Она может развиться в красный сверхгигант, значительно более яркий, чем Бетельгейзе, в течение следующего миллиона лет. Несмотря на свою важность для эволюции галактик, голубые сверхгиганты встречаются достаточно редко. Для голубых сверхгигантов характерен сильный звёздный ветер, и, как правило, в своём спектре они имеют эмиссионные линии.
Вдали от Млечного Пути найден голубой сверхгигант
Кажется, ответ — да. Новые результаты могут стать большим шагом на пути к решению давней проблемы, связанной с рождением голубых звезд-сверхгигантов, а также указывают на важность слияний двойных звезд в формировании звездного населения и общей формы галактик. Следующим шагом в этом исследовании будет то, что команда переключит внимание с рождения голубых звезд-сверхгигантов на смерть этих массивных объектов. Ученые будут исследовать, как взрывы голубых сверхгигантов создают нейтронные звезды и черные дыры. Исследование было опубликовано в Astrophysical Journal Letters.
Как и предсказывалось, волны берут свое начало в глубине и открывают новые захватывающие перспективы для изучения этих звезд с помощью астеросейсмологии, — метод, аналогичный тому, как сейсмологи используют землетрясения для изучения недр Земли. Публикуя свои выводы сегодня в издании Nature Astronomy, авторы упомянули о том, что благодаря наблюдениям за этими волнами можно изучить свойства звезд, которые невозможно получить с помощью других астрономических методов. Поделись с друзьями!
Быстрая гибель Эарендель делает тем более невероятным обнаружение этого рекордного объекта таким «пенсионером» как Хаббл. Самая далекая звезда во Вселенной Основываясь на данных Хаббла, Эарендель вполне мог быть представителем первого поколения звезд, родившихся после Большого взрыва. Будущие наблюдения с помощью недавно запущенного космического телескопа Джеймса Уэбба должны дать более подробную информацию об этом объекте. Новые данные предоставят еще один кусочек в головоломке об эволюции Вселенной, но, возможно, у астрономов появится и множество вопросов. По словам авторов открытия, маленькая, еще не созревшая родная галактика Эарендела совсем не походила на красивые спиральные галактики, сфотографированные Хабблом в других местах, а скорее была «неуклюжим, комковатым объектом».
Его диаметр в 8 раз больше солнечного. Светимость Регора — 10 600 солнечных светимостей. Необычный спектр звезды, где вместо тёмных линий поглощения имеются яркие эмисионные линии излучения, дал название звезде как «Спектральная жемчужина южного неба» Альфа Жирафа [ править править код ] Расстояние до звезды примерно 7 тысяч световых лет, и тем не менее, звезда видна невооружённым глазом. Это третья по яркости звезда в созвездии Жирафа, первое и второе место занимают Бета Жирафа и CS Жирафа соответственно. Альфа Жирафа имеет светимость 620 000 солнечных. Расстояние до звезды — около 800 световых лет, светимость примерно 35 000 солнечных. Она является наиболее яркой звездой рассеянного звёздного скопления NGC 2362, находясь на расстоянии 3200 св. Звёздная система Тау Большого Пса состоит, по крайней мере, из пяти компонентов. Дзета Кормы [ править править код ] Дзета Кормы в представлении художника Дзета Кормы — ярчайшая звезда созвездия Кормы. Звезда имеет собственное имя Наос. Это массивная голубая звезда, имеющая светимость 870 000 светимостей Солнца, что делает её одной из самых ярких звёзд в Галактике.
2 бело-голубых сверхгиганта над центром на высоте 3143
Наличие в спектре двух пиков означает, что происходило изменение скорости звездного ветра и темпа потери массы голубым сверхгигантом — было как минимум два сильных выброса. Эти оценки, конечно, неточные, так как при их получении авторы вынуждены были использовать ряд предположений о свойствах звездного ветра у предсверхновой. В пользу того, что голубой сверхгигант являлся предсверхновой для SN 2005 gj, говорит не только форма спектра, но и скорость звездного ветра, дувшего с его поверхности и образовавшего пики поглощения. Скорости ветра для пиков поглощения из рис. Группа Грега Олдеринга, наблюдавшие эту сверхновую с 11-го по 133-й дни, но с низким спектральным разрешением, вообще классифицировала эту сверхновую как тип Ia.
