Гаргантюа черная дыра. Эти снимки неожиданным образом показали, что черная дыра-"гаргантюа" и сама W2246-0526 были соединены толстыми линиями из холодного газа и пыли с тремя спутниками этого "звездного мегаполиса". Названия нейтронной звезды и черной дыры, скорее всего, взяты из «Жизни Гаргантюа и Пантагрюэля», пентологии романов, написанных в XVI веке Франсуа Рабле и повествующих о приключениях двух гигантов: Гаргантюа и его сына Пантагрюэля. Вращающиеся черные дыры искажают пространство вокруг себя по-иному в отличие от неподвижных черных дыр. Поздравления. ДТП. Новости. Сериалы. Существует ли чёрная дыра Гаргантюа | Астрономия для начинающих | Федор Бережков.
Существует ли чёрная дыра Гаргантюа | Астрономия для начинающих | Федор Бережков
Для установки двигающихся обоев «Черная дыра Gargantua» на рабочий стол windows 11/10 или более ранних версий воспользовавшись одной из программ. К примеру, отмечают Торн и Оливер, наблюдения за виртуальной черной дырой раскрыли необычный эффект, который будет заметен только при приближении к Гаргантюа из Interstellar или его реальным “кузенам”. 3. Черные дыры и сингулярности. В научно-фантастической литературе и фильмах черная дыра обычно представляется этаким космическим Гаргантюа, безжалостно пожирающим пролетающие корабли с отважными блондинками и даже целые планеты.
Звезды могут поглощать черные дыры — нестандартная гипотеза
Гаргантюа черная дыра обои Самые крутые картинки на сайте Эти уравнения описывали траектории лучей света, исходящих из далекой звезды, проникающих через искривленные пространство и время Гаргантюа, достигающих камеры и учитывающих даже само движение камеры вокруг черной дыры. Поздравления. ДТП. Новости. Сериалы. Существует ли чёрная дыра Гаргантюа | Астрономия для начинающих | Федор Бережков.
Вращающиеся черные дыры могут служить удобными порталами для гиперпространственных путешествий
Ярчайшая галактика Вселенной, W2246-0526, расположенная в созвездии Водолея, недавно разорвала на части и поглотила останки сразу трех своих спутников, что может объяснять невероятную силу ее сияния. Мы даже не пытались искать следы «каннибализма». Космические хот-доги Эйзенхардт и его коллеги открыли галактику W2246-0526 три года назад, изучая снимки, полученные космическим телескопом WISE во время «холодной» фазы его работы в 2010 году. Все они относятся к категории так называемых гиперярких инфракрасных галактик, крайне необычных объектов, существовавших в ранней Вселенной. Астрономы называют такие галактики «хот-догами» из-за окружающей их толстой «шубы» из горячей пыли hot dust-obscured galaxy, hot DOG , скрывающей их от взора оптических телескопов. В общей сложности им удалось найти около 20 ранее неизвестных объектов этого типа, в том числе и нового рекордсмена, измерить их яркость, массу и свойства сверхтяжелых черных дыр в их центрах.
При разрушении приливами возникают яркие вспышки света, когда газовый поток взаимодействует с диском материала, вращающимся вокруг чёрной дыры. Учёные исследуют эти вспышки, чтобы получить характеристики системы: не все события разрушения приливными силами приводят к мгновенному уничтожению звезды. Иногда звезда обращается вокруг чёрной дыры на таком расстоянии, где приливные силы не так сильны, чтобы полностью разорвать звезду, но они всё равно стягивают с неё газ и материал. Звезда продолжает обращаться вокруг чёрной дыры до тех пор, пока не теряет слишком много газа и материала, и наконец истощается. Swift J0230 — одно из таких событий.
Коль скоро 2 и 3 наделены физическим смыслом, первый закон термодинамики диктует, что черная дыра должна иметь температуру T. Но позвольте, какая может быть у нее температура?! Ведь в таком случае дыра должна излучать, что противоречит ее главному свойству! Действительно, классическая черная дыра температуры, отличной от абсолютного нуля, иметь не может. Однако если предположить, что микросостояния черной дыры подчиняются законам квантовой механики , что, вообще говоря, практически очевидно, то противоречие легко устранимо. Согласно квантовой механике, а точнее, ее обобщению - квантовой теории поля, может происходить спонтанное рождение частиц из вакуума. При отсутствии внешних полей пара частица-античастица, рожденная таким образом, аннигилирует обратно в вакуумное состояние. Однако если поблизости есть черная дыра, ее поле притянет ближайшую частицу.
