трудно выживать.

Что находится за границей видимой Вселенной

Масса находится в диапазоне масс внегалактических чёрных дыр, обнаруженных благодаря гравитационным волнам. «Где-то под «сердцем» Плутона находятся осколки массивного тела, которое он так и не смог полностью переварить». Один из не менее удивительных фактов Вселенной – то, что форма Вселенной зависит от ее плотности. Первые же снимки космического телескопа "Джеймс Уэбб" произвели сенсацию и заставили усомниться в правильности общепринятой теории образования Вселенной. За пределами нашей Вселенной находится находится старая фаза вселенной, которая существовала до Большого Взрыва. Многие слышали, что диаметр видимой Вселенной составляет 93 млрд световых лет и видели картинки, изображающие нашу Вселенную также как на изображении внизу.

Что находится за пределами Вселенной? Устройство Вселенной. Тайны космоса

В пользу теории об участии в создании Солнечной системы некой сверхновы свидетельствуют образцы изотопов, найденные в очень древних метеоритах, в осадочных породах и в пробах океанической коры. Изотоп железа-60, распадающийся на никель-60, не образуется на Земле, так что его происхождение явно космическое. В исследуемых образцах ученые обнаружили именно «предательский» никель-60, который своим присутствием и выдал тайну зарождения нашего мира. Древние метеориты, вероятно, попали в земную кору во время взрыва сверхновой звезды, которая и запустила определенные процессы, приведшие к формированию нашей планетной системы, какой мы ее знаем сегодня. Согласно этому предположению, именно благодаря периодическим вспышкам сверхнов по всей Вселенной постоянно появляются новые планетные системы — процесс созидания бесконечен....

Проксима, вероятно, полностью выжжена и бесплодна Фото: space. Вокруг этой звезды вращается экзопланета, очень напоминающая нашу Землю — Проксима Центавра b Proxima b , и находится она в так называемой зоне обитаемости. Это значит, что на этой экзопланете, возможно, есть все условия для зарождения там жизни. Открытие Проксимы Центавра b стало настоящей сенсацией для астрофизиков.

Увы, скорее всего Проксима b была почти полностью выжжена. В марте 2017 года исследователям довелось пронаблюдать за новым феноменом. Всего за 10 секунд красный карлик стал ярче в 1000 раз, что указывает либо на катастрофическую вспышку, либо на какие-то внеземные испытания мощнейшего оружия уфологии не дремлют. Масса у Проксимы Центавра небольшая, но вспышка была в 10 раз мощнее, чем самые сильные известные нам всплески солнечной активности … Экзопланете Проксима b теоретически около 4,85 миллиарда лет, так что она, скорее всего, пережила уже бесчисленное множество таких ударов.

Если это верно, то атмосфера и вода на этой экзопланете уже давно были уничтожены сильнейшим воздействием звездной радиации. Выходит, что ученым вряд ли удастся обнаружить там признаки жизни, а ведь у них на это были такие большие надежды… 8. Оказывается, звезд-гигантов в мире невероятно много Фото: npr. Вдобавок ученым пришлось пересмотреть свое понимание самого термина звезда-гигант.

Ранее было принято считать, что самые крупные звезды имеют массу до 200 солнечных, но теперь этот лимит пришлось поднять до целых 300. Это звучит угрожающе и невероятно завораживает… 7. Открытие абсолютно нового вида планет Фото: ucdavis.

Плоская Вселенная: В этой модели Вселенная имеет плоскую геометрию, а её размеры могут быть ограниченными, но опять-таки без определённых границ. В целом, сегодня «границу» наблюдаемой Вселенной можно установить на отметке в 13,8 миллиарда световых лет. Впрочем, это не значит, что Вселенная на этом обрывается. Просто-напросто дальше мы пока заглянуть не способны. Панорама нашей галактики Млечный Путь и соседних галактик от Gaia. Карты показывают общую яркость и цвет звёзд вверху , общую плотность звёзд посередине и межзвёздную пыль, заполняющую Галактику внизу. Время, за которое фотоны от этой сферы успевают до нас долететь, равны возрасту Вселенной.

Из-за этого мы и не способны увидеть объекты, находящиеся дальше этой сферы, даже если они и существуют. Даже при использовании скорости света как предельной космической , существует фундаментальный предел, насколько далеко мы можем заглянуть назад во времени. Однако это позволит лишь приблизиться к краю Вселенной. Однако есть загвоздка в том, чтобы физически оказаться на границе Вселенной, а не только её увидеть. И снова всё упирается в расширение Вселенной и невероятно огромные расстояния. Долететь до самой удалённой от нас части Вселенной невозможно, даже если двигаться со скоростью света, поскольку получается, что объекты, которые находятся далеко друг от друга, продолжают увеличивать расстояние между собой с огромной скоростью. Итак, если с пределом Вселенной определились, то возникает закономерный вопрос: а что там может быть, в случае если это действительно предел-предел, граница, конец?

Это не опция, а распространённое явление, что позволяет надеяться, что планет земного типа с появившейся там биологической жизнью во Вселенной всё же больше одной. Вся мощь «Уэбба» или «Хаббла» неспособна передать красоту космоса без данных в рентгеновском, радиочастотном и ультрафиолетовом диапазоне.

