Новости профессии связанные с нейросетями

Как появилась профессия тренера нейросетей Основные обязанности AI-тренера Ключевые навыки Где могут работать AI-тренеры Сколько зарабатывает тренер нейросетей Как стать AI-тренером Перспективы профессии Главные мысли. Около трети респондентов считают, что нейросеть сможет заменить бухгалтеров и менеджеров по продажам, меньшее число опрошенных рассказали, что рискуют быть замененными финансисты, HR-специалисты, социологи. Из этой статьи вы узнаете о трех новых профессиях, которые стали востребованными на рынке после появления нейросетей, и какие навыки нужны для того, чтобы успешно в них развиваться.

5 профессий, которые появились в 2023 году благодаря искусственному интеллекту

Нейросеть ChatGPT рассказала, какие профессии заменит искусственный интеллект Фото: Shutterstock Примерно пятая часть российских работодателей уверены, что в будущем нейросети вполне могут трудиться вместо людей в ряде сфер. Половина руководителей считают такое вероятным, но не в скором времени. Это данные свежего опроса исследовательского центра Зарплаты. Уже сейчас работодатели ищут в штат сотрудников, которые разбираются в наиболее известной на сегодня нейросети ChatGPT и ее возможностях. Чаще всего это компании в IT-сфере и финансовой. Прямо сегодня технологиям на основе искусственного интеллекта предприятия готовы доверить довольно многие задачи.

В первую очередь — переводы, техподдержку, подготовку аналитики, создание несложных текстов, дизайна.

Отсюда в обществе возникла дискуссия: заменят ли технологии человеческий ресурс. По словам эксперта, страх общества, что компьютеры сместят людей с тех или иных работ, вполне оправдан. Активное развитие нейросетей приводит к тому, что многие специальности становятся неактуальными. Если ваша работа — получить список из 10 документов, взять из них какие-то данные и собрать их в 11-й документ, то, скорее всего, вас алгоритм заменит.

Также опасность идет для тех, кто занимается сбором и анализом информации. Нейросеть это прекрасно делает, что показывают последние разработки. Например, такие как ChatGPT. И работа рерайтера, который берет 2-3 новости, материалы какие-то или вставляет новые для написания текста, тоже в ближайшее время, вероятно, будет заменена нейросетями», — рассуждает собеседник. Есть и другие профессии, где участие человека не потребуется, и в этом нет никакого «всемирного заговора», отметил Чечулин.

Речь идет о бизнесе, которому выгоднее задействовать компьютеры: они не спят, не едят, не отвлекаются, а только выполняют поставленную задачу. При этом развитие нейросетей даст новые профессии и рабочие места. Помимо самих создателей таких программ, потребуются операторы, которые будут давать системе грамотные запросы и задачи. Часто предприниматели не могут доступно сформулировать, что им нужно, а нейросеть не способна дать ожидаемого результата без четкой инструкции. Это будут делать аналитики, умеющие перевести запрос бизнеса в понятную для компьютера формулу», — объяснил эксперт.

Развитие технологий в России, как и во всем мире, потребует определенной корректировки в образовании, предположил собеседник. Подписывайтесь на наш канал — «Россия 24».

По сути, нейросеть живёт в информационном пузыре. Например, чат-боты позволяют автоматически генерировать простые официальные письма, справки. Ранее в новостях сообщалось, что руководство Сбербанка частично сократило юристов низшего звена, которые писали претензионные письма.

Теперь эти функции выполняет нейросеть. Также по теме «Настанет день, когда машина обретёт сознание»: фантаст Франк Шетцинг о будущем человечества и инопланетном разуме Книги немецкого писателя-фантаста Франка Шетцинга расходятся большими тиражами, а экранизацией одного из его главных бестселлеров —... Однако нужно понимать, что возможности нейросетей очень ограниченны. По сути, появление нейросетей должно подстегнуть людей к развитию. Кроме того, создание, обслуживание и внедрение таких технологий приводит к появлению новых рабочих мест и специальностей.