Это тип сверхновых, которые рождаются из-за термоядерного взрыва белого карлика — звезды с массой 1,38 массы Солнца. Ядро белого карлика состоит из вырожденного электронного газа, а не из водорода, гелия или других атомов. Группа же Трандл считает, что типичные особенности спектра сверхновой типа Ia едва различимы в случае SN 2005 gj, и предлагают новую интерпретацию ее спектров. Неоспоримое преимущество группы Трандл — использование высокого спектрального разрешения в наблюдениях, которое позволило открыть неизвестные ранее особенности спектра этой звезды.
Результат, полученный группой Трандл, — весьма неожиданный с теоретической точки зрения, ведь, согласно теории звездной эволюции, в ядре предсверхновой не должно содержаться водорода. Водород должен уже давно выгореть, а вместо него в ядре должны находиться более тяжелые элементы, такие как гелий, кислород, углерод и железо. Голубые же сверхгиганты, согласно теории, давно подтвержденной наблюдениями, содержат водород, как в ядре, так и в оболочке. Не имея информации о двух пиках поглощения и, следовательно, о том, что предсверхновая, по-видимому, являлась голубым сверхгигантом, авторы не смогли бы предполагать, что в ее ядре содержался водород.
И хотя эта же самая теория предсказывает, что на пути к взрыву стадии Вольфа—Райе массивной звезде не миновать, результат группы Трандл является наблюдаемым фактом и может привести к серьезным изменениям в теории.
По мере движения света растущее пространство вытягивает его длины волн, сдвигая их в красную область спектра. Рассчитав этот сдвиг, можно установить, насколько далеко расположен источник — чем больше сдвиг, тем дальше. В данном случае сдвиг Эарендела составил 6,2, тогда как у Икара — 1,5. Астрономы уже находили галактики и целые скопления на куда большем расстоянии, но заметить одинокую звезду намного сложнее. В случае WHL0137-LS помощь пришла со стороны галактики, расположенной намного ближе к нам, которая искривляла пространство-время благодаря своей колоссальной гравитации. Гравитационная линза увеличила свет Эарендела, как лупа, сделав его видимым для обсерватории «Хаббл».
Как украли. Крестиком помечен тот самый голубой сверхгигант, который исчез. Снимок был сделан в 2010 году. Аллан и его коллеги пока теряются в догадках. И не исключают того, что случилось небывалое: гигантская звезда — одна из ярчайших во Вселенной — превратилась в черную дыру. Превратилась сразу. Коллапсировала, но не взорвалась перед этим, став сначала сверхновой, как положено звездам подобного вида. Возможен и другой вариант: звезда все-таки взорвалась, но ее загородило образовавшееся облако пыли. Правда, в таком случае какое-то свечение все равно должно было бы остаться.
Из-за огромных масс они имеют относительно короткую продолжительность жизни 10—50 миллионов лет и присутствуют только в молодых космических структурах, таких как рассеянные скопления , рукава спиральных галактик и неправильные галактики. Они практически не встречаются в ядрах спиральных и эллиптических галактик или в шаровых скоплениях , которые, как полагают, являются старыми объектами. Несмотря на их редкость и их короткую жизнь, голубые сверхгиганты часто встречаются среди звёзд, видимых невооружённым глазом; свойственная им яркость компенсирует их малочисленность. Взаимопревращение сверхгигантов Гамма Ориона , Алгол B и Солнце в центре Голубые сверхгиганты — это массивные звёзды, находящиеся в определённой фазе процесса «умирания». В этой фазе интенсивность протекающих в ядре звезды термоядерных реакций снижается, что приводит к сжатию звезды. В результате значительного уменьшения площади поверхности увеличивается плотность излучаемой энергии, а это, в свою очередь, влечёт за собой нагрев поверхности.
Настоящие космические маяки
- Голубой сверхгигант — "Энциклопедия. Что такое Голубой сверхгигант
- На голубых сверхгигантах бушуют волны
- Решена загадка мощного космического взрыва 1987 года - Российская газета
- Нет комментариев
- Рождение звездных титанов: как формируются голубые сверхгиганты? / Оффтопик / iXBT Live
Астрономы раскрыли секреты голубого супергиганта
Впервые найдены наблюдательные свидетельства того, что голубые сверхгиганты могут быть прямыми предшественниками сверхновых звезд. это недавно появившиеся на главной последовательности, они имеют чрезвычайно высокую светимость, высокую скорость потери массы и, как правило, нестабильны. Это голубой сверхгигант Икар, расстояние до которого исчисляется девятью миллиардами световых лет. В реальности голубой сверхгигант коллапсировал где-то во времена среднего палеолита. Голубой сверхгигант под кодовым названием Icarus отмечен белой стрелочкой на правой нижней фотографии.