Тогда, по закону сохранения энергии-импульса, другая частица уйдет на бoльшее расстояние от черной дыры, унося с собой "приданое" - часть энергии-массы коллапсара иногда говорят, что "черная дыра потратила часть энергии на рождение пары", что не совсем корректно, ибо выживает не вся пара, а только одна частица. Как бы то ни было, в результате удаленный наблюдатель обнаружит поток всевозможных частиц, излучаемых черной дырой, которая будет расходовать свою массу на рождение пар, пока полностью не испарится, превратившись в облако излучения 2. Температура черной дыры обратно пропорциональна ее массе, таким образом, более массивные испаряются медленнее, ибо время их жизни пропорционально кубу массы в четырехмерном пространстве-времени. Черные дыры и сингулярности В научно-фантастической литературе и фильмах черная дыра обычно представляется этаким космическим Гаргантюа, безжалостно пожирающим пролетающие корабли с отважными блондинками и даже целые планеты. Увы, если бы фантасты знали о современной физике чуть больше, они бы не были столь несправедливы к черным дырам. Дело в том, что коллапсары фактически защищают Вселенную от гораздо более грозных монстров... Сингулярностью называется точка пространства, в которой его кривизна неограниченно стремится к бесконечности, - пространство-время как бы рвется в этой точке. Современная теория говорит о существовании сингулярностей как о неизбежном факте 3 - с математической точки зрения, решения уравнений, описывающие сингулярности, также равноправны, как и все прочие решения, описывающие более привычные объекты Вселенной, которые мы наблюдаем.
Есть тут, однако, очень серьезная проблема. Дело в том, что для описания физических явлений необходимо не только иметь соответствующие уравнения, но нужно также задать граничные и начальные условия. Так вот, в сингулярных точках эти самые условия задать нельзя в принципе , что делает предсказательное описание последующей динамики невозможным. А теперь представим, что на раннем этапе существования Вселенной когда она была достаточно малой и плотной образуется множество сингулярностей. Тогда в областях, которые находятся внутри световых конусов этих сингулярностей иными словами, причинно-зависимых от них никакое детерминистское описание невозможно. Мы имеем абсолютный и бесструктурный хаос, без намека на какую-либо причинность. Далее, эти области хаоса расширяются со временем по мере эволюции Вселенной. В результате к настоящему времени подавляющая часть Вселенной была бы совершенно стохастичной случайной и ни о каких "законах природы" не могло бы быть и речи.
Не говоря уже о блондинках, планетах и прочих неоднородностях вроде нас с вами. К счастью, ситуацию спасают наши ненасытные обжоры. Математическая структура уравнений фундаментальной теории и их решений указывает на то, что в реальных ситуациях пространственные сингулярности должны появляться не сами по себе, а исключительно внутри черных дыр. Как тут не вспомнить мифологических титанов, пытавшихся воцарить Хаос на Земле, но низвергнутых Зевсом и Ко в Тартар и благополучно заключенных там навеки… Таким образом, черные дыры отделяют сингулярности от остальной Вселенной и не позволяют им влиять на ее причинно-следственные связи. Этот принцип запрета существования "голых" англ. Пенроузом в 1969 году, получил название гипотезы космической цензуры. Как это часто бывает с фундаментальными принципами, полностью он не доказан, но принципиальных нарушений пока замечено не было - Космический цензор на пенсию пока не собирается. Стало быть, фундаментальная квантовая теория с учетом ОТО также принадлежит к этому типу?
