Новости фрактал в природе

В своей книге “Фрактальная геометрия природы” (1982) Бенуа Мандельброт ввел термин фракталы, и создал математику для их описания. В природе фрактальные особенности проявляются в таких вещах, как снежинки, молнии или дельты рек. Фракталы часто встречаются в природе. В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее.

Фракталы: бесконечность внутри нас

Международная группа ученых обнаружила первую в природе молекулу, которая является регулярным фракталом. Фракталы в природе Подготовила Андреева Алина Р-12/9. В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Фракталы представляют собой довольно сложные для определения математические объекты, но в общих чертах их можно охарактеризовать как геометрические формы, состоящие из меньших структур, которые, в свою очередь, напоминают исходную целостную конфигурацию. Природа создаёт удивительные и прекрасные фракталы, с безупречной геометрией и идеальной гармонией.

Впервые в природе обнаружена микроскопическая фрактальная структура

Фракталы в природе Подготовила Андреева Алина Р-12/9. Смотрите 66 фотографии онлайн по теме фракталы в природе. На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. Парк онлайн весной 2021. Фракталы в природе. Автор Мануйленко Никита. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Фрактал — термин, означающий геометрическую ф Смотрите видео онлайн «Фракталы. Фракталы в природе (53 фото).

Фрактальные узоры в природе и искусстве эстетичны и снимают стресс

В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность в смысле Минковского или Хаусдорфа , либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических фигур, ограниченных конечным числом звеньев. Самоподобные фигуры, повторяющиеся конечное число раз, называются предфракталами. Слайд 3 Описание слайда: Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств: Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств: 1.

Наша природа удивительна и у нее есть свои закономерности, которые ученые постоянно изучают. Одним из таких исследований является изучение фракталов в природе.

Благодаря спутниковым снимкам мы также можем полюбоваться красотой нашей планеты и необычными рисунками, сделанными природой в разных странах.

В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность в смысле Минковского или Хаусдорфа , либо метрическую размерность, отличную от топологической, поэтому их следует отличать от прочих геометрических фигур, ограниченных конечным числом звеньев. Самоподобные фигуры, повторяющиеся конечное число раз, называются предфракталами. Слайд 3 Описание слайда: Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств: Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств: 1.

Методы электронной микроскопии и эволюционной биохимии указывают, что этот фрактал может быть эволюционной случайностью. Подпишитесь , чтобы быть в курсе.

Снежинки, листья папоротника, капуста романеско имеют общее свойство самоподобия: крупные элементы состоят из более мелких, но такой же структуры, и так далее. И все же в естественной природе истинные фракталы встречаются редко. Цифровой прорыв: как искусственный интеллект меняет медийную рекламу Молекулы также обладают определенной регулярностью, но с большого расстояния этого не заметно. Если не вглядываться, структура всей молекулы не похожа на структуру ее составных частей. В этом состоит их отличие от фракталов.

Фракталы в природе (102 фото)

Да, здесь нет ничего самоподобного. Но если разрезать кочан напополам, вы увидите удивительный узор-спираль. Не один вид капусты стремится к такой математической форме — может, эти растения сговорились и планируют фрактальный захват мира? Красная капуста в разрезе тоже напоминает фрактальное подобие floweryvale. Все мы знаем, как выглядит часть этого растения — треугольник, состоящий из листьев они называются вайи , которые в свою очередь тоже образуют треугольник, подобный самому большому. Существуют даже математические фракталы в виде папоротника. Например, британский математик Майкл Барнсли в своем труде «Фракталы повсюду» описал «фрактал-папоротник», который при приближении даёт воспроизведение начальной формы. Лист папоротника — типичный фрактал в природе mirzhvetov. А ведь этот «мягкий настил» — тоже фрактал! Особенно хорошо это видно на длинном мхе: его структура самоподобна.