Загадки голубых звезд сверхгигантов
Бетельгейзе — это красный гигант. Такими звёзды становятся на старости лет, когда в них иссякают запасы водорода для термоядерных реакций. Тогда ядро без этих реакций начинает сжиматься, коллапсировать, от этого ещё больше раскаляется и нагревает свою внешнюю оболочку. И она начинает раздуваться до невообразимых объёмов. Надо сказать, такие массивные звёзды, к сожалению, сгорают быстро. Бетельгейзе даже, оказывается, меньше девяти миллионов лет. Нашему ничем не примечательному Солнцу, для сравнения, 4,5 миллиарда лет, и ему ещё далеко до старости. В масштабах всего основного цикла эволюции звезды стадия красного гиганта довольно короткая.
У Солнца она, правда, может растянуться и на целый миллиард лет, потому что оно само по себе долгожитель, а вот у такой однодневки, как Бетельгейзе, разве что на 100 тысяч лет, не больше. И сколько существует человечество, столько оно и наблюдает её именно в таком виде. Поэтому трудно сказать, когда именно она состарилась.
Несмотря на их редкость и короткую жизнь, они широко представлены среди звезд, видимых невооруженным глазом; их огромной яркости более чем достаточно, чтобы компенсировать их нехватку. У голубых сверхгигантов быстрые звездные ветры, а в спектрах самых ярких, называемых гипергигантами , преобладают эмиссионные линии, указывающие на сильную потерю массы, вызванную континуумом. Голубые сверхгиганты показывают разное количество тяжелых элементов в своих спектрах, в зависимости от их возраста и эффективности, с которой продукты нуклеосинтеза в ядре конвектируются на поверхность. Быстро вращающиеся сверхгиганты могут быть сильно перемешаны и содержать большое количество гелия и даже более тяжелых элементов, при этом все еще сжигая водород в ядре; эти звезды показывают спектр, очень похожий на звезду Вольфа Райе. В то время как звездный ветер от красного сверхгиганта густой и медленный, ветер от синего сверхгиганта быстрый, но разреженный. Когда красный сверхгигант становится синим сверхгигантом, более быстрый ветер, который он производит, воздействует на уже выпущенный медленный ветер и заставляет истекающий материал конденсироваться в тонкую оболочку. В некоторых случаях несколько концентрических слабых оболочек можно увидеть из последовательных эпизодов потери массы, либо из предыдущих синих петель от стадии красного сверхгиганта, либо из извержений, таких как вспышки LBV. Обратная связь: support alphapedia.
Почти все голубые сверхгиганты ранее были красными карликовыми звездами, в процессе своего умирания внутренние термоядерные реакции привели к тому, что звезда начала увеличиваться в размерах. Существует и обратная реакция, когда голубой сверхгигант в процессе термоядерных реакций сбрасывает свою массу превращается в красного карлика. Ученые университета Ньюкасла провели эксперимент, в результате которого они выяснили природу быстрого разрушения голубого сверхгиганта. Они сконструировали модель голубого сверхгиганта и в результате вычислений пришли к выводам, что на разрушение звезды влияют, прежде всего, внутренние процессы в ядре звезды.
Имеет массу в 30 раз больше массы Солнца. Его диаметр в 8 раз больше солнечного. Светимость Регора — 10 600 солнечных светимостей. Необычный спектр звезды, где вместо тёмных линий поглощения имеются яркие эмисионные линии излучения, дал название звезде как «Спектральная жемчужина южного неба» Альфа Жирафа Расстояние до звезды примерно 7 тысяч световых лет, и тем не менее, звезда видна невооружённым глазом. Это третья по яркости звезда в созвездии Жирафа, первое и второе место занимают Бета Жирафа и CS Жирафа соответственно. Альфа Жирафа имеет светимость 620 000 солнечных. Расстояние до звезды — около 800 световых лет, светимость примерно 35 000 солнечных. Она является наиболее яркой звездой рассеянного звёздного скопления NGC 2362, находясь на расстоянии 3200 св. Звёздная система Тау Большого Пса состоит, по крайней мере, из пяти компонентов. Дзета Кормы Дзета Кормы — ярчайшая звезда созвездия Кормы. Звезда имеет собственное имя Наос.