Так какая же из формул верна: 4 , базирующаяся на ОТО и свойствах черных дыр в квазиклассическом приближении, или 5 , основанная на экстраполяции обычной квантовой теории поля до планковских масштабов? В настоящее время имеются весьма сильные аргументы в пользу того, что "мертва" скорее формула 5 , чем 4. Это, в свою очередь, может означать, что подлинно фундаментальная теория материи не просто очередная модификация квантовой теории поля, сформулированной "по объему", а некая теория, "живущая" на определенной поверхности, ограничивающей этот объем. Гипотеза получила название голографического принципа , по аналогии с оптической голограммой, которая, будучи плоской, тем не менее дает объемное изображение. Принцип сразу же вызвал большой интерес, ибо теория "на поверхности" - это нечто принципиально новое, вдобавок сулящее упрощение математического описания: ввиду понижения пространственной размерности на единицу, поверхности имеют меньшее число геометрических степеней свободы. Первое дает рецепт вычисления статистической энтропии 4 для общего случая материального тела, как определенной величины, вычисляемой на светоподобных мировых поверхностях, ортогональных поверхности тела да простит меня неискушенный читатель за эту фразу. Общая идея состоит в следующем. Что принять за меру энтропии в искривленном пространстве-времени, то есть как ее посчитать правильно?
Например, в случае распределения шара по ящикам см. Но в четырехмерном пространстве-времени объем чего бы то ни было величина не абсолютная помните лоренцево сокращение длин? Ну а понятие "ящика", сами понимаете, несколько выходит за рамки элементарных понятий фундаментальной науки. В общем, необходимо определить меру энтропии через элементарные понятия дифференциальной геометрии, которые были бы ковариантными , то есть значения которых менялись бы в зависимости от положения наблюдателя четко определенным образом. Пусть N - светоподобная гиперповерхность обобщенный световой конус некоторой совокупности пространственных точек S. Грубо говоря, N - это множество фотографий S, сделанных через бесконечно малые промежутки времени.
Тургенев И. Самая большая чёрная дыра в известной Вселенной Гаргантюа черная дыра где находится В фильме радиус кротовой норы - 1 километр, длина желоба - 10 метров, радиус линзирования на 50 метров больше норы.
Кротовая нора нестабильна и очень хочет закрыться и превратиться в две чёрные дыры. Чем длиннее кротовая нора, тем больше в ней будет видно размазанных копий объектов за норой, потому что у света больше путей попадания в глаз под разным углом можно зайти в нору и выйти в одну точку. Чтобы держать кротовую нору открытой, нужно очень много экзотического вещества с отрицательной массой, чтобы оно выталкивало из норы всё на противоположной стороне. Такое вещество, теоретически, может существовать, но найти его в достаточном количестве, чтобы держать нору - нереально. Но есть второй вариант удержания кротовых нор: нужно использовать гравитационные силы из пятого измерения. Если четырёхмерный объект пронзает наше трёхмерное пространство, он создаёт в нём очень странные силы, которые ни на что не похожи. Вот их и использовать для удержания кротовой норы. Гаргантюа снаружи Такой массы достаточно, чтобы приливные силы на планете Миллер не разорвали её пополам.
Изображение дыры: Гаргантюа приплюснута слева, потому что она вращается слева направо относительно камеры и у света, двигающегося в направлении вращения, больше шансов не быть засосанным за горизонт событий. У каждой звезды за чёрной дырой есть два изображения на картинке: обычное, которое далеко от дыры, дано светом, немного согнутым гравитацией. И второе, внутри сферы Эйнштейна , такой сферы, которая всё очень сильно преломляет, потому что близко к дыре. Там ещё несколько особенностей, связанных с вращением дыры, но я это с трудом объясню, потому что оптика не лучшая моя сторона. Чтобы аккреционный диск не зажарил всех заживо всеми возможными лучами, его сделал температурой всего пару тысяч градусов, как Солнце, он излучает свет и совсем чуть-чуть гамма и рентгеновских лучей. Именно из-за слабости диска из Гаргантюа не вырываются плазменные пучки из южного и северного полюсов, как из квазара. Такое возможно, если дыра не «кушала» другие планеты в течение долгого времени. То, что на картинках светится - это и есть аккреционный газовый диск.