Хотя, конечно, не массовых. Допустим, сейчас пишут о спросе на специалистов по составлению запросов для нейросетей — есть ли такая профессия? К слову, такое направление, как анализ данных data scientist , появилось уже очень давно, в 2000-е годы. Это, по сути, универсальный специалист, способный проанализировать данные, написать и внедрить нейросеть, а далее её сопровождать. Сейчас эта специальность уже уходит на второй план, появляются всё более специализированные направления, такие как ML-инженер: он не создаёт новый математический аппарат нейронных сетей, а занимается обучением существующих архитектур и вводом их в эксплуатацию.

Ранее против владельцев популярных нейросетей подали иск художники — они обвинили IT-компании в нарушении авторских прав. Нарушают ли нейросети авторские права? И если да, то как этот вопрос может быть урегулирован? Не зря большинство крупных IT-компаний приняли так называемый кодекс этики искусственного интеллекта, который определяет этичное поведение разработчика ИИ. Как отличить использование контента в учебных и коммерческих целях?

Вероятно, основания для юридических претензий к создателям нейросети могут возникнуть, если она не просто учится на изображениях, а воспроизводит чей-то фирменный стиль или фрагменты работ. В принципе, есть возможность избежать такого копирования, но для этого нейросеть нужно учить довольно долго. А компании часто хотят сэкономить время. Кстати, по этой же причине сохраняются и уязвимости нейросетей в плане безопасности, о которых я говорил ранее. Также по теме Если объяснять термин «нейросеть» простыми словами, то это программа, которая способна самообучаться, извлекать опыт и накапливать...

При этом продукт, который выдаёт нейросеть, обычно довольно банальный, невысокого качества.

Ограничений практически нет, только ваш полет фантазий. Зарплата: мне кажется сильно зависит от вашего таланта. Чтобы получить хороший результат, иногда часами подбирать удачное описание или дополнительно редактировать изображение в Photoshop. Например, когда появились сети генераций картинок, многие заметили, что если добавить слова 4K, ultrarealism, detailed, то качество изображений на выходе выше. Теперь есть даже книги как подбирать такие "промпты". Если вы хорошо разбираетесь в какой-то области, например, в фотографии вы можете добавлять профессиональные термины или имена известных художников.

Некоторые уже продают "промпты", которые помогают получать на выходе более интересные и красивые изображения. Зарплата: пока совсем узкая ниша, но если у вас талант генерировать идеи в текстовом виде, то это можно использовать для поиска удачных "промптов", которые продавать тем же ИИ-художникам. Ведь именно благодаря ученым и разработчикам в области ИИ появились такие крутые нейросети.

Аналитики выяснили, какие профессии могут быть заменены нейросетями

Активная аудитория только ChatGPT-3. Переход на рельсы ИИ меняет ситуацию на рынке труда. Ожидается , что в 2025 году в сфере нейронных сетей будут работать 97 млн человек, которых необходимо обучить. Edtech подстраивается под тренд, а мы рассказываем про опыт зарождения новых профессий. Заметны перемены и в России. Жизнь до бума. Например, в «Нетологии» первый поток по Data Science с блоком про нейронные сети запустился 6 лет назад. Поэтому на рынке уже давно существуют образовательные программы, которые помогают закрывать запрос компаний и развивать сферу.

Но также мы думаем, что этот тренд сегодня будет расти еще больше, и количество курсов увеличится». Несколько лет существует направление и в Skillbox: «Курсы по ИИ всегда входили в нашу комплексную программу по обучению профессии Data Science. Они существуют с 2019 года, — объясняет руководитель образовательных программ по анализу данных в Skillbox Надежда Бойкова. Или присоединятся к командам, их разрабатывающим». Все эти курсы — авторский контент от действующих senior-специалистов крупных компаний. Кроме практических заданий в рамках учебных программ студенты решают реальные задачи бизнеса. Компании-партнеры регулярно приглашают студентов попробовать силы на стажировках, в том числе оплачиваемых.