Поднимая уровень оптических и инфракрасных телескопов на уровень вверх, мы не должны забывать о создании более совершенных инструментов для других частот. Галактика Андромеда в ультрафиолетовом спектре по данным телескопа Swift. Источник изображения: NASA Как стало известно , NASA официально утвердило создание ультрафиолетового телескопа следующего поколения, который должен быть отправлен в космос на рубеже 30-х годов. Перед новым ультрафиолетовым телескопом будет стоять две задачи. Во-первых, он должен будет составить карту неба в ультрафиолетовом диапазоне. Во-вторых, телескоп получит возможность быстро менять ориентацию, чтобы получать изображения переходных процессов: взрывов сверхновых, слияния звёзд, джеты чёрных дыр и нейтронных звёзд и других энергетических явлений. Это станет ценнейшим дополнением к гравитационно-волновым наблюдениям неба, когда крайне сложно выявить источник гравитационной волны. При обзоре неба в ультрафиолете мы сможем увидеть самые горячие объекты в ней. Прежде всего, это молодые и старые звёзды, когда процессы в ядрах находятся на критических стадиях активности.

Также данные в ультрафиолетовом диапазоне позволят увидеть галактики с низким содержанием металлов и ряд других объектов. Телескоп будет рассчитан на два года научной работы. Главные детали миссии уже проработаны, как и есть технико-экономическое обоснование проекта. Через год-два должно стартовать производство аппарата и его научных приборов. Что появилось раньше? Мы видим, как массивные звёзды превращаются в чёрные дыры — это доказанный факт. Одновременно с этим мы замечаем в ранней Вселенной присутствие сверхмассивных чёрных дыр, которые просто не успели бы вырасти до регистрируемых масс. Источник изображения: The Astrophysical Journal Letters На днях в журнале The Astrophysical Journal Letters была опубликована работа , в которой группа учёных из Университета Джона Хопкинса в США и Университета Сорбонны во Франции собрала данные «Уэбба» по обнаруженным в ранней Вселенной чёрным дырам и представила больше доказательств в пользу гипотезы об одновременном рождении звёзд и чёрных дыр. Эти данные будут набираться и дополняться новыми наблюдениями, что позволит со временем создать стройную теорию эволюции объектов во Вселенной и её самой.

Учёные обратили внимание, что «Уэбб» обнаружил одну сверхмассивную чёрную дыру через 470 млн лет после Большого взрыва, а другую — через 400 млн лет. Масса последней была определена на уровне 1,6 млн солнечных. Она находилась в центре галактики, которая была легче, чем дыра в её сердцевине. Чёрная дыра подобной массы не могла вырасти до фиксируемого значения. Из того, что мы наблюдали, чёрные дыры возникали после коллапса умирающих звёзд массой свыше 50 солнечных. Ничего подобного в ранней Вселенной не могло произойти, чтобы проявился наблюдаемый там эффект — крошечная галактика, собранная вокруг СЧД. Исследователи делают вывод, что первичные чёрные дыры образовались одновременно с первыми звёздами или чуть раньше из облаков первичной материи. Центры облаков коллапсировали и возникшая в каждом из них чёрная дыра начинала испускать ветер, запускающий и ускоряющий процесс звездообразования. Фактически первичные чёрные дыры стали тем инструментом, который собрал и превратил галактики в те структуры, которые мы наблюдаем.

Как показало моделирование, иногда это может быть не так и планета на ранних стадиях зарождения вполне может оказаться достаточно плоской формы. Источник изображения: ИИ-генерация Кандинский 3. В целом преобладает мнение, что от начала до конца зародыш планеты растёт равномерно и имеет шарообразную форму. Менее поддержана гипотеза так называемого нестабильного диска: на ранних стадиях эволюции центральная область зарождающейся планеты имеет скорее плоскую форму, чем сферическую. Когда-нибудь наши телескопы станут достаточно чувствительными, чтобы напрямую изучать планеты на всех этапах их эволюции. В принципе, на примере планет-гигантов это можно делать уже сейчас, достаточно найти подходящих кандидатов. Кстати, космический телескоп им. Джеймса Уэбба занимается, в том числе, и такой задачей. Но пока достаточных для наблюдения данных нет, приходится проводить моделирование на компьютере.

Моделирование протопланеты, формирующейся методом нестабильного диска. Вид сверху и сбоку Источник изображения: UCLan Моделирование показало, что когда планеты формируются с помощью процесса нестабильности диска, они не демонстрируют равномерный сферический рост. Наоборот, на полюсах в таких случаях собирается больше вещества, чем в экваториальной зоне, что превращает их в «сплюснутый сфероид» или, говоря проще, на этом этапе формирования молодая планета похожа на сильно приплюснутое яйцо. В итоге она всё равно становится сферической формы, но определённый этап с некоторой натяжкой может считаться периодом плоской земли. Статья опубликована в одном из самых престижных астрономических журналов — Astronomy and Astrophysics Letters. Сверхмассивная чёрная дыра СЧД в центре галактики Markarian 817 около года испускала сверхбыстрый ветер из частиц, оставаясь при этом в стадии средней активности. Раньше подобное наблюдалось только для сверхактивных СЧД и случалось крайне редко. Художественное представление чёрной дыры, испускающей ветер из заряжённых частиц. Это прекращает звездообразование и, по сути, определяет облик и судьбу галактики-хозяина.