Попробуйте заняться макро-съёмкой: вы увидите, что фракталы не только рядом, но и у нас под ногами. Посмотрите, как мох разветвляется: этот природный фрактал, пожалуй, один из самых красивых krasivoe-foto. Однако на листьях фрактальность теряется — хотя, если не брать в счёт «мякоть» листа и оставить только прожилки, это можно считать продолжением «древесного» фрактала. Кстати, а корневая система — это уже другое самоподобное множество. Но у всех них в основе строения лежит фрактальное подобие lensscaper. Его не сразу можно обнаружить. Существует такое явление, как парадокс береговой линии. Измерить её! Так ли это просто?

Вовсе нет, ведь береговая линия длинна, и измерить её простой рулеткой не получится. Поэтому берётся мера измерения — например, в 100 км. Получили сумму всех сторон — 2800 км. Но если мы возьмём меру поменьше, например, 50 км, то измерения будут учитывать больше нервностей и мелких особенностей береговой линии — и соответственно, длина увеличится до 3200 км. Разница измерения в 400 километров!

В новой работе физики обнаружили фракталы в лазерах. Как отмечают авторы, лазеры являются практически полной противоположностью природе, так как создаются в максимально приближенных к идеальным условиях: для возникновения когерентного излучения необходим резонатор из безупречно отшлифованных сферических зеркал и усиливающая колебания среда.

В 1998 году было предсказано существование фрактальных распределений в поперечных срезах интенсивности некоторых лазеров, однако экспериментальных подтверждений эффекту не было. В результате эта фигура многократно усиливается при отражениях волн внутри резонатора и проявляется на разных масштабах в получающемся лазерном луче. Авторы использовали несколько разных апертур и создали разные плоские фракталы.

Поскольку в реальном физическом эксперименте задать начальные условия можно лишь с конечной точностью, предсказать поведение хаотических систем на длительное время невозможно. Предсказание будущего - Из-за такой малости!

Из-за бабочки! Она упала на пол - изящное маленькое создание, способное нарушить равновесие, повалились маленькие костяшки домино... И грянул гром Насколько упорядочена наша жизнь? Предопределены ли в ней те или иные события? Что предсказуемо на многие годы вперед, а что не подлежит сколько-нибудь надежному прогнозированию даже на небольшие интервалы времени?

Человеку постоянно приходится сталкиваться как с упорядоченными, так и с неупорядоченными процессами, порождаемыми различными динамическими системами. Мы знаем, что Солнце встает и заходит каждые 24 часа, и так будет продолжаться в течение всей нашей жизни. Вслед за зимой всегда наступает весна, и вряд ли когда-нибудь будет наоборот. Более или менее регулярно функционируют коммунальные службы, снабжающие нас светом и теплом, учреждения и магазины, а также транспортные системы автобусы, троллейбусы, метро, самолеты, поезда. Нарушения ритмичной работы этих систем вызывают законное возмущение и негодование граждан.

Если сбои возникают неоднократно - говорят о хаосе, выражая отрицательное отношение к подобным явлениям. Но в то же время существуют процессы, хорошо известные своей непредсказуемость ю. Например, подбрасывая монету, мы никогда точно не знаем, что выпадет - "орел" или "решка". Такая непредсказуемость не вызывает тревоги. К гораздо более драматичным последствиям она может привести при игре в рулетку, однако любители испытывать судьбу сознательно идут на этот риск.

Почему одни процессы предсказуемы по своим результатам, а другие нет? Может быть, нам просто не хватает каких-то начальных данных для хорошего прогноза? Надо улучшить знания о начальных условиях - и все будет в порядке, и с монетой и с предсказанием погоды. Сказал же Лаплас: дайте мне начальные условия для всей Вселенной, и я вычислю ее будущее. Лаплас ошибался: ему и его современникам не были известны примеры детерминированных динамических систем, прогноз поведения которых на длительное время нельзя осуществить.