А выглядит он как хрен пойми что, потому что, благодаря гравитационному линзированию , над и под чёрной дырой виден кусок диска за этой самой дырой. Очень близко к горизонту событий Гаргантюа есть две критические орбиты, образованные равновесием силы гравитации и центробежной силы. По одной из них движется планета Манна, по другой - Эндюранс в конце фильма. Пространство в Интерстелларе состоит из трёх трёхмерных бран в четырёхмерном пространстве анти-де Ситтера. Над и под нашей браной находятся ограничивающие браны, они нужны для того, чтобы гиперпространство искривлялось между слоями и не нарушались человеческие законы распространения сил, в частности гравитации. Так, в общем, можно сделать пятой измерение развёрнутым, а не скрученным в трубочку. Гиперпространство искривляется между этими бранами и расстояние, измеренное в верхней или нижней бране будет очень сильно короче, чем в нашей бране Расстояние между этими бранами должно быть 1,5 сантиметров - этого достаточно для того, чтобы расстояние по верхней бране между Землёй и Гаргантюа было равно 1АЕ, и в нашей бране соблюдались законы Ньютона о гравитации. Как это сделать?
Это не показывается в фильме , но Кип предполагает, что вокруг Гаргантюа должны вращаться ещё как минимум две маленькие чёрные дыры, размером с Землю. Только попав в гравитацию таких дыр, можно так сильно сбросить скорость и не убить команду корабля. При этом в фильме Купер говорит, что ему нужно сделать менёвр вокруг нейронной звезды, а не чёрной дыры я, честно, не помню этой фразы. Волны на планете Миллер вызваны «покачиванием» планеты туда-сюда, относительно оси, перпендикулярной Гаргантюа. Типа, цунами. Планета Миллер должна располагаться между аккреционным диском и Гаргантюа. Но Нолан решил не палить концовку, и поставил планету сами знаете как. Греется планета от аккреционного диска.
На поверхности - обычный лёд. Когда планета Манна подлетает ближе к Гаргантюа и её диску, диоксид углерода испаряется - получаются облака. Подлетая к чёрной дыре Как Купер поднял падающий Эндюранс? Вытащил его достаточно высоко, чтобы притяжение Гаргантюа притянуло его и Купера на критическую орбиту. Не забывайте, что когда Эндюранс падает на планету Манна, планета находится очень близко к Гаргантюа. Критическая орбита, по которой Купер проводит корабль вокруг Гаргантюа - это поле, в котором центробежная сила, которая выталкивает корабль с орбиты и сила гравитации, которая тянет корабль внутрь дыры, совпадают. На этой орбите можно вечно крутиться вокруг Гаргантюа, но с одним условием: нельзя сдвигаться с орбиты ни на шаг, так как корабль либо отбросит от Гаргантюа, либо он упадёт в чёрную дыру. Эта орбита нестабильна.
Стоит сказать, что орбита планеты Миллер точно такая же, но стабильная, с неё сложно слезть. Красота черных дыр завораживает. И все же что такое черная дыра с точки зрения традиционной физики? Рассказывает Кип Торн, физик-теоретик и автор книги «"Интерстеллар". Наука за кадром». Спорим, вы об этом не знали? Впервые реалистично черные дыры показали в голливудском фильме «Интерстеллар». Их внешний вид был рассчитан с помощью уравнений — этим занимался Кип Торн, будучи научным консультантом картины.
Раньше режиссеры и создатели спецэффектов полагались больше на фантазию, чем на науку. Но и сегодня вопрос о том, как устроены черные дыры и каковы их свойства, остается открытым. Даже Стивен Хокинг, гений и один из основных исследователей этого удивительного явления, недавно опроверг собственную теорию, предложенную 30 лет назад. Еще не так давно считалось, что черная дыра уничтожает все, что затягивает внутрь себя. Хокинг же предположил, что черная дыра — дверь в альтернативную Вселенную. Так ли это? Ученым еще предстоит проверить. А пока мы узнаем у Кипа Торна, как же традиционная физика рассматривает это удивительное явление.
Будет интересно! Светится ли черная дыра? Часть светящегося диска черной дыры Гаргантюа вблизи и пролетающий над ним космолет «Эндюранс». Светится не черная дыра, а диск вокруг нее, состоящий из раскаленного газа, который дыра «забирает» у звезд при помощи сил гравитации, когда разрывает их на части. Иллюстрация из книги «"Интерстеллар". Наука за кадром» Нет, в черной дыре нечему светиться, так как она состоит только лишь из искаженного времени и пространства — и больше ничего. В фильмах можно увидеть, что вокруг черных дыр есть сияющие диски, мерцания и лучи. На самом деле это звезды и туманности, свет которых дыра тоже искривляет — отсюда и причудливые световые узоры.
