Новости сколько фпс у человеческого глаза

Сколько мегапикселей имеет человеческий глаз? Человеческая сетчатка глаза обладает примерно 5 миллионами цветных рецепторов, что в переводе на пиксельный язык равняется всего лишь 5 мегапикселям.

В чем разница между камерой и человеческим глазом?

Но в сети люди сходятся во мнении, что распространённое заблуждение, вероятно, пришло к нам из Голливуда. Дело в том, что на текущий момент большинство фильмов снимаются с частотой в 24 кадра в секунду — это самая низкая частота кадров, необходимая, чтобы движения в кадре выглядели естественными для человека. И со временем мы настолько привыкли к 24 кадрам в секунду, что теперь это настоящий стандарт того, как должно выглядеть кино. Заблуждение на тему «какой уровень FPS не может видеть человеческий глаз», похоже, началось с того, что люди говорили «мы не можем видеть больше 24 FPS». Вероятно, это упрощённая версия того, что Голливуд говорил зрителям, утверждая, что нам не нужно больше 24 кадров в секунду, и с годами это утверждение после ряда трансформаций остановилось на 60 кадрах в секунду. Какова максимальная частота кадров в секунду, которую может увидеть человеческий глаз?

В различных источниках можно найти предположения о максимальной частоте кадров в секунду, которую человек может увидеть, однако лучше всего подходить к этому вопросу с немного иной точки зрения — не «сколько кадров в секунду мы можем увидеть? По мере повышения уровня FPS заметные различия между более высокими частотами кадров становятся менее заметными для большинства людей. Это происходит по той причине, что зрительная система человека имеет конечную способность обрабатывать увиденное.

Она измеряется в герцах Hz , где 1 герц Hz - это один цикл смены картинки. Абсолютное большинство современных мониторов работает при 60 Hz , так что оптимально игра должна тоже работать при 60 fps. Чтобы было проще - стандартный телевизор, обновляющий изображение при 60 Hz покажет все 60 кадров из 60 fps за одну секунду. Таким образом, некоторые игры могут столкнуться с проблемой с большинством дисплеев, если не будут работать при 30 или 60 fps. Включая V-Sync вертикальную синхронизацию , вы заставляете игру и монитор работать при одной частоте и избегаете "скрин-тиринга ". Разрешение Размер изображения - это его "разрешение".

Современные широкоформатные дисплеи поддерживают соотношение вертикальных и горизонтальных сторон 16:9. А разрешение - это соотношение у изображения количества пикселей точек по горизонтали и вертикали. Разрешение чаще используют в значениях HD High Definition , высокое разрешение - 1280х720 пикселей, или просто 720р , а также FullHD - 1920х1080р , или 1080р. Изображение формата 1080р содержит в 2,25 раз больше пикселей разноцветных точек, которые составляют картинку , чем 720р , так что для игры заметно тяжелее сгенерировать изображение в 1080р , чем в 720р. Стоит это учитывать, когда сообщается, что игра на одной консоли работает в разрешении 1080р , а на другой - в 720р. При этом и PS4 , и Xbox One способны выдавать изображение в 1080р в играх, однако сейчас, в самом начале жизненного цикла новых консолей, существует не очень много игр, способных работать в 1080р- разрешении, особенно это относится к консоли Xbox One. Поэтому, чтобы продемонстрировать визуальную красоту картинки, добавить больше деталей и пр. Как разработчики расставляют приоритет между fps и разрешением? Это группа элитных программистов, создающих новые графические технологии, которые распространяются среди студий разработчиков первого ранга first-party-студии.