Для астрономов важно наблюдать подобные явления, что позволяет выяснить механизм взаимодействия СЧД и приютившей её галактики и, в конечном итоге, больше узнать об эволюции этих объектов и Вселенной. Галактика Markarian 817 на удалении 430 млн световых лет от нас с СЧД массой 81 млн солнечных явно выделилась на фоне всех остальных событий такого рода. Об активности чёрной дыры в её центре отчётливо должно было сигнализировать рентгеновское излучение, испускаемое перегретым веществом в аккреционном диске. Как позже оказалось, ветер от чёрной дыры блокировал рентгеновское излучение, и по факту оно было достаточно сильным. Анализ данных показал, что активность наблюдалась по обширному пространству аккреционного диска, что привело к образованию, как минимум трёх отдельных потоков ветра из заряжённых частиц, каждый из которых развил скорость до нескольких процентов от скорости света в вакууме. Это продолжалось около года и особым образом дало понять, как чёрные дыры и галактики могут влиять друг на друга. Тот факт, что Markarian 817 создавал эти ветры около года, не находясь в особо активном состоянии, предполагает, что чёрные дыры могут изменять форму своих галактик-хозяев гораздо сильнее, чем считалось ранее», — сообщили авторы исследования в статье, опубликованной в журнале Astrophysical Journal Letters.

Константин Семицкий Мудрец 14500 13 лет назад Единой точки зрения, является ли Вселенная действительно бесконечной или конечной в пространстве и объёме, не существует. Тем не менее, наблюдаемая Вселенная, включающая все местоположения, которые могут воздействовать на нас с момента Большого взрыва, конечна, поскольку конечна скорость света. Границей космического светового горизонта является расстояние 4,19 гигапарсека.

Исследование: Вселенная может оказаться черной дырой

Что находится за пределами нашей Вселенной О выпуске Краем Вселенной называют наиболее удалённую область, которую можно увидеть с помощью самых больших из существующих телескопов. Сегодня этот край определяется как 15 миллиардов световых лет, но это ещё не значит, что Вселенная там и заканчивается Краем Вселенной называют наиболее удалённую область, которую можно увидеть с помощью самых больших из существующих телескопов.

Фото: pixabay. Как пишет The Guardian, эти наблюдения являются первыми обнаружениями низкочастотной ряби в ткани пространства-времени и обещают открыть новое окно в мир чудовищных черных дыр, лежащих в центрах галактик. Эти объекты в миллионы, а то и в миллиарды раз превышают массу Солнца и сыграли огромную роль в формировании галактик, но остаются неуловимыми, потому что никакой свет не может вырваться из их тисков.

Альберт Эйнштейн впервые предсказал существование гравитационных волн столетие назад, а прорыв, совершенный в 2016 году американской лазерной интерферометрической гравитационно-волновой обсерваторией Ligo , стал доказательством того, что само пространство может растягиваться и сжиматься.

Новый новый подход подробно описан в статье, опубликованной в журнале Classical and Quantum Gravity профессором теоретической физики Женевского университета Лукасом Ломбрайзером. Что такое расширение Вселенной?

Согласно общепринятой теории, Вселенная родилась вместе с Большим взрывом и выглядела как очень горячая и плотная точка. Спустя невообразимо малые доли доли секунды, началось расширение Вселенной или инфляция. Само пространство расширялось быстрее скорости света.

За этот период Вселенная выросла в размерах по крайней мере в 90 раз. По мере расширения пространства она охлаждалась и формировалась материя. Через секунду после Большого взрыва она была заполнена нейтронами, протонами, электронами, антиэлектронами, фотонами и нейтрино.

На этом изображении всего неба показана зарождающаяся Вселенная. Оно показывает температурные колебания возрастом 13,7 млрд лет. Изображение предоставлено НАСА Примерно через 380 000 лет после Большого взрыва материя достаточно остыла для образования атомов в эпоху рекомбинации, что привело к образованию прозрачного, электрически нейтрального газа.

Однако после этого момента Вселенная погрузилась во тьму, так как еще не образовались ни звезды, ни какие-либо другие яркие объекты.

И делает вывод: «Космическая инфляция может создать мультивселенную». Случайным образом на маленьких островах пространства создаются условия для появления еще одного такого же явления, как Большой взрыв. Здесь происходит изменение основных свойств материи, и каждый подобный остров можно назвать другой Вселенной с другими свойствами. Таким образом появляется мультивселенная», — заключает Барнс. При чем тут «пузырьковые» вселенные Две следующие теории продолжают основной вывод физика Барнса и являются частными вариантами инфляционной модели их еще называют хаотической теорией инфляции и вечной инфляцией. Если коротко, модели говорят о том, что механизм инфляции то есть расширения не просто случился однажды, сразу же после Большого взрыва, а происходит снова и снова в различных регионах пространства.