В рамках образовательной программы студенты изучают Python — самый популярный язык для машинного обучения и создания нейросетей, SQL для работы с базами данных, линейную алгебру, статистику и теорию вероятностей, так как без них не получится построить прогнозную модель или найти скрытые закономерности. Ключевым в программе является модуль по машинному обучению, на нем студенты изучают классические алгоритмы, создают рекомендательные системы и уже непосредственно обучают нейросети. На модуле по Deep Learning студентов знакомят с продвинутыми технологиями по работе с нейросетями, например трансформерами — архитектурой нейронных сетей, которая лежит в основе ChatGPT.

Он будет разрабатывать алгоритмы и системы машинного обучения, собственно обучать и оптимизировать новые модели.

Второй в списке — работотехник. В его задачи будет входить создание роботов и внедрение их в производство. Этот же специалист будет отвечать за ремонт и обслуживание машин.

Это приводит к появлению все большего числа вакансий для инженеров нейросетей, и перспективы роста этой профессии в ближайшие годы кажутся очень многообещающими. Инженеры нейросетей могут рассчитывать на высокий уровень заработной платы. Средняя зарплата квалифицированного инженера нейросетей в США составляет около 150 000 долларов в год, что является значительно выше, чем средняя зарплата в других отраслях.

Более того, с ростом спроса на этих специалистов можно ожидать, что заработная плата будет продолжать расти в ближайшие годы. Одной из причин высокой заработной платы инженера нейросетей является сложность работы. Нейросети - это сложные системы, которые требуют высокой квалификации и опыта, чтобы разрабатывать и оптимизировать их.

Многие задачи, связанные с обработкой и анализом больших объемов данных, могут быть автоматизированы. ИИ может анализировать данные и выявлять закономерности лучше людей, что позволяет сократить время, затрачиваемое на анализ, и уменьшить вероятность ошибок.

Самозанятые в этой сфере смогут ускорить работу за счет сотрудничества с ИИ. Тестировщики программного обеспечения. ИИ может использоваться для автоматического тестирования программного обеспечения, что позволяет сократить время, затрачиваемое на тестирование, и уменьшить вероятность ошибок. Специалисты в этой сфере смогут делегировать ИИ стандартные задачи. Главное: ИИ не может полностью заменить человека, он не придумает свежего неординарного решения, не сможет провести переговоры, не учтет всех клиентских замечаний и не способен выгодно продать результат своего труда.

ИИ — инструмент, работе с которым предстоит научиться многим самозанятым и фрилансерам, чтобы сохранить свои конкурентные преимущества на рынке. Чему надо учиться Самозанятые, работающие в отраслях, в которых будет активно применяться ИИ, могут сохранить свою конкурентоспособность, если будут развивать следующие навыки:. Навыки программирования. Они позволят стать разработчиком систем ИИ, спрос на которых будет только расти, или эффективнее использовать эти системы в работе, адаптируя их под свои нужды. Креативность и творческий подход.

Они помогут создавать уникальный контент и находить новые способы решения задач, недоступные ИИ.

Нейросети вместо человека: каким специалистам впору задуматься о смене профессии

Развитие нейросетей в России создаст, в числе прочих, профессию специалиста по этике в сфере искусственного интеллекта (ИИ), также в вузах появятся профильные. Нейросеть сделала это за 5 минут с хорошей ла локальные компании от глобальных, рассказала про количество производственных площадок. «Яндекс» начал нанимать людей гуманитарных профессий для обучения своей нейросети — российского аналога ChatGPT, рассказали «Известиям» в компании.

Назван список профессий, по которым сильнее всего ударит ИИ. Программисты в безопасности

Разбираем, на что способны нейросети уже сегодня и какие профессии сможет заменить искусственный интеллект в ближайшем будущем. Тем не менее многие работники, даже те, чья профессия по прогнозам подвергнется влиянию ИИ, с оптимизмом смотрят на развитие нейросетей. Уже сейчас идут бурные обсуждения, что нейросети, вероятно, в будущем смогут полностью заменить специалистов ряда профессий. В эфире обсудили: стоит ли SMM-специалистам бояться нейросетей, как стать высокоплачиваемым специалистом и не выгореть.