Согласно заявлению Стрэттона , разрешение и частота кадров в секунду связаны между собой. Как правило, разрешение полностью зависит от работы GPU графического ядра консоли. Вот как Стрэттон это очень просто объясняет: - CPU центральный процессор консоли отправляет на GPU список объектов, которые должен отрисовать графический чип, а также техническую информацию о том, в каком разрешении он должен их отрисовать, GPU "напрягается" и начинает выполнять головокружительное количество вычислений, чтобы определить, какого цвета должен быть каждый из пикселей точек, из которых состоит одно изображение. Поэтому, увеличив разрешение изображения вдвое, с 720р до 1080р , мы никак не повлияем на работу CPU , так как CPU просто направляет данные для обработки, а обработкой занимается GPU. Но при таком увеличении GPU придется производить примерно в 4 раза больше вычислений, чтобы просчитать больше пикселей. Это и влияет на количество кадров в секунду. Однако часто можно увеличить разрешение до определенной точки, конечно , не влияя при этом на частоту кадров в секунду. Питер Томан Peter Thoman , который известен тем, что сделал впечатляющий мод, улучшающий графику в РС -версии игры Dark Souls , согласен с этими высказываниями: - Увеличение разрешения повышает нагрузку на GPU , а увеличение частоты кадров влияет на нагрузку на CPU. Так что в случаях, когда разработчики ограничены в возможностях CPU или по каким-то особенным причинам - в возможностях GPU , вы сможете увеличить разрешение, не повлияв при этом на частоту кадров.

Стрэттон рассказал, что его опыт работы подсказывает, что чаще всего разработчики решают сделать ставку на частоту кадров, а не на разрешение, и исходить уже из этого приоритета. Нельзя просто начать делать игру и ждать, когда же вы достигнете пределов возможностей железа, дойдя до определенных высот разрешения и частоты кадров. Все это зависит от возможностей железа и движка игры, креативности художников студии, качества игр конкурентов и прочего. Но обычно частота кадров - это линия, которую разработчики не переступают. Я не придаю особого значения частоте кадров, которая выше, чем 30 fps. Однако и тут есть некоторые особенности. Здесь мнения Стрэттона и Томана расходятся, хотя в чем-то они и схожи. Томан говорит: - Все зависит от жанра игры. В играх, основанных на активных действиях, я не воспринимаю ничего, что ниже, чем 45 fps.

Я уверен, что геймерам обязательно стоит обращать внимание на разрешение и частоту кадров, потому чторазрешение делает игру красивее, а частота кадров делает игру более восприимчивой и играбельной. Я всегда удивляюсь, когда издатели говорят, что разрешение не имеет значения. Если это так и есть, то почему они все размещают рекламные скриншоты в 8К-разрешении?! Стрэттон поясняет свою позицию: - Посмотрите на две игры - Uncharted: Drake"s Fortune 2007 и The Last of Us 2013 - они обе сделаны одной и той же командой разработчиков в студии Naughty Dog, они сделаны на железе одной и той же консоли, PS3 , но между ними огромная визуальная разница. Напоминаю, что консоли PS3 уже почти 10 лет. Теперь взгляните на РС -игры, созданные 10 лет назад, и сравните их с PS3 -играми, выпущенными сегодня. Вот чего можно добиться, когда набираешься опыта при работе с определенной платформой, у которой не меняется железо. Разработчики постоянно учатся работать с железом, изобретают новые трюки, оптимизируют процессы, чтобы достичь оптимально возможного быстродействия на платформе на данный момент. Каждый из вас сталкивался с проблемой, когда игры на вашем компьютере начинали тормозить, и счастливый тот человек, у которого есть на руках деньги на новое железо.

Сегодня постараемся разобраться какую "Частоту кадров" далее FPS можно считать достаточной, и насколько большую частоту кадров может различить человек. Что такое "Золотой стандарт" и для чего он нужен именно вам? Большинство из вас понимает частоту кадров, как количество сменяемых изображений за одну секунду видеопотока. Все просто. Какую максимальную частоту кадров может различить человек? Не существует такого значения, это миф. Если вы живете с этим мифом в голове, то вас ждут большие прения с самим собой во время чтения материала ниже. Человеческий глаз состоит из множества рецепторов, которые постоянно направляют информацию в мозг. Вы не можете назвать ни количество рецепторов, ни пропускной способности до мозга, поэтому выбросите из головы этот миф.