Так якобы и появляются целые миры то есть вселенные с немного различающимися элементарными частицами и, как следствие, законами их взаимодействия. Согласно хаотической модели, такие миры называются «пузырьковыми». В качестве более простого примера в сети упоминают закипающую воду. Избыток энергии приводит к бурлению флуктуациям в пространстве-времени, в результате чего и появляются новые пузыри вселенные. Причем процесс неоднороден: маленькие пузыри способны ускоренно схлопываться, большие — расширяться до момента, пока не взорвутся и не затронут другие. Если или когда это произойдет, освободившаяся энергия приведет к появлению других пузырей — и так по кругу. Стивен Хокинг «топил» за мультивселенную Одним из самых знаменитых исследователей, поддерживающих идею о возможности существования мультивселенной и старающихся ее доказать, выступал физик-теоретик Стивен Хокинг его не стало всего пять лет назад.

Впрочем, ученый пришел к не самым очевидным выводам. С теорией мультивселенной Хокинг работал в конце жизни. В последнем опубликованном исследовании в соавторстве с бельгийцем Томасом Хертогом физик предложил решение, согласно которому «космос не бесконечен, у всего есть четкие границы, размеры и структура». Хокинг предполагал: вселенных на самом деле может быть несколько, однако все они крайне схожи между собой — различия не так значительны, как это описывается в фантастических фильмах. При условии существования вашей копии в параллельном мире заниматься другими делами, как в фильме «Все везде и сразу», она вряд ли будет.

Подписка на дайджест

  • Что находится за пределами нашей Вселенной
  • Астрономы объяснили, что находится за пределами видимой Вселенной
  • За пределами наблюдаемой Вселенной - Живой Космос
  • Мультивселенная действительно существует? Отвечает наука

Просто Новости

  • 60 удивительных фактов о Вселенной, которые вы должны знать
  • Ин-Спейс - Лента новостей космоса и Земли
  • Российский астрофизик — об эволюции представлений учёных о Вселенной
  • Вселенная - новости науки - Star Mission

Что лежит за пределами границы Вселенной?

Согласно теории Большого взрыва, наша Вселенная родилась примерно 13,75 миллиарда лет назад и с тех пор смогла расшириться из невероятно плотной «точки» до сегодняшних размеров. Вселенная растёт, флуктуирует и воспроизводит себя в различных формах — можно сравнить эту модель с кактусом, от которого отпочковываются новые побеги. Британский физик Стивен Хокинг предположил, что во Вселенной имеются и сверхмалые черные дыры, которые можно сопоставить с массой горы, уплотнившейся до размера протона. Вселенная растёт, флуктуирует и воспроизводит себя в различных формах — можно сравнить эту модель с кактусом, от которого отпочковываются новые побеги. В самых отдаленных уголках Вселенной астрономы сделали потрясающее открытие: квазар, питаемый сверхмассивной черной дырой, наблюдался в том виде, в каком. В одной из первых галактик Вселенной нашли сверхактивную черную дыру.

Мультивселенная действительно существует? Что об этом думали Стивен Хокинг и другие ученые

Но в ранние времена, до образования достаточного количества звёзд, Вселенная была полна нейтрального газа, который не был полностью ионизирован ультрафиолетовым излучением звёзд. В результате большая часть света, который мы видим, заслоняется этими нейтральными атомами, и только после образования достаточного количества звёзд Вселенная становится полностью реионизованной. Отчасти именно поэтому инфракрасные телескопы, такие как новейший флагман НАСА JWST, так важны для изучения ранней Вселенной: существует «граница», за которой мы не можем видеть на привычных нам длинах волн. На расстоянии 31 миллиарда световых лет, что соответствует времени всего 550 миллионов лет после Большого взрыва, мы достигаем края того, что мы называем реионизацией: когда большая часть Вселенной становится в основном прозрачной для оптического света. Реионизация — процесс постепенный и происходил неравномерно; во многом она похожа на неровную, пористую стену.

В некоторых местах реионизация происходила раньше, именно так Хаббл обнаружил самую удалённую галактику на расстоянии 32 миллиардов световых лет, всего через 407 миллионов лет после Большого взрыва , но другие регионы останутся заполненными частично нейтральным газом, пока не пройдёт почти миллиард лет. Теперь JWST пошёл ещё дальше, показав нам галактики уже через 330 миллионов лет после Большого взрыва, где они всё ещё выглядят большими, развитыми и не совсем «девственными» с точки зрения элементов, которые в них присутствуют. Должно быть, звёзды и галактики всё ещё существуют за пределами даже того, что JWST показал нам до сих пор. Галактики, сравнимые с современным Млечным Путём, часто встречаются на протяжении всей истории космоса.

Более молодые галактики в массе своей меньше, голубее, хаотичнее, богаче газом и имеют более низкую плотность тяжёлых элементов, чем их современные аналоги, а темпы звездообразования меняются с течением времени. Однако за границами возможностей наших современных телескопов мы всё ещё можем засечь косвенные признаки формирования звёзд: через излучение света самими атомами водорода, которое случается только при формировании звёзд — когда происходит ионизация, а затем свободные электроны рекомбинируются с ионизированными ядрами, излучая в результате свет. Возвращаясь ещё дальше назад, мы вполне ожидаем найти там дополнительные «края» Вселенной, представляющие интерес.