5 профессий, которые появились в 2023 году благодаря искусственному интеллекту

Собственно, в этот все отличие от того, что сейчас называется искусственным интеллектом от алгоритмических каких-то результатов, в том, что мы часто получаем не вполне предсказуемый результат, и это очень похоже на то, как работает человек. Собственно, вот и вся разница. Но корневая суть работы дизайнера — она не поменялась. Это было и есть подбор правильного варианта в правильные контексты. Гребенников: То есть определяет. Что красиво, сегодня дизайнер все еще, а не искусственный интеллект? Кулинкович: Да, но… У нас, например, есть отдельные технологии внутри Иронова, которые позволяют отбросить совсем плохие варианты. То есть такой примитивный арт-директор, скажем так. И он помогает не выгружать на конечного пользователя весь массив данных, которые слишком шероховатые, слишком смелые, а как бы делать такой скоринг дизайн-решений, чтобы финальное решение было в каком-то более-менее приличном диапазоне. Поэтому мы все равно используем эти технологии, даже чтобы отсортировать какой-то большой массив выдачи, но финальное решение, конечно, принимает человек. Гребенников: А как вообще происходит постановка технического задания искусственному интеллекту?

Предположим, я — маленькая пекарня во Владимирской области. Я приходу в вашу студию и говорю: «Хочу себе классный логотип, чтобы ко мне приходило не 2 000 человек в месяц, а 15 000 человек. Я считаю, что вся проблема моя в логотипе». Я говорю: «Хочу такой логотип, чтобы там был колосочек, хлебушек и круассанчик обязательно». Вы же куда-то это загружаете. Как происходит процесс формирования технического задания? И потом как искусственный интеллект осознает, что мне нужно как конечному клиенту? Кулинкович: Начнем с того, что если вы предъявите задание живым людям, живым дизайнерам, то, скорее всего, если они будут достаточно с вами честны, то они скажут, что изменение логотипа не увеличит вашу выручку в 10 раз. Это первый момент. То есть если у вас была пекарня с плохим логотипом, а потом появляется некоторый бренд с хорошим логотипом, то едва ли это напрямую окажет влияние на ваши продажи.

Косвенно, возможно, при правильном стечении обстоятельств, правильно посеве, да. Но, скорее всего, это не является критерием хорошего логотипа. Второй момент заключается в том, что, если мы посмотрим на логотип пекарен и других каких-то бизнесов, связанных с хлебобулочными изделиями, там не всегда фигурируют колоски, не всегда фигурируют круассаны. А иногда это некий образ, визуальна интерпретация образа бизнеса, которая этим дизайнером и сделана. Соответственно, когда вы приходите в брендинговое агентство, где сидят живые люди, и они получают этот бриф, что еще происходит? Они его творчески интерпретируют. Они смотрят, как выглядят булочные в этом городе, в округе, пытаются придумать что-то контрастное, что-то отличное от тех ребят, которые на той же улице торгуют круассанами. И, соответственно, они приходят с некоторыми дизайн-гипотезами, что кто-то решил, что это будет какой-то крестик красивый, в котором угадывается что-то такое. Кто-то решил пойти через концепцию семейности, семейного кафе, и вообще нарисовал сердечко, потому что вот «Приходите к нам. Мы вас любим».