Если бы такое количество существовало, это было бы доказано наукой. Взаимодействие монитора и видеокарты Для начала важно донести до вас два простых понятия. Framerate, далее FPS - количество кадров обработанных вашей видеокартой за секунду. Это абсолютно хаотичная величина, которая зависит от ваших текущих задач, мощности видеокарты, загруженности сцен, общего обслуживания компьютера и т. За короткий промежуток времени в одной и той же игре частота кадров может сильно разниться, может быть как высокой, так и низкой. Нагружаем сцену, и наши FPS тают на глазах. Чем же так важен высокий показатель FPS? Дело в том, что при низком показателе FPS картинка станет дерганой, и мы не сможем увидеть плавные движения или отдельно взятые изображения. Можно сделать вывод: двукратное увеличение FPS требует двукратного увеличения скорости обработки одного кадра.

Частота обновления монитора англ. Refresh rate - частота с которой ваш монитор обновляет все свои пиксели. И в отличие от FPS, частота обновления монитора далее "герц", потому что так проще и короче, не придавайте слову "герц" особого значения фиксированная, другими словами постоянная. Вы должны помнить наблюдение из детства, а у кого-то из юношества, когда мы направляли первые телефоны с камерой на телевизоры оснащенные электронно-лучевой трубкой. Вы видели мерцание, в наших ЖК-мониторах тоже самое, но мы это не замечаем. Из этого мы делаем вывод, что частота кадров и "герцы" не на одной волне. И когда монитор производит смену кадра он выводит то, что у него в данный момент в "буфере". Буферной зоной назовем место, где монитор хранит готовый кадр на вывод на деле технология может отличаться, но суть та же. Для примера взаимодействия мы возьмем монитор с частотой 60 Гц.

Рассмотрим 3 случая 1. Среднее количество FPS не превышает вашу частоту монитора 60 Гц. В период между мерцаниями вашего монитора источник-видеокарта направляет в буфер не больше одного кадра. Чем сильнее будет проседать FPS, тем чаще мы будем сталкиваться с тем, что обновление монитора не обновляет кадр. После того как ваш кадр отрендерится, он моментально отправляется с видеосигналом в буфер. Когда настает время, наш герц выводит содержимое буфера на экран. Среднее количество FPS превышает вашу частоту монитора 60 Гц. Здесь уже посложнее, количество FPS на одно мерцание монитора. Ваша видеокарта успевает отправить больше одного кадра на одно мерцание монитора.

В период между обновлением монитора источник-видеокарта успевает отрендерить больше 5 кадров. За это время все эти кадры приходят в буфер, и каждый новый вытесняет предыдущий, и этот предыдущий исчезает из цифрового поля. Помимо этого, есть один очень интересный момент : настал момент монитору обновиться, а в это же время в буфер приходит информация о новом кадре, таким образом, монитор начинает выводить информацию двух разных кадров.

Обычно регистрируемая максимальная частота составляет от 60 Гц до 90 Гц. Но при правильных условиях в некоторых случаях тестеры могут воспринимать вещи на частотах до 500 Гц. Однако это происходит при определенных условиях и не точно воспроизводит то, что вы чувствуете, когда играете в игры или смотрите фильмы. Далее давайте узнаем, как монитор выводит изображение. Свет, создаваемый искусственными источниками, не так постоянен, как кажется.

Дисплей — хотя он выглядит последовательным — на самом деле представляет собой множество циклов света, производимых непрерывно с достаточно высокой скоростью, которую мы обычно не замечаем. Человеческий глаз в основном построен с использованием одинаковой компоновки и компонентов, но имеет несколько различных аспектов. Это наиболее важно при игре в видеоигры, поскольку они являются активными средствами — вы взаимодействуете с тем, что происходит в игре. Способность интуитивно обрабатывать и реагировать на все, что происходит на вашем экране, очень важна. Когда вы смотрите фильмы и телепередачи, визуальные эффекты являются пассивным медиа — это означает, что вы просто наблюдаете за тем, что происходит, и вам не нужно взаимодействовать с тем, что происходит на экране. Как человеческий глаз воспринимает свет? В наших глазах есть два типа фоторецепторов: палочки и колбочки. Палочки отвечают за способность глаза воспринимать слабое освещение, в то время как колбочки обрабатывают зрение при ярком свете и цветовосприятие.