Новые спутники Юпитера В прошедшем году у крупнейшей планеты Солнечной системы стало больше известных спутников. У Юпитера их уже и так насчитывалось несколько десятков, а в начале февраля 2023 года астрономы признали , что у него есть еще 12 лун. Орбиты спутников Юпитера. Крупнейшие галилеевы спутники показаны фиолетовым, Группа Гималии — синим, а Карпо — голубым.

Внешние ретроградные спутники выделены красным Таким образом, общее количество спутников Юпитера достигает 92. Однако по этому параметру он все еще уступает Сатурну , у которого 146 известных спутников. Все вновь обнаруженные тела имеют размер всего несколько километров и могут быть фрагментами более крупных спутников, которые разрушились во время столкновения. Девять из них ретроградные, что означает, что направление их вращения противоположно направлению вращения центральной планеты. Частица сверхвысокой энергии из ниоткуда В конце ноября 2023 года ученые зарегистрировали самую «энергичную» частицу космического излучения за последние десятилетия. Ей дали собственное название — Аматэрасу, в честь японской богини солнца. Художественная концепция атмосферного ливня, порожденного космической частицей чрезвычайно высокой энергии, который фиксируют детекторы обсерватории Telescope Array.

Это в миллион раз превышает лучшие рукотворные достижения, полученные на Большом адронном коллайдере.

Карты показывают общую яркость и цвет звёзд вверху , общую плотность звёзд посередине и межзвёздную пыль, заполняющую Галактику внизу. Время, за которое фотоны от этой сферы успевают до нас долететь, равны возрасту Вселенной. Из-за этого мы и не способны увидеть объекты, находящиеся дальше этой сферы, даже если они и существуют. Даже при использовании скорости света как предельной космической , существует фундаментальный предел, насколько далеко мы можем заглянуть назад во времени. Однако это позволит лишь приблизиться к краю Вселенной. Однако есть загвоздка в том, чтобы физически оказаться на границе Вселенной, а не только её увидеть. И снова всё упирается в расширение Вселенной и невероятно огромные расстояния. Долететь до самой удалённой от нас части Вселенной невозможно, даже если двигаться со скоростью света, поскольку получается, что объекты, которые находятся далеко друг от друга, продолжают увеличивать расстояние между собой с огромной скоростью. Итак, если с пределом Вселенной определились, то возникает закономерный вопрос: а что там может быть, в случае если это действительно предел-предел, граница, конец?

Что за границей? Научные теории о том, что может находиться за пределами Вселенной основаны, как правило, на предположениях, выводах из известных физических законов и математических моделях. Множество других Вселенных Одна из теорий предполагает, что наша Вселенная — лишь одна из множества параллельных, которые существуют рядом с нашей. Это так называемая теория Мультивселенной , где каждая Вселенная имеет свои особенности и свойства. Если двигаться достаточно долго, то рано или поздно можно найти такую же планету, как наша, где мы утром завтракали овсянкой.

В 2020 году, имея данные за 12 лет, ученые-наногравитаторы начали замечать намеки на этот гравитационный гул и обратились к отдельным командам в Европе, Индии, Китае и Австралии, каждая из которых согласилась использовать свои собственные данные для независимого подтверждения. Доктор Стивен Тейлор отметил, что вероятность того, что последние результаты являются случайными, близка к одному из 10 000, что делает их убедительным доказательством, хотя это не соответствует золотому стандарту физики "один на миллион" для утверждения о доказательствах нового явления. Существует также элемент неопределенности относительно источника гравитационных волн. Полученные результаты изложены в серии статей, опубликованных в четверг в Astrophysical Journal Letters.

Последние выпуски

  • За пределами наблюдаемой Вселенной - Живой Космос
  • Вселенная в мультивселенной
  • 60 удивительных фактов о Вселенной, которые вы должны знать
  • Что находится за пределами Вселенной

Темные тайны: что скрывается во мраке космоса за пределами наблюдаемой Вселенной

Что находится за пределами нашей Вселенной? Этот факт означает, что, возможно, за пределами наблюдаемой Вселенной лежит еще огромное пространство, скрытое от нас пределом скорости света.
Астрономы оказались на пороге открытия неразгаданных тайн Вселенной: «Огромная новость» - МК Первые же снимки космического телескопа "Джеймс Уэбб" произвели сенсацию и заставили усомниться в правильности общепринятой теории образования Вселенной.
Что находится за пределами нашей Вселенной? | Пикабу Новейший телескоп «Джеймс Уэбб», созданный преимущественно для поиска древних космических объектов, справился со своей задачей не так, как ожидалось — на первых этапах исследования вселенной ему удалось запечатлеть шесть «невозможных» далёких галактик.
Что находится за пределами нашей Вселенной? огненный шар, в 100 раз больше нашей Солнечной системы, который внезапно начал полыхать в далекой вселенной более трех лет назад.

Что находится за краем Вселенной?

Грохочущую “космическую басовую ноту” гравитационных волн, которые, как полагают, возникают в результате замедленного слияния сверхмассивных черных дыр по всей Вселенной, обнаружили астрономы. В первые мгновения своего существования материя во Вселенной была максимально однородной и равномерно распределялась по небольшому пространству. Вся вселенная находится на горизонте событий, ничто за 13.7 миллиардов лет не может пройти расстояние больше чем 13.7 миллиардов световых лет.