Трейлер "Интерстеллар" 2014
- Новая ночная схема Москвы, версия Гаргантюа (4.1)
- Почему черная дыра называется Гаргантюа
- Наука и магия Интерстеллара, или почему фильм Криса Нолана является научной фантастикой
- Обед Гаргантюа
«Гаргантюа́»
Для планеты черная дыра в этом случае может выступать в роли холодного светила. Гаргантюа — сверхмассивная вращающаяся чёрная дыра с аккреционным диском. Находится в 10 миллиардах световых лет от Земли. это, пожалуй, самые загадочные объекты во Вселенной. 3. Черные дыры и сингулярности. В научно-фантастической литературе и фильмах черная дыра обычно представляется этаким космическим Гаргантюа, безжалостно пожирающим пролетающие корабли с отважными блондинками и даже целые планеты. “Черные дыры, называемые IMBH (Intermediate-Mass Black Holes) – в десять тысяч раз меньше, чем Гаргантюа, но в тысячу раз тяжелее, чем обычные черные дыры.
космос гаргантюа / чёрная дыра / Интерстеллар
В 2016 году моя аспирантка Кэролайн Мэллари, вдохновленная блокбастером Кристофера Нолана "Интерстеллар", решила проверить, сможет ли Купер герой Мэтью Макконахи выжить после падения в глубины Гаргантюа - вымышленной сверхмассивной, быстро вращающейся черной дыры, масса которой в 100 миллионов раз больше массы нашего Солнца. Фильм "Интерстеллар" был основан на книге лауреата Нобелевской премии астрофизика Кипа Торна, и физические свойства Гаргантюа занимают центральное место в сюжете этого голливудского фильма. Даже не трясет? Она обнаружила, что при всех условиях объект, падающий во вращающуюся черную дыру, не будет испытывать бесконечно больших эффектов при прохождении через так называемую сингулярность внутреннего горизонта дыры. Это сингулярность, которую объект, входящий во вращающуюся черную дыру, не может обойти или избежать. Мало того, при правильных обстоятельствах эти эффекты могут быть пренебрежимо малы, что позволяет пройти через сингулярность довольно комфортно. На самом деле, падающий объект может вообще не испытывать никаких заметных воздействий.
Это повышает целесообразность использования больших вращающихся черных дыр в качестве порталов для гиперпространственных путешествий. Мэллари также обнаружил особенность, которая не была полностью оценена ранее: эффект сингулярности в контексте вращающейся черной дыры привел бы к быстро увеличивающимся циклам растяжения и сжатия космического корабля.
Кроме него также существует сфера Хаббла и горизонт частиц. Радиус сферы Хаббла равен расстоянию, который прошёл свет за время жизни Вселенной — то есть около 14 млрд. Однако, в силу того, что наша Вселенная не статична, сфера Хаббла не является её границей. Реальную границу характеризует горизонт частиц, который учитывает расширение Вселенной. Радиус горизонта частиц примерно в три раза больше горизонта сферы Хаббла. Он равен фактическому расстоянию, который преодолел самый далёкий объект, успевший испустить свет до наблюдателя. Горизонт событий несколько отличен от горизонта частиц.
Он отсеивает от нас те события в нашей Вселенной, о которых мы не узнаем никогда. Его радиус на несколько миллиардов световых лет больше радиуса сферы Хаббла. Все эти три параметра непосредственно зависят от самого наблюдателя. В этом и состоит одно из отличий горизонта событий чёрной дыры от горизонта событий Вселенной. То есть, горизонт событий чёрной дыры не зависит от местоположения различных наблюдателей. Напротив, каждый наблюдатель, в зависимости от своего местоположения, будет видеть границу Вселенной по-своему. Это похоже на то, как будет различаться горизонт с разных точек поверхности планеты. Горизонт Риндлера Горизонт событий также существует для наблюдателя, который находится в состоянии релятивистски равноускоренного движения. Такое тело будут сопровождать два горизонта, которые во многом схожи с горизонтом чёрных дыр.