Лишь в конце XIX столетия французский математик Анри Пуанкаре впервые почувствовал, что такое возможно. Однако прошло еще три четверти века, прежде чем началась эпоха бурного изучения детерминированного хаоса. Динамические системы можно условно разделить на два типа. У первых траектории движения устойчивы и не могут быть значительно изменены малыми возмущениями. Такие системы предсказуемы - именно потому мы знаем, что Солнце взойдет завтра, через год и через сто лет.

Для определения будущего в этом случае достаточно знать уравнения движения и задать начальные условия. Небольшие изменения в значениях последних приведут лишь к несущественной ошибке в прогнозе. К другому типу относятся динамические системы, поведение которых неустойчиво, так что любые сколь угодно малые возмущения быстро в масштабе времени, характерном для этой системы приводят к кардинальному изменению траектории. Как отметил Пуанкаре в своей работе "Наука и метод" 1908 , в неустойчивых системах "совершен но ничтожная причина, ускользающая от нас по своей малости, вызывает значительное действие, которое мы не можем предусмотреть. Предсказание становится невозможным, мы имеем перед собой явление случайное".

Таким образом прогнозирование на длительные времена теряет всякий смысл. Пример с нелинейным колебательным контуром, рассмотренный выше, показывает, что хаотическое поведение с непредсказуемым будущим может иметь место даже в очень простых системах. Реконструкция прошлого Итак, прогноз будущего не всегда возможен. А как обстоит дело с прошлым? Всегда ли можно реконструировать "предсказать", однозначно истолковать прошлое?

Казалось бы, здесь проблем быть не должно. Раз траектории удаляются одна от другой при движении вперед, они должны сближаться при движении назад. Так оно и есть. Однако направлений, по которым может происходить схождение или расхождение траекторий в фазовом пространстве, не одно, а несколько. При движении как вперед, так и назад траектории могут сближаться по одной части направлений, но расходиться по другой.

Прошлое "не предсказывается"? Бред какой-то! Ведь что-то уже произошло. Все известно... Но давайте подумаем.

Если бы с реконструкцией прошлого все было так просто, как тогда могло случиться, что для одних Николай II по-прежнему кровавый, а для других святой? И кто все-таки Сталин: гений или злодей? Отвлечемся пока от проблемы, насколько вольны они были принимать те или иные решения, насколько эти решения предопределялись обстоятельствами и каковы могли быть последствия альтернативных решений. Рассмотрим исторический процесс как динамику некоторой гипотетической хаотической системы. Тогда при попытке реконструкции прошлого мы столкнемся с быстро увеличивающимся числом вариантов траекторий , отвечающих нынешнему состоянию системы.

Только один из них соответствует реальному течению событий. Если выбрать не его, а какой-то другой, то получится уже искаженная "версия" истории. На основании чего выбирается правильная траектория "версия"? Информация, на которую мы можем опереться, - совокупность имеющихся конкретных фактов. Траектории, несовместимые с ними, отбрасываются.

В результате при наличии достаточного количества надежных фактов останется одна траектория, определяющая единственную версию истории. Однако даже для недалекого прошлого траекторий может оказаться значительно больше, чем достоверных сведений, - тогда однозначная трактовка исторического процесса уже не может быть произведена. И все это при добросовестном и уважительном отношении к истории и к фактам. Теперь добавьте сюда пристрастия первичных источников, потерю части информации со временем, манипуляции с фактами на этапе интерпретации замалчивание одних, выпячивание других, фальсификация и др. И что интереснее всего, при необходимости те же самые интерпретаторы через некоторое время могут без труда утверждать противоположное.

Знакомая картина? Итак, динамическая природа "непредсказуемости" прошлого сходна с природой непредсказуемости будущего: неустойчивость траекторий динамической системы и быстрое нарастание числа возможных вариантов по мере удаления от точки отсчета. Чтобы реконстру ировать прошлое, кроме самой динамической системы нужна достаточная по количеству и надежная по качеству информация из этого прошлого. Следует отметить, что на разных участках исторического процесса степень его хаотичности различна и может даже падать до нуля ситуация, когда все существенное предопределено. Естественно, что чем менее хаотична система, тем проще реконструируется ее прошлое.