Лента новостей космоса и Земли

Поскольку мы знаем, что возраст Вселенной составляет 13,8 млрд лет, мы возвращаемся почти к самому началу». Исследователи скоро начнут узнавать больше о массе, возрасте, истории и составе галактик, поскольку «Уэбб» ищет самые ранние галактики во Вселенной. Телескоп, запущенный 25 декабря прошлого года из Французской Гвианы, будет исследовать Вселенную в инфракрасном диапазоне, что позволит ему проникать сквозь облака газа и пыли, где рождаются звезды. Его предшественник «Хаббл» с момента запуска в 1990 году работал преимущественно в оптическом и ультрафиолетовом диапазонах волн. В настоящее время самые ранние космологические наблюдения относятся к периоду в пределах 330 млн лет от Большого взрыва, но благодаря возможностям «Уэбба» астрономы считают, что они легко побьют этот рекорд. У телескопа гигантское золотое зеркало размером чуть более 6,5 м в поперечнике, состоящее из 18 отдельных шестиугольных сегментов, которые могут складываться и раскладываться. Они медленно и тщательно раскладывались в течение последних шести месяцев, чтобы подготовить «Джеймс Уэбб» к научной миссии. Рабочая температура обсерватории и большинства ее приборов составляет примерно 40 Кельвинов — около минус 233 градусов Цельсия.

А еще они надеются, что он ответит на некоторые вопросы, о которых мы даже не подозреваем. Все изображения NASA. Читайте также.

Сигнал с радиотелескопа обсерватории Аресибо к созвездию Геркулеса ушел еще в 1974 году. Кроме того, в космос отправляли алюминиевые и золотые пластинки с изображением людей и солнца, музыкальные записи, приветствия на разных языках. В 2022 году международная группа ученых усовершенствовала и дополнила послание Аресибо.

Теперь оно состоит из 13 слайдов. Однако многие ученые сомневаются, что обитатели других миров сумеют понять послания, которые им отправляют с Земли. Больше того, есть шанс, что с нами уже пытаются общаться, но мы этого не понимаем. Ежедневно радиотелескопы принимают миллионы сигналов. Какие-то идут с Земли, какие-то с земной орбиты, какие-то приходят из космоса. Разобраться в этом потоке данных и расшифровать их — не в человеческих силах.

Но в начале этого года к анализу подключили искусственный интеллект. Нейросеть изучила результаты наблюдений более восьмисот звезд, которые получили еще в 2016 году. Они узкополосные, то есть направленные. И сейчас Искусственный интеллект продолжает обрабатывать другие данные, чтобы понять, повторялись ли они, и было ли что-то похожее за всю историю наблюдений", — заявил руководитель отдела искусственного интеллекта в НАСА Стив Чен. Но есть и другой план. Помните загадочный летающий объект с труднопроизносимым гавайским именем Оумуамуа?

В НАСА задумали отправиться за ним в погоню. И у нас есть шанс догнать его и изучить. В нашей Солнечной системе никогда раньше не было таких объектов.

Таким образом выходит, что мы никогда не увидим ничего дальше, чем максимальное расстояние, которое в принципе может пройти фотон с момента возникновения Вселенной. Основываясь на этом, физики считают Вселенную постоянно увеличивающейся и в то же время конечной — этот конечный объем называется Объемом Хаббла. За его пределами, с некоторой долей вероятности, лежит еще одна Вселенная, где можно найти вообще все что угодно. В том числе и очередной Объем Хаббла, а там все опять начнется сначала.

Благодаря полному кольцу JWST-ER1 исследователи рассчитали массу галактики-линзы, определив, насколько она исказила пространство-время вокруг себя. Масса этой галактики эквивалентна примерно 650 миллиардам Солнц, что делает её необычайно плотной для своего размера. Некоторая часть этой массы может объясняться тёмной материей, но даже в этом случае маловероятно, что массы звёзд хватит, чтобы объяснить остальную массу галактики.

Ранее уже были обнаружены галактики такого же возраста и с такой же плотностью, что говорит о том, что у этих древних звёздных фабрик есть что-то общее, что делает их такими массивными. Одно объяснение заключается в том, что эти галактики содержат гораздо больше тёмной материи, чем ожидалось, а другая теория предполагает, что в них может находиться больше звёзд малой массы, чем в молодых галактиках.

Что находится за пределами нашей Вселенной

Последнюю идею выдвинул Андрей Линде, один из основателей инфляционной модели Вселенной. Он предполагал, что раз существует много видов скалярных полей, то может существовать и много видов Вселенных, где действуют разные физические законы. Вселенная растёт, флуктуирует и воспроизводит себя в различных формах — можно сравнить эту модель с кактусом, от которого отпочковываются новые побеги. Модель, в которой постоянно идёт процесс зарождения новых Вселенных, называется стационарной моделью. Это довольно интересная попытка учёных уйти от ответа на вопрос о начале и конце Вселенной. Мы вошли в XXI век с двумя чемоданами, которые невозможно бросить, но трудно нести: в одном чемодане находится концепция тёмной материи, во втором — тёмной энергии.