Загадки голубых звезд сверхгигантов
В новом исследовании астрофизики смоделировали асимметричные взрывы сверхновых с коллапсом ядра четырех звезд-предшественников и сравнили их с наблюдениями SN 1987A. В результате наиболее достоверным был признан сценарий, при котором прародителем сверхновой является голубой сверхгигант, образованный слиянием двух звезд. Во время этого процесса более крупная звезда могла отделить вещество от своего меньшего спутника, который вращался вовнутрь, пока не был полностью поглощен. Так образовался быстро вращающийся голубой сверхгигант. По словам ведущего автора работы Масаоми Оно, это первый случай, когда сценарий слияния двух звезд был смоделирован с учетом возможного накопления радиоактивного никеля. Моделирование точно воспроизвело ускоряющиеся скопления никеля вместе с двумя струями выброса.
Опубликованное в научном журнале The Astrophysical Journal Letters исследование стало ключом к пониманию того, откуда берут свое начало эти удивительные астрономические объекты. Голубые сверхгиганты B-типа, являющиеся ярче и горячее Солнца в 10 тысяч раз и в 2-5 раз теплее, чем наша звезда, имеют массу от 16 до 40 раз больше солнечной. Долгое время оставалось загадкой, каким образом формируются такие звезды и почему они так часто встречаются в космосе.
Основное в этом спектре — внешний вид профиль узкой части линии H? Он говорит нам о том, какой звездой была сверхновая до взрыва и какой газ ее окружал. Главная особенность профиля этой линии — наличие двух пиков поглощения в спектре две ямки слева от пика излучения на рис. Такая форма линии в спектре сверхновой обнаружена впервые за всю историю наблюдения этого типа звезд! Чтобы получить профиль линии в столь крупном масштабе и увидеть, что пиков поглощения на самом деле было два, как раз и необходимо высокое спектральное разрешение. Слева: Спектры сверхновой SN 2005 gj на 86-й и 374-й день после взрыва. Видно излучение в линиях водорода H? Справа: линия водорода H? Trundle, et al. Широкая часть в основании линии H? Промежуточная часть зеленая стрелка образуется в веществе, которое окружает сверхновую и взаимодействует с ударной волной. Самая узкая часть линии красная стрелка представляет излучение невозмущенного ударной волной вещества, которое, правда, уже ионизовано излучением сверхновой. Все особенности узкой части линии связаны с природой газа, окружавшего сверхновую до взрыва. Группа Кэрри Трандл классифицирует сверхновую SN 2005 gj как тип IIn из-за наличия в спектре узких линий «n» — от англ. Профиль узкой части линии H? Такой внешний вид линии профиль называется «профиль типа P Cygni» по имени звезды P в созвездии Лебедя. Эта звезда — наиболее типичный представитель звезд с такими линиями в спектре. Причина возникновения подобного профиля линии была найдена астрономами уже давно — вокруг звезды есть расширяющаяся оболочка вещества. Причиной образования оболочки в голубых сверхгигантах является сильный звездный ветер. Данный тип спектра говорит в пользу того, что до взрыва звезда была голубым сверхгигантом, потому что подобные профили линий наблюдаются только у этого типа звезд.
Bibcode : 2005ApJ... Дои : 10. S2CID 18172086. Коммуникации в астросейсмологии. Bibcode : 2009CoAst. Bibcode : 1999ApJ... S2CID 14757900. Bibcode : 2012ApJ... S2CID 119180846. Астрономия и астрофизика. S2CID 18125436. Bibcode : 2001ApJ... Материалы конференции AIP.
На голубых сверхгигантах бушуют волны
Вновь образовавшиеся звезды существуют как голубые сверхгиганты в течение второй фазы своего существования, пока в их ядрах не закончится гелий". Голубые сверхгиганты похожи на звезд рок-н-ролла: эти массивные звезды живут короткую жизнь и погибают молодыми. Оно позволит уточнить диаметр звезды-сверхгиганта и распределение яркости по ее диску. До появления космических телескопов астрономы могли наблюдать всего лишь несколько голубых сверхгигантов в ночном небе. В пользу этого говорит хорошее соответствие моделям слияния свойств голубых сверхгигантов из галактики-спутника Млечного Пути Большого Магелланова Облака.