И все такое. А кто-то прошел напролом и начал рисовать конкретно круассан, фотореалистично и так далее. И эти все подходы имеют право на жизнь, и в равнозначной степени вы можете получить такие варианты от живых людей. В случае с Ироновым человек, без участия людей, он заполняет бриф, описывает свою компанию. Дальше у нас отдельная система, нейросеть, она интерпретирует бриф, то есть она из текста брифа достает некоторые образы, которые могут подходить под визуальное представление этой компании, как она может быть представлена в виде какого-то емкого символа либо знака. И дальше это по такой цепочке передается, появляются эти визуализации этих образов, они обогащаются разными шрифтовыми комбинациями, дальше подключаются отдельные алгоритмы, которые подбирают цветовые сочетания комплиментарные. В общем, там сложная-сложная штука. Но по факту это точно то же самое, что происходит при работе с живым человеком. То есть интерпретируется некоторый текстовый ввод, так же как к вам приходит человек и что-то говорит, и вы как-то это трансформируете. Мы все эти шаги условно творческих мытарств алгоритмизировали, перевели в какие-то отдельные процессы?

И клиент на выходе получает опыт, очень сопоставимый с опытом общения с живым дизайнером. Только наш дизайнер не капризничает, не болеет. Коротнева: Не уходит в отпуск. Кулинкович Да, да, да. Гребенников: Скажите, а стоимость разработки логотипа… Логотип, предположим, я пришел за логотипом, искусственным интеллектом и обычным дизайнером в студии Артемия Лебедева отличается? Есть какой-то прайс на искусственный интеллект и обычного дизайнера? Кулинкович: Да, конечно, отличается. Когда вы приходите лично в брендинговое агентство или дизайн-студию, помимо непосредственного конечного дизайнера, который сидит и визуализирует ваш логотип, в это вовлечено очень много людей на самом деле. Это юристы, которые помогают составлять договор; менеджеры, которые позволяют клиенту и дизайнеру услышать друг друга, перевести с одного языка на другой, и много-много всего. Соответственно, когда вы работаете с живыми людьми, чаще всего дизайн — это операционный процесс, где клиент хочет, чтобы его услышали и некоторое врем поиграли с ним вот в эту игру «Согласование видения», да?

Это все умножается на стоимость часов специалиста. И разные компании, конечно, по-разному, диапазон очень большой, но он может доходить до очень больших сумм. То есть если вы просто придете в большую дизайн-компанию, то разработка логотипа с нуля, где вас будут слышать, слушать долго и до победного, она может быть супердорогой, неподъемно дорогой для малого и среднего бизнеса. Поэтому Иронов и другие генеративные технологии — это не просто про скорость, это про такую демократизацию дизайна, что если у вас не слишком много денег для того, чтобы играть во все эти чаепития и подписания договоров дорогостоящее, то вы можете пойти и получить из коробки сопоставимый по качеству результат. Просто процесс будет происходить несколько иначе. Вам нужно будет принять, что ваши какие-то правки и пожелания интерпретируются не прямым методом, а косвенным, в результате работы некоторых алгоритмов. Там могут быть шероховатости, а могут быть, наоборот, источники классных открытий в результате этого. Гребенников: Вот вы говорите про открытия. А бывало так, что пришли две разные компании, диапазон полгода-год, и искусственный интеллект выдал одинаковый логотип на совершенно разные задачи, которые перед вами ставили? Такое происходит и с живыми людьми, то есть можно увидеть очень много примеров того, как дизайнеры думают похоже, скажем так.