Поэтому сейчас даже звучат предложения как-то переработать теорию относительности Эйнштейна, чтобы хотя бы объединить и объяснить эти два «чемодана». Продолжается ли эволюция химического состава Вселенной сегодня? Могут ли возникнуть совершенно новые химические элементы? Дело в том, что они рождаются в звёздах, а также при столкновении нейтронных звёзд. Нейтронная звезда — это звезда, состоящая из сверхтекучей ядерной жидкости, где все частицы — барионы протоны и электроны — сжаты до чрезвычайно высокой плотности.

В нейтронные звёзды превращаются со временем массивные звёзды. Также по теме Вне Стандартной модели: учёные исследовали спектры радиоактивных молекул в поисках новых законов физики Учёные Курчатовского института в составе международной группы Европейской организации по ядерным исследованиям ЦЕРН впервые в мире... В двойной системе такие звёзды могут закончить свою «жизнь», столкнувшись друг с другом: они сближаются за счёт излучения гравитационных волн, образуя чёрную дыру. Именно такое явление мы с коллегами из других стран смогли зафиксировать летом 2017 года. Для синтеза тяжёлых элементов, таких как золото, например, нужна большая энергия сжатия массивной звезды в чёрную дыру это явление называется «сверхновая» или столкновение нейтронных звёзд.

А ещё в нашей Вселенной новые элементы сегодня рождаются на ускорителе Объединённого института ядерных исследований. Там учёным удаётся получить совершенно новые элементы, которые сложно встретить в природе. Если да, то почему чёрная дыра всё же продолжает эволюционировать, то есть сначала увеличиваться в размерах, а потом испаряться? Согласно общей теории относительности, характеристики физических явлений зависят от системы отсчёта. Есть, например, любимая физиками лабораторная система отчёта — неподвижная и бесконечно удалённая.

Все мы, жители Земли, находимся в лабораторной системе отсчёта. По астрофизическим меркам наша планета движется настолько медленно, что этим показателем можно пренебречь и считать, что Земля неподвижна. Элемент Большого адронного коллайдера globallookpress. Он падает, нажимая на свой телеграф с периодичностью в одну секунду.

Ими могут быть некоторые сверхмассивные черные дыры в центре галактик. Об этом сообщает журнал Monthly Notices of the Royal Society. Российские ученые выяснили, что черные дыры в очень ярких галактиках могут быть входами в эти «порталы» или «кротовые норы» wormholes.

В теории, космический корабль может пройти сквозь такие порталы. Однако они окружены интенсивной радиацией, что сводит к нулю шансы экипажа на выживание.

Работа позволила взглянуть как будто бы на Солнечную систему 4,5 млрд лет назад и понять, как и откуда на Земле могла появиться вода в том объёме, в котором мы её видим вокруг себя. Распредление водяного пара в протопланетном диске в данных ALMA. Facchini Существует несколько гипотез появления воды на Земле, а значит, и необходимого компонента для зарождения биологической жизни на нашей планете. Вода могла появиться вместе с образованием планетарного тела, её могли занести на Землю астероиды и кометы, либо сработали оба источника.

Пристальное изучение молодой звезды HL Тельца на удалении 450 световых лет от нас приоткрывает завесу тайны над происхождением воды на нашей и других планетах во Вселенной. Изучение относительно холодного протопланетного диска вокруг звезды возрастом около одного миллиарда лет и массой около 2,1 солнечных показало, что в пределах семи астрономических единиц присутствует достаточно много водяного пара, температура которого постепенно снижается по мере удаления от звезды. Расчёты и данные измерений на двух длинах волн показали, что в области протопланетного диска находится воды примерно в 3,7 раз больше, чем во всех земных океанах. Более того, водяной пар обнаружен также в зазоре между двумя широкими областями протопланетного диска между кольцами. Такие зазоры обычно образуют зародыши планет, сметающие всё на своём орбитальном пути или прибирающие к рукам в процессе формирования будущей планеты. Проделанная работа однозначно указывает, что вода изначально в избытке присутствует в протопланетном диске.

Это не опция, а распространённое явление, что позволяет надеяться, что планет земного типа с появившейся там биологической жизнью во Вселенной всё же больше одной. Вся мощь «Уэбба» или «Хаббла» неспособна передать красоту космоса без данных в рентгеновском, радиочастотном и ультрафиолетовом диапазоне. Поднимая уровень оптических и инфракрасных телескопов на уровень вверх, мы не должны забывать о создании более совершенных инструментов для других частот. Галактика Андромеда в ультрафиолетовом спектре по данным телескопа Swift. Источник изображения: NASA Как стало известно , NASA официально утвердило создание ультрафиолетового телескопа следующего поколения, который должен быть отправлен в космос на рубеже 30-х годов. Перед новым ультрафиолетовым телескопом будет стоять две задачи.

Во-первых, он должен будет составить карту неба в ультрафиолетовом диапазоне. Во-вторых, телескоп получит возможность быстро менять ориентацию, чтобы получать изображения переходных процессов: взрывов сверхновых, слияния звёзд, джеты чёрных дыр и нейтронных звёзд и других энергетических явлений. Это станет ценнейшим дополнением к гравитационно-волновым наблюдениям неба, когда крайне сложно выявить источник гравитационной волны. При обзоре неба в ультрафиолете мы сможем увидеть самые горячие объекты в ней. Прежде всего, это молодые и старые звёзды, когда процессы в ядрах находятся на критических стадиях активности. Также данные в ультрафиолетовом диапазоне позволят увидеть галактики с низким содержанием металлов и ряд других объектов.