Управляем ли хаос? Хаос часто порождает жизнь. Адамс На первый взгляд природа хаоса исключает возможность управлять им. В действительности все наоборот: неустойчивость траекторий хаотических систем делает их чрезвычайно чувствительными к управлению. Пусть, например, требуется перевести систему из одного состояния в другое переместить траекторию из одной точки фазового пространства в другую.

Требуемый результат может быть получен в течение заданного времени путем одного или серии малозаметных, незначительных возмущений параметров системы. Каждое из них лишь слегка изменит траекторию, но через некоторое время накопление и экспоненциальное усиление малых возмущений приведут к существенной коррекции движения. При этом траектория останется на том же хаотическом аттракторе. Таким образом, системы с хаосом демонстрируют одновременно и хорошую управляемость , и удивительную пластичность: чутко реагируя на внешние воздействия, они сохраняют тип движения. Как считают многие исследователи, именно комбинация этих двух свойств служит причиной того, что хаотическая динамика характерна для поведения многих систем живых организмов.

Например, хаотический характер ритма сердца позволяет ему гибко реагировать на изменение физических и эмоциональных нагрузок, подстраиваясь под них.

Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера. Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке например, множество Кантора. Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы». Самые большие группы это: геометрические фракталы алгебраические фракталы стохастические фракталы Однако существует и другая классификация: деление на рукотворные и природныефракталы. К рукотворным относятся те фракталы, которые были придуманы учёными, они при любом масштабе обладают фрактальными свойствами.

На природные фракталы накладывается ограничение на область существования — то есть максимальный и минимальный размер, при которых у объекта наблюдаются фрактальные свойства. Именно с них и начиналась история фракталов. Этот тип фракталов — самый наглядный, потому что в нем сразу видна самоподобность. Получается он путем простых геометрических построений. Обычно при построении этих фракталов поступают так: берется «затравка» - аксиома - набор отрезков, на основании которых будет строиться фрактал. Далее к этой «затравке» применяют набор правил, который преобразует ее в какую-либо геометрическую фигуру.

Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и, если мы проведем по крайней мере, в уме бесконечное количество преобразований, получим геометрический фрактал. Рисунок 3. Снежинка Коха Кривая Коха является типичным геометрическим фракталом. Процесс её построения выглядит следующим образом: берём единичный отрезок, разделяем на три равные части и заменяем средний интервал равносторонним треугольником без этого сегмента. На следующем шаге повторяем операцию для каждого из четырёх получившихся звеньев и т.

Выполнив аналогичные преобразование на сторонах равностороннего треугольника можно получить фрактальное изображение снежинки Коха. Для его построения из центра треугольника мысленно вырезают кусок треугольной формы, который своими вершинами будет упираться в середины сторон исходного треугольника. Рисунок 4. Треугольник Серпинского. Рисунок 5. Процесс построения Треугольника Серпинского Повторяют эту же процедуру для трех образовавшихся треугольников за исключением центрального , и так до бесконечности.

Если теперь взять любой из образовавшихся треугольников и увеличить его, то получится точная копия целого. Это и есть полное самоподобие. Кривая дракона И зобретена итальянским математиком Джузеппе Пеано. Ее построение начинается с нулевого порядка, которая представляет собой прямой угол. Изображение фигуры каждого следующего порядка строится путем постоянных замен каждого из отрезков фигуры младшего порядка на два отрезка, сложенных также в виде прямого угла. При этом каждый первый угол оказывается вывернутым наружу, а каждый второй - вовнутрь.

На рисунке проиллюстрирован алгоритм построения драконовой ломаной и изображен вполне взрослый дракон десятого порядка. Здесь можно заметить, что два равных звена продолжают друг друга. Рисунок 7. Кривая Минковского. Описано в 1883 году Г. Рисунок 8.

Множество Кантора. Оставшееся точечное множество обозначим через C1, оно состоит из двух отрезков; удалим теперь из каждого отрезка его среднюю треть и оставшееся множество обозначим через C2.