Гребенников: Назовем это так, хорошо. Кулинкович: Ну да. Просто на самом деле очень часто, когда у вас большой объем работы, вы сделали 1 000 логотипов, наивно полагать, что в мире все ваши логотипы абсолютно аутентичны, потому что каждый день в мире сотни и тысячи дизайнеров генерят новые логотипы, а набор примитивов, из которых логотипная графика состоит, он довольно ограничен, потому что есть базовые формы: треугольник, прямоугольник, квадрат и так далее, которые так или иначе комбинируются. Если мы говорим условно, что даже у стран, которых ограниченное количество, есть очень похожие флаги, которые можно часто путать друг с другом, что уж говорить про логотипы, которых сотни тысяч генерируется каждый год. Соответственно, мы видим, что действительно могут появляться одинаковые работы, как у живых людей, так и нейросеть может генерировать одинаковые работы, и мы в этом не видим проблемы, потому что это было долгое время ранее. Если где-то в Сингапуре еще существует похожая птицефабрика с таким же крестиком, таким же цветом и с таким же соотношением сторон исполнен, то едва ли эти бизнесы будут друг друга локтями толкать. Поэтому мы на это смотрим совершенно нормально компенсируем это объемом, то есть проблема плагиата существенна, когда у вас стоимость каждой итерации очень большая, а дизайнер уходит на следующую итерацию, неделю молчит, пыхтит и так далее. Но когда вы можете еще одним щелчком сгенерировать еще 100 альтернатив, то, в целом, это перестает быть проблемой. Но я предлагаю переходить от проекта Николай Иронов к другим генеративным технологиям, потому что летом прошлого года буквально весь интернет взорвала сеть Midjourney, которая создавала крутые классные визуальные картинки, и все были в полном восторге. Но вместе с этим восторгом действительно возник вопрос о том, что «Зачем мне условно в штате держать дизайнера, если я могу загрузить свой достаточно вариант брифа, и нейросеть выдаст мне несколько классных вариантов: совершенно удивительных и визуально привлекательных.

Сергей, давайте поговорим немножко про это. Во-первых, как вы думаете, какие перспективы развития у этих нейросетей? Насколько действительно хорошо они генерируют визуальные изображения, и какие риски это несет для творческих профессий? Кулинкович: Спасибо за вопрос. Поскольку возможна какая-то профдеформация, и мы довольно давно находимся от в этой области генеративного дизайна. Просто сейчас из-за того, что искусственный интеллект как понятие тиражируется и как-то ассоциируется с нейросетевыми технологиями, и это сейчас на всех полосах газет и всяких изданий, на это все прожекторы устремлены, на самом деле генеративный дизайн существовал ранее просто в других жанрах. И он как тогда, так и сейчас создавая новые возможности, новые рабочие места, то есть сейчас есть отдельные ребята, которые используют эту технологию для того, чтобы решать подобные задачи за деньги. Midjourney и другие ребята, они создают под себя, как Иронов, который создал новый рынок, который мы сделали, так и другие ребята. Они берут и просто используют это как инструмент. Раньше инструментом была кисть, к которой просто нужно было применить к ней механическое какое-то воздействие, и сколько-то лет опыта.

Но, в целом, она выдавала такие же результаты. Сейчас вместо этой кисти что-то другое. Завтра будет еще что-то другое. Но, в целом, какого-то такого слома я не наблюдаю. Просто появилась новая возможность делать то, что раньше требовало большого количества часов, быстро. Но фактически это просто расширяет, как сказать, перераспределяет усилия людей. То есть сейчас мы видим, что появляются новые профессии. Они такие, околодизайнерские: наполовину дизайнерские, наполовину технические. Люди, которые занимаются промт-инжинирингом, которые учатся взаимодействовать с этим инструментом, задавать ему правильные вопросы и получают правильные ответы. Но по факту это тот же дизайн, просто инструментом дизайнера является уже не кисть, уже не какие-то программы редактирования графики.

А просто нейросеть. Поэтому ничего не меняется на самом деле, просто трансформируются инструменты производства. И это было и 100 лет назад, когда происходили какие-то переходы от ручного труда к фабричному, так и сейчас. Так я себе это представляю. Гребенников: Правильно, если простым языком сказать, когда нам говорили, что появилось телевидение, то театр умрет. Точно так же, как не умер театр, не умерло телевидение после появления интернета, точно так же и с появлением искусственного интеллекта, мне кажется, у дизайнера просто появилось больше инструментов для того, чтобы творить.

Нейросеть видит в таком специалисте баланс между "технарем" и "гуманитарием", безупречную грамотность и системное мышление. Шансы у этой профессии будущего есть, по крайней мере, в компаниях, связанных с machine-to-machine-технологиями.

Специалист, который создает оригинальные искусственные аналоги природным материалам, чтобы в дальнейшем использовать их в медицине, архитектуре, электронике и других областях. Впрочем, нынешние представители профессии отмечают, что отнюдь не все созданные на бумаге прототипы могут работать в реальности. Но пока оценить перспективы специалистов по нейроэтике сложно.