Следуйте за FT
- зПМХВПК УЧЕТИЗЙЗБОФ - РПУМЕДОСС УФБДЙС РЕТЕД ЧЪТЩЧПН УЧЕТИОПЧПК?
- Этот неразрушимый «черный ящик» расскажет будущему о том, что с нами произошло
- Рождение звездных титанов: как формируются голубые сверхгиганты?
- Астрономы совершили значительный прорыв в нашем понимании голубых сверхгигантов
- Раскрыта тайна происхождения голубых сверхгигантов — ярчайших звезд во Вселенной
С неба исчезла одна из самых ярких звезд во Вселенной: была и не стало
Секрет разноцветности звезд стал важным орудием астрономов — цвет светил помог им узнать температуру поверхности звезд. В основу легло примечательное природное явление — соотношение между энергией вещества и цветом излучаемого им света. Наблюдения на эту тему вы уже наверняка сделали сами. Нить маломощных 30-ваттных лампочек горит оранжевым светом — а когда напряжение в сети падает, нить накала едва тлеет красным.
Более сильные лампочки светятся желтым или даже белым цветом. А сварочный электрод во время работы и кварцевая лампа светятся голубым. Однако смотреть на них ни в коем случае не стоит — их энергия настолько велика, что может с легкостью повредить сетчатку глаза.
Соответственно, чем горячее предмет, тем ближе его цвет его свечения к голубому — а чем холоднее, тем ближе к темно-красному. Звезды не стали исключением: такой же принцип действует и на них. Влияние состава звезды на ее цвет очень незначительное — температура может скрывать отдельные элементы, ионизируя их.
Но именно анализ цветового спектра излучения звезды помогает выяснить ее состав. Атомы каждого вещества имеют свою уникальную пропускную способность. Световые волны одних цветов беспрепятственно проходят сквозь них, когда другие останавливаются — собственно, по блокированным диапазонам света ученые и определяют химические элементы.
Механизм «окрашивания» звезд Какова физическая подоплека этого явления? Температура характеризуется скоростью движения молекул вещества тела — чем она выше, тем быстрее они движутся. Это влияет на длину световых волн, которые проходят сквозь вещество.
Горячая среда укорачивает волны, а холодная — наоборот, удлиняет. А видимый цвет светового луча как раз определяется длиной световой волны: короткие волны отвечают за синие оттенки, а длинные — за красные. Белый цвет получается в итоге наложения разноспектральных лучей.
Цвет звезды играет роль сразу в нескольких системах упорядочивания звезд. Сам по себе он является главным критерием определения спектрального класса светила. Так как цвет связан с температурой, его откладывают по одной из осей диаграммы Герцшпрунга-Рассела.
С помощью диаграммы можно также определить светимость, массу и возраст звезды, что делает ее ценным и наглядным источником информации про звезды. Классы звёзд В Галактике существуют семь классов звёзд: Звёзды класса «O», голубого цвета, обладали самой высокой температурой. У них была самая короткая продолжительность жизни, меньше, чем 1 миллион лет.
В Галактике было приблизительно 100 миллионов звёзд класса «O», планеты вокруг которых были пригодны для жизни. Пример: Гарниб. Звёзды класса «B» бело-голубого цвета, также были очень горячими.
Средняя продолжительность их жизни составляла примерно 10 миллионов лет. В Галактике также было приблизительно 100 миллионов звёзд класса «B», планеты вокруг которых были пригодны для жизни. Пример: Кесса.
Астрофизик доктор Тамара Роджерс Tamara Rogers из Ньюкаслского университета, Соединенное Королевство, вместе со своей командой работает в течение последних пяти лет над моделированием таких звезд, пытаясь понять, почему их поверхность выглядит именно такой, какой мы ее видим в ходе наблюдений. Моделируя структуру звезд, команда предсказала, что гидродинамические гравитационные волны, подобные тем, что мы наблюдаем в океане, разбиваются у поверхности голубого гиганта. Кроме того, был предсказан второй тип волн. Эти когерентные волны напоминают сейсмические волны на Земле и генерируются глубоко в недрах звезды. Теперь, используя данные, собранные при помощи космических телескопов НАСА, команда исследователей под руководством доктора Доминика Боумана Dominic Bowman из Института астрономии Лёвенского католического университета, Бельгия, впервые провела подробный анализ звезд этого спектрального класса и установила, что почти все голубые сверхгиганты мерцают по причине наличия волн этих двух типов на поверхности.