ГЕОМЕТРИЯ ПРИРОДЫ. ФРАКТАЛЫ.

Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что можно замереть от восхищения. Смотрите 65 фотографии онлайн по теме фракталы в природе животные. Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств. ПРОСТО ФРАКТАЛ. Фракталы в природе. Несмотря на то, что фрактальные фигуры были замечены в природе и сконструированы математиками уже довольно давно, впервые научно обосновать существование фракталов смог Бенуа Мандельброт лишь в 1970-х годах. Фракталы в природе Подготовила Андреева Алина Р-12/9.

Фракталы в природе.

И насколько понятней становится эволюция живых существ, когда мы можем найти фракталную модель их развития. Фракталы в тейдинге. Тема фракталов сложна и интересна, но как же она соотносится с торговлей на бирже? Думаю, что идея также проста: попытка описать и упорядочить казалось бы хаотичное и нелинейное движение цены, и найти в нем определенные закономерности. Тема фракталов достаточно молода, но одно знаем точно, что ее глубина и охват — это «черная дыра» с огромным количеством идей и возможный векторов применения. Первое, что мы можем выделить — это подобие графиков движения цены, вне зависимости от инструмента, таймфрема временного масштаба. Разумеется, что найти абсолютно похожие участки крайне сложно, но ключевое свойство фрактала — это самоподобие, а не идентичность. А найти регулярные и подобные структуры в колебаниях цены — это уже более реальная задача. Получается, что рынок, как минимум, имеет фрактальные свойства.

Само наличие закономерностей в движении говорит об этом.

Случайная мутация Исследователи провели эксперимент, создав генетически модифицированные бактерии, у которых цитратсинтаза не формировала фрактальные треугольники. Результаты показали, что жизнедеятельность этих бактерий не отличалась от обычных. Моделирование продемонстрировало, что фрактальная структура могла возникнуть в результате небольшого количества мутаций и с такой же легкостью быть утрачена.

Оно выглядит так: уравнение Множества Мандельброта, где С — комплексное число Для математика выглядит достаточно просто, но есть нюансы. Не будем вдаваться в подробности, попробуем пошагово раскрыть суть построения множества: Чтобы определить, входит ли число в множество Мандельброта, нужно принять Z за ноль О возвести в квадрат и сложить с нашим числом. Полученное число Z — заново подставляем в уравнение и складываем с числом, которое тестируем. Уравнение решается и полученное решение снова подставляется в уравнение. Уравнение заново решается. Множественное повторение решений одного и того же уравнения. Если при решении мы видим, что значение Z сильно увеличивается стремится к бесконечности , значит изначальное число не подходит. Если же Z колеблется в пределах одного значения, значит выбранное число входит в множество. Далее полученные значения отмечают на плоскости. Уравнение решается огромное количество раз и в итоге получается графическое изображение множества Мандельброта его мы видели выше.

Выявлять намерения крупного игрока помогает функционал торговой платформы ATAS. Как торговать фракталы прибыльно на практике? Рассмотрим 2 подхода — активный и пассивный. Пассивный подход в торговле по фракталам Для начала, определите, в каком направлении перемещается объём. Это можно сделать воспользовавшись индикатором Market Profile. Если РОС максимальный объём за день переместился вверх по отношению к РОС предыдущего дня, и цена находится выше РОС предыдущего дня — то, вероятнее всего, на рынке присутствует восходящий тренд. Исходя из этого простого наблюдения, можно выставлять отложенные ордера на пробой фракталов в соответствии с перемещением объема. Далее контролируйте риски. В конце американской сессии можно закрывать все сделки, независимо от результата. Этот подход более спокойный, так как на анализ и выставление ордеров вы можете потратить не более 10 минут в день. Активный поход в торговле по фракталам Определите тренд в каком направлении перемещается объём и торгуйте в течение дня только в направлении тренда.

Похожие новости:

Оцените статью
Добавить комментарий