Заменят ли нейросети художников, программистов, дизайнеров… человека? Вопрос о том, стоит ли нам переживать из-за возможной замены человеческого труда нейросетями и искусственным интеллектом, остается открытым, и мы активно обсуждаем его и другие важные события в мире ИИ и бизнеса в своём TG канале! Однако в других сферах, таких как творчество, креативный дизайн и решение сложных нетривиальных задач, человеческий интеллект пока остается неповторимым.

Конечно, часть контента уже фильтруют с помощью алгоритмов компьютерного зрения, но определять к примеру на сколько оскорбителен контент для каких-то групп пользователей все еще очень сложная задача. Вероятно, вырастет потребность в модераторах более "высоких" сущностей: смешная ли картинка, красивая ли? То есть станет больше потребность в субъективных мнениях от живых людей. Но учитывайте, что пока что в компаниях все еще нужно проверять много такого контента, после которого потом придется долго лечится у психотерапевта.

Но также улучшились модели, которые создают качественные и логичные тексты см. Возможно, в ближайшие годы появится ИИ для видео контента. Но уже сейчас появился огромный простор для креатива и блогерства. Виртуальные блогеры уже не новость, но теперь и живые смогут себя "подменять" и давать писать посты нейросетям или делать реалистичный фото контент со своим лицом не выходя из дома. Также появятся целые агентства, которые будут воплощать в жизнь ранее недоступные или дорогие идеи.

8 перспективных профессий, связанных с ИИ

Один из примеров, связанных с использованием нейросетей на рынке труда — это автоматизация работ, которые ранее выполняли люди. AI-тренеры обучают нейросеть отвечать на вопросы безупречно с точки зрения языка, пользы, достоверности, безопасности и этики. Около трети респондентов считают, что нейросеть сможет заменить бухгалтеров и менеджеров по продажам, меньшее число опрошенных рассказали, что рискуют быть замененными финансисты, HR-специалисты, социологи.

Будущее SMM-специалистов в эпоху нейросетей: интервью с хантером Аленой Владимирской

Никого не напоминает? Герой компьютерной игры, звезда рэпа? Вообще-то лазурный автобус! А этот задорный рыжий юнец — не кто иной, как трамвай «Чижик». Так по мнению нейросети выглядел бы очеловеченный общественный транспорт Петербурга. Мечтаете, чтобы вас изобразил великий художник Пикассо или Малевич?

В связи с этим, спрос на специалистов, владеющих навыками работы с нейросетями, постоянно растет. Одним из ключевых преимуществ этой специальности является возможность быть на переднем крае технологического прогресса. Нейронные сети исследуются и разрабатываются непрерывно, и операторы нейросетей могут участвовать в создании и применении новых моделей и алгоритмов. Кроме того, работа оператора нейросетей предоставляет шанс для личного и профессионального роста.

Специалисты в этой области продолжают обучаться и совершенствоваться, осваивая новые методы и технологии. Благодаря уникальным навыкам, они могут стать востребованными специалистами и достичь успеха в своей карьере. Для детей, проявляющих интерес к программированию и анализу данных, обучение и развитие в области искусственного интеллекта может стать отличным выбором для успешной карьеры в будущем. Как подготовить ребенка к профессии оператора нейросетей? Если ваш ребенок проявляет интерес к программированию и анализу данных, подготовка к специальности оператора нейросетей может начаться уже в раннем возрасте. Вот несколько способов, как помочь развить необходимые навыки: Изучение основ программирования. Предоставьте ребенку возможность ознакомиться с основами программирования, начиная с простых языков, таких как Scratch или Python. Постепенно школьник сможет изучить концепции, логику и алгоритмы, которые являются основой работы с нейронными сетями. Углубленное изучение математики и статистики.

Математические и статистические знания являются важным элементом взаимодействия с нейросетями. Поощряйте ребенка изучать математические концепции и решать задачи, которые помогут ему развить навыки анализа данных.