Если частота обновления монитора составляет 60 Гц что является стандартным , это означает, что он «обновляется» 60 раз в секунду. Один FPS примерно соответствует 1 Гц. При 60 Гц мозг обрабатывает свет от экрана как один непрерывный поток, а не как серию постоянных мерцающих огней. Более высокая частота обычно означает меньшее мерцание. Больше 60 FPS — фантастика? Однако современные научные работы показывают, что мы можем видеть больше. Авторы исследования 2014 года из Массачусетского технологического института обнаружили, что мозг способен обрабатывать изображение всего за 13 миллисекунд — это очень высокая скорость.

Сколько кадров в секунду видит человеческий глаз

Причем женщины более склонны к данному феномену. Блогер создал приставку с самым маленьким экраном в мире — всего 6 мм в ширину.

Пределы восприятия сильно зависят от особенностей наблюдаемого объекта. Чем быстрее он движется, чем резче эти движения — тем выше предельная частота.

Незаметными для людей с высокочувствительным зрением становятся только частоты смены кадра и мерцания порядка 1000 Гц. Именно от 1 кГц 1000 кадров в секунду — предел восприятия, преодолеть который большинство человеческих глаз не может. Таким образом, при наблюдении движущегося изображения, в большинстве случаев, человеческий глаз видит максимум около 100-150 кадров в секунду, но воспринимать способен на порядок больше.

С каждым опыт ставили несколько раз, и результаты не менялись. Мы считаем, что индивидуальные различия в скорости восприятия могут стать очевидными в ситуациях с высокой скоростью, когда может потребоваться обнаружить или отслеживать быстродвижущиеся объекты, например, в спортивных состязаниях с мячом, или в ситуациях, когда визуальные сцены быстро меняются, например, в соревновательных играх. Одни могут иметь преимущество перед другими еще до того, как возьмут в руки ракетку и ударят по теннисному мячу или схватят контроллер и прыгнут в какой-нибудь фантастический мир онлайн.

Это мешает ему поверить в происходящее на экране. Сколько кадров в секунду видит глаз человека? Если вы покажете человеку один кадр в секунду на протяжении длительного периода времени, со временем он станет воспринимать не изображения по отдельности, а картину движения в общем. Однако демонстрация видеоизображения в таком ритме дискомфортна для человека.

Еще во времена немого кино частота кадров доходила до 16 в секунду. При сравнении кадров немого кино и современных фильмов остается ощущение, что в начале 20-го века снимали в замедленном темпе. При просмотре так и хочется немного поторопить экранных героев. В настоящее время стандарт для съемки — 24 кадра в секунду. Это та частота, которая комфортна для человеческих органов зрения. Но предел ли это, что там за границами этого диапазона? Сколько кадров в секунду видит человек, теперь вам известно.

С какой частотой на самом деле видит человеческий глаз Органы зрения человека — не искусственное приспособление. Поэтому ни один ученый с точностью не может выявить цифру, какое количество кадров в секунду воспринимают глаза человека. Для каждого индивида данные варьируют в зависимости от степени развитости головного мозга и глазных яблок, скорости передачи нервного импульса, остроты зрения. На самом деле, человеческие органы зрения видят не попеременные кадры, а картинку целиком. Кадры глаза воспринимают только в том случае, если просматривать кинофильм. Окружающая действительность видится человеком следующим образом: в результате смены картинки в процессе движения человеку без разницы, сколько кадров в секунду образуется, изображение для него не поменяется; глаза воспринимают объекты лучше, если они движутся быстро и резко; если перед глазами человека располагается движущийся объект, то чем больше кадров в секунду будет, тем лучше восприятие. Именно из-за вышеперечисленных факторов можно сказать, что человек видит картинку с FPS намного больше, чем 24 кадра в секунду.