К примеру, этот горизонт будет также обладать излучением, аналогичному излучению испаряющихся чёрных дыр. Этот горизонт также называется горизонтом Риндлера. Он назван в честь его первооткрывателя Вольфганта Риндлера, который, к слову, придумал сам термин «горизонт событий». Видимый горизонт Черная дыра в представлении художника Итак, теперь мы имеем представление о том, каким видит горизонт событий современная наука. Казалось бы, каким образом Стивен Хоккинг решил опровергнуть его существование. На самом деле новая гипотеза создана, чтобы разрешить некоторые противоречия, связанные с чёрными дырами. Зарождающаяся квантовая теория уже превратила чёрные дыры в объекты, способные излучать. Согласно той же квантовой модели, горизонт событий для нашего звездолёта теперь не будет просто условной границей. Обладая большой концентрацией энергии, «новый» квантовый горизонт событий полностью уничтожит звездолёт.
Это пятимерное пространство-время было показано нам так, как его видит режиссер Крис Нолан. Потому что изобразить пятимерный мир на двухмерном экране невозможно в принципе. Но это представление было поистине великолепным. Этот пятимерный мир «они» — люди будущего создали для Купера и замкнули его на комнате, чтобы Купер смог отправить своей дочери координаты НАСА и квантовые данные, собранные роботом ТАРС с той стороны черной дыры. Данные Купер передал с помощью гравитации, которая не зависит от пространства и времени, отправив их в двоичном коде на стрелку часов дочери. Эти данные в дальнейшем помогли Мерф решить уравнение гравитации, которое помогло бы связать различные теории в одну и помочь людям познать саму гравитацию. После передачи данных, «они» отправили Купера в место недалеко от Сатурна в то время, в которое необходимо, чтобы его забрали и отвезли на станцию. Кротовые норы В теории существуют Кротовые норы червоточины — туннели в гиперпространстве, кратчайшим путем соединяющие искривленное пространство. На данный момент известны только такие норы, срок жизни которых меньше, чем требуется свету, чтобы пролететь из одного конца в другой. В фильме представлена Кротовая нора, существующая более 50 земных лет, через которую 12 исследователей и экипаж Эндюранс перемещались в другую галактику за очень малое время.
Существование такой норы не доказано и не опровергнуто, а также не изучены ее свойства. Не известно, можно ли на самом деле перелететь через нее, и как бы она взаимодействовала с планетами Солнечной системы. Черная дыра и необычная система планет. Вымышленная сверхмассивная Черная дыра Гаргантюа имеет массу в 100 миллионов солнц и находится в 10 миллиардах световых лет от Земли. Она вращается со скоростью, близкой к световой, и своей гравитацией затягивает окружающие объекты. Вокруг Гаргантюа образуется аккреционный диск из раскаленного газа и пыли, который из-за трения испускает излучение и свет, обогревающий планеты в ее системе. Одним из главных достижений в фильме было наглядное представление, как выглядит аккреционный диск Черной дыры при линзировании — искривлении гравитационным полем направлений распространения излучения, подобно тому, как искривляется свет, проходя через обычную линзу.
Но также она находится очень далеко от Земли — в 55 миллионах световых лет для сравнения: расстояние до галактики Андромеда оценивается в 2,52 миллиона световых лет. В итоге расстояние на небе, которое занимает черная дыра в M87, составляет всего 20 микросекунд.
Чтобы понять, что это значит, представьте 50-копеечную монету, которую наблюдают с расстояния в 3,5 километра: угол между глазом и краями монеты составит 1 угловую секунду. А угловая микросекунда в миллиард раз меньше угловой секунды. Образно говоря, это позволило бы читать газету в Нью-Йорке, сидя в кафе в Париже». На то, чтобы его сделать, ушло почти 100 лет Впервые о существовании черных дыр заговорили почти сто лет назад, когда немецкий физик Карл Шварцшильд вывел из общей теории относительности Эйнштейна существование областей, где вещество и энергия сосредоточены так плотно, что гравитация не выпустит свет и искривит пространство. Несмотря на то что астрономы не могли наблюдать черную дыру непосредственно, в их существовании никто не сомневался.