Откуда берутся эти титаны звездного мира? Классические теории звездной эволюции не могли объяснить, почему мы наблюдаем так много голубых сверхгигантов.
Ведь согласно этим теориям, они должны существовать лишь краткий миг в масштабах космического времени. Но недавно международная группа исследователей, ведомая учеными из Института астрофизики Канарских островов , сделала прорыв в этом вопросе. С помощью компьютерного моделирования и анализа данных, полученных с Большого Магелланова Облака, они нашли убедительные доказательства того, что большинство голубых сверхгигантов рождаются не в одиночестве, а в результате слияния двух звезд, входящих в двойную систему. Представьте себе: две звезды, гравитационно связанные друг с другом, вращаются в космическом танце. Одна из них — гигант, уже прошедший большую часть своего жизненного пути, другая — звезда поменьше.
Неоднократно таким способом обнаруживали сверхдальние галактики, а иногда даже отдельные звёзды. Но найденная сейчас звезда под кодовым названием Icarus находится в 100 раз дальше, чем любая из ранее наблюдаемых звёзд, за исключением взрывов сверхновых. Международная группа исследователей опубликовала доказательства , что объект, обнаруженный через гравитационно-линзовое скопление галактик, — это голубой сверхгигант почти в 10 млрд световых лет от нас. То есть «Хаббл» зарегистрировал свет, излучённый звездой всего через 4,4 млрд лет после Большого взрыва.
Гравитационное микролинзирование — эффект, предсказанный общей теорией относительности Эйнштейна. Он происходит, когда массивное тело планета, звезда, галактика, скопление галактик, скопление тёмной материи изменяет своим гравитационным полем направление распространения электромагнитного излучения, как обычная линза изменяет направление светового луча. Получается своеобразный аналог линзы, через который можно рассматривать исключительно удалённые объекты.
Звездный синтез: происхождение голубых сверхгигантов
- На голубых сверхгигантах бушуют волны
- Слияния звезд породили большую часть наблюдаемых голубых сверхгигантов
- Ученые раскрыли уникальность звезды Ригель
- Решена загадка мощного космического взрыва 1987 года
Слияния звезд породили большую часть наблюдаемых голубых сверхгигантов
Анализ показал, что в большинстве случаев должны формироваться именно голубые сверхгиганты. Этот прогресс в нашем понимании голубых сверхгигантов проливает новый свет на морфологию галактик и их звездное население. Берём наиболее близкую и известную вспышку сверхновой такого же класса SN1987a, так там вспыхнул голубой сверхгигант, (а многие астрономы считают, что просто гигант или того меньше), так почему сейчас решили. Голубые сверхгиганты — это массивные звёзды, находящиеся в определённой фазе процесса «умирания». Голубой сверхгигант. Молодые и очень горячие яркие звёзды с температурой поверхности 20 000 — 50 000 °C; одни из самых горячих, крупнейших и самых ярких объектов в изученной. Ученые связывают знаменитую сверхновую 1987 года со странной голубой звездой-сверхгигантом.
Голубой сверхгигант звезда
Этот прогресс в нашем понимании голубых сверхгигантов проливает новый свет на морфологию галактик и их звездное население. Голубые сверхгиганты — это массивные звёзды, находящиеся в определённой фазе процесса «умирания». Две из 66 антенн ALMA, над которыми висит созвездие Орион, справа видна красная звезда-сверхгигант Бетельгейзе. Тау Большого Пса — голубой сверхгигант спектрального класса O с видимой звёздной величиной +4,37m.
Моделирование объясняет формирование загадочных голубых сверхгигантов
→ Новости астрономии, космоса, NASA и ESA на русском языке → Учёные установили, что «прародителем» гамма-всплеска GRB130925A был голубой сверхгигант. это недавно появившиеся на главной последовательности, они имеют чрезвычайно высокую светимость, высокую скорость потери массы и, как правило, нестабильны. Оно позволит уточнить диаметр звезды-сверхгиганта и распределение яркости по ее диску. Внутренняя часть голубого сверхгиганта, который в три раза тяжелее нашего Солнца.