Телескоп будет рассчитан на два года научной работы. Главные детали миссии уже проработаны, как и есть технико-экономическое обоснование проекта. Через год-два должно стартовать производство аппарата и его научных приборов. Что появилось раньше? Мы видим, как массивные звёзды превращаются в чёрные дыры — это доказанный факт. Одновременно с этим мы замечаем в ранней Вселенной присутствие сверхмассивных чёрных дыр, которые просто не успели бы вырасти до регистрируемых масс.

Источник изображения: The Astrophysical Journal Letters На днях в журнале The Astrophysical Journal Letters была опубликована работа , в которой группа учёных из Университета Джона Хопкинса в США и Университета Сорбонны во Франции собрала данные «Уэбба» по обнаруженным в ранней Вселенной чёрным дырам и представила больше доказательств в пользу гипотезы об одновременном рождении звёзд и чёрных дыр. Эти данные будут набираться и дополняться новыми наблюдениями, что позволит со временем создать стройную теорию эволюции объектов во Вселенной и её самой. Учёные обратили внимание, что «Уэбб» обнаружил одну сверхмассивную чёрную дыру через 470 млн лет после Большого взрыва, а другую — через 400 млн лет. Масса последней была определена на уровне 1,6 млн солнечных. Она находилась в центре галактики, которая была легче, чем дыра в её сердцевине. Чёрная дыра подобной массы не могла вырасти до фиксируемого значения.

Из того, что мы наблюдали, чёрные дыры возникали после коллапса умирающих звёзд массой свыше 50 солнечных. Ничего подобного в ранней Вселенной не могло произойти, чтобы проявился наблюдаемый там эффект — крошечная галактика, собранная вокруг СЧД. Исследователи делают вывод, что первичные чёрные дыры образовались одновременно с первыми звёздами или чуть раньше из облаков первичной материи. Центры облаков коллапсировали и возникшая в каждом из них чёрная дыра начинала испускать ветер, запускающий и ускоряющий процесс звездообразования. Фактически первичные чёрные дыры стали тем инструментом, который собрал и превратил галактики в те структуры, которые мы наблюдаем. Как показало моделирование, иногда это может быть не так и планета на ранних стадиях зарождения вполне может оказаться достаточно плоской формы.

Источник изображения: ИИ-генерация Кандинский 3. В целом преобладает мнение, что от начала до конца зародыш планеты растёт равномерно и имеет шарообразную форму. Менее поддержана гипотеза так называемого нестабильного диска: на ранних стадиях эволюции центральная область зарождающейся планеты имеет скорее плоскую форму, чем сферическую. Когда-нибудь наши телескопы станут достаточно чувствительными, чтобы напрямую изучать планеты на всех этапах их эволюции. В принципе, на примере планет-гигантов это можно делать уже сейчас, достаточно найти подходящих кандидатов. Кстати, космический телескоп им.

Джеймса Уэбба занимается, в том числе, и такой задачей. Но пока достаточных для наблюдения данных нет, приходится проводить моделирование на компьютере. Моделирование протопланеты, формирующейся методом нестабильного диска. Вид сверху и сбоку Источник изображения: UCLan Моделирование показало, что когда планеты формируются с помощью процесса нестабильности диска, они не демонстрируют равномерный сферический рост. Наоборот, на полюсах в таких случаях собирается больше вещества, чем в экваториальной зоне, что превращает их в «сплюснутый сфероид» или, говоря проще, на этом этапе формирования молодая планета похожа на сильно приплюснутое яйцо. В итоге она всё равно становится сферической формы, но определённый этап с некоторой натяжкой может считаться периодом плоской земли.

Статья опубликована в одном из самых престижных астрономических журналов — Astronomy and Astrophysics Letters. Сверхмассивная чёрная дыра СЧД в центре галактики Markarian 817 около года испускала сверхбыстрый ветер из частиц, оставаясь при этом в стадии средней активности.

В подавляющем большинстве из них физически не может быть жизни. В лучшем случае, там будут собираться небольшие звезды со сроком жизни в миллионы лет. И вряд ли есть вещества тяжелее водорода и гелия. По крайней мере, именно такая картина получается, если случайным образом менять константы основных физических величин заряды, масса микрочастиц, квант энергии и т п.

Теорий Мультивселенной существует много. Все они по-разному объясняют процесс рождения новых вселенных и законов, царящих в них. Стив Хокинг, например, был уверен, что физические законы в других, параллельных вселенных, должны быть такие же, как у нас. То есть, получается, что все вселенные были «запрограммированы», чтобы в них появилась жизнь? Тем логичнее выглядит вопрос из следующей главы. Бог или случай?

Получается, наша Вселенная имеет уникальный набор физических параметров, за счет которых возможно появление жизни. В науке это утверждение известно под термином Антропный принцип. И вот тут мы приходим к вопросу, как так идеально все сложилось? И здесь вопросы науки заканчиваются, начинаются вопросы веры.

Похожие новости:

Оцените статью
Добавить комментарий