Не за горами и беспилотные комбайны и самолеты, роботы-курьеры или администраторы гостиниц, и всех их нужно будет не только спроектировать, но и натренировать, применяя методы машинного обучения. Дойдет ли до роботов — школьных учителей или терапевтов, сказать сложно, но нехватка работы инженерам-робототехникам в ближайшие десятилетия точно не грозит, а зарплаты однозначно увеличатся. Хотя эти специалисты и сейчас не могут пожаловаться на зарплату: она начинается от 100 тыс. Инженер-электротехнолог инженер по электротехнологическим установкам Представить современный мир без результатов деятельности инженеров-электротехнологов невозможно, ведь они занимаются тысячей вещей — от промышленных плазменных печей до электростанций, от бытовой электротехники до трамваев. Они отвечают за создание и обслуживание всех систем, использующих или преобразующих электроэнергию; разрабатывают и тестируют предназначенное для этих систем оборудование и отдельные элементы; обеспечивают безопасность энергетической сферы и устанавливают ее стандарты. Применение искусственного интеллекта в работе электротехнологов зависит от конкретного сегмента деятельности: так, в энергосистемах ИИ прогнозирует потребление, диагностирует неисправности, оптимизирует производство и распределение энергии. Требования к образовательному уровню в этой области высокие: специалист должен закончить бакалавриат или магистратуру по специальности 13. Средняя месячная зарплата — 130—150 тыс.

Внедрением и эксплуатацией актуальных информационных технологий занимаются специалисты по цифровой трансформации — профессионалы, использующие возможности цифровизации для повышения эффективности бизнеса.

Поэтому тратил всего час-два еженедельно, получая заработную плату за полную нагрузку. А чтобы результаты имели правдоподобный вид, работник умышленно добавлял несколько ошибок. Эксперты считают, что в ближайшее время искусственный интеллект не заменит разработчиков программного обеспечения полностью. Например, из-за рисков ошибок и технических ограничений. Но ИИ поможет решить проблему нехватки IT-специалистов. Специалист службы поддержки клиентов Наверняка вам уже приходилось звонить или переписываться со службой обслуживания клиентов, где собеседником был робот. ChatGPT и похожие технологии могут продолжить эту тенденцию. Рассмотрим, какие обязанности менеджеров техподдержки может взять на себя искусственный интеллект. Ведь эта сфера имеет много возможностей для автоматизации.

Сроки доставки, задолженность, статус заказа — что угодно, полученное из внутренних систем. Вместо этого команда может работать только с запросами, требующими человеческого интеллекта и эмпатии. Помощь менеджеру при первом контакте с покупателем. ИИ в связке с аналитическими инструментами может мгновенно получать данные о конкретном клиенте. Например, местонахождение, поисковый запрос. Это поможет специалисту решать проблемы при первом взаимодействии. Инструменты ИИ уже могут распознавать, когда клиент разгневан или расстроен во время диалога. Руководитель видит сообщения о таких случаях и может дать совет менеджеру, как улучшить общение с клиентом. Также ИИ может заметить признаки недовольства клиента быстрее человека и помочь погасить конфликт еще до его начала. Похожая функция, например, стала впервые доступна в платформе Ringostat.

ИИ считывает общее настроение разговора и каждого собеседника. И добавляет в отчет вместе с данными о телефонном звонке. Так можно вовремя заметить, если коммуникация требует внимания руководителя. По моему мнению, со временем появится тренд на платное обслуживание клиента «живым» менеджером. Это будет услуга «премиум-связь с человеком вместо бота». Такая практика, кстати, уже есть , например у Amazon. Если тенденция будет развиваться и ИИ сможет полностью закрыть потребность в первичном обслуживании клиентов, нынешние менеджеры службы поддержки могут перейти на другие должности. Например, стать менеджерами из отдела заботы о клиентах Customer Success , специалистами по работе с партнерами и т.

Похожие новости:

Оцените статью
Добавить комментарий