Насколько четко будут отображаться движущиеся предметы в головном мозге человека, зависит здоровье органов зрения. Если острота восприятия снижается, картинка будет расплывчатой. Влияет не только количество кадров в секунду, но и следующие факторы: амплитуда смены кадра; резкость от перехода на разные цвета; время, необходимое для одного кадра. Можно склеить 100 не схожих кадров вместе и перелистывать их быстро. Человек в это время будет ощущать дискомфорт, так как вышеперечисленные параметры не соблюдены. Неприятное ощущение образуется из-за того, что органы зрения человека пытаются воспринять каждый кадр в отдельности, так как они не взаимосвязаны. У испытуемого болят глаза, голова.

Если у человека наблюдается эпилепсия, начнется приступ. Выявлено, что человек способен воспринимать четко 120-150 кадров в одну секунду. Число может и увеличиваться, но восприятие будет ухудшаться. Это означает, что до 150 кадров человек распознает изображение идеально. Если они увеличиваются, это вызывает неприятные ощущения в глазах, дискомфорт. При этом считается, что при высокой смене кадров за одну секунду показывается большое число картинок, человеческий глаз распознает их плавно. Но даже если он не видит смену кадра, головной мозг все равно ее воспринимает.

Если увеличить частоту кадров, что будет? Такой термин, как частота кадров fps , впервые применил фотограф Эдвард Майбридж. И с тех пор кинематографисты без устали экспериментируют с этим показателем. С точки зрения целесообразности может показаться, что изменять количество кадров в секунду неразумно, ведь другое количество не увидит человеческий глаз. Сколько fps воспринимает глаз? Мы знаем, что 24. Есть ли смысл что-то менять?

Сколько герц (Гц) может видеть человеческий глаз? (Удивительно)

Наверняка многие из вас сталкивались с популярным мнением: дескать, все видеоформаты предусматривают 24 кадра в секунду, что соответствует свойствам восприятия человеческого глаза. Сколько FPS у человеческого глаза? 24 кадра в секунду – не предел возможностей человеческого глаза. Как было сказано выше, глаз человека видит изображение, как и все остальное не по кадрово, а это значит, что чем больше кадров будет показано за одну секунду, тем более плавным и четким получится изображение. Человеческий глаз не видит в FPS. Человеческий глаз не воспринимает информацию дискретно (50 кадров видит, а 51 уже нет.) различия в частоте мерцания человек может воспринимать до 1000 Гц.

Фпс глаза человека

А если этот человек не просто бежит, а бежит зигзагом, попутно прыгая через препятствия — то даже разница между 60 и 120 FPS будет заметна, в пользу большей частоты. Сравнение 24 и 60 кадров в секунду на динамичном видео Чтобы проверить это, не нужно далеко ходить. Достаточно запустить на компьютере тяжелую игрушку сначала на низких настройках, чтобы FPS был высоким, а потом — на высоких или максимальных, чтобы получить меньше 30 FPS. Вы сразу заметите разницу: в первом случае объекты хоть и будут менее детальными, но движения — гораздо более плавными. Увидев разницу между 30, 60 и 100 FPS, можно наглядно убедиться, что человеческий глаз видит гораздо больше 24 кадров в секунду. Предел, после которого разница становится не видна, зависит от индивидуальных особенностей зрения, и в случае с видео или игрой составляет 80-150 кадров в секунду, а иногда и больше.

Пределы восприятия зрительной системы Помимо кадровой частоты, имеют значение и амплитуда смены кадра, резкость цветовых переходов, время показа каждого кадра. Если просто набрать разноцветных картинок, склеить их в видеоролик и менять со скоростью 120 кадров в секунду, человек хоть и не заметит все цвета, но будет испытывать дискомфорт. Причина дискомфорта — напряжение глаз, которые пытаются зафиксировать каждую смену, и зрительного центра в мозге. Если долго смотреть на такое, могут заболеть глаза и голова, а у человека с эпилепсией может случиться приступ. При коротком времени показа кадра 1 миллисекунду показывает — 10 мс не показывает чувствительность глаз становится еще выше.

Даже если человек не видит не воспринимает сознательно смены кадра, и картинка плавная, резкие цветные вспышки когда кадр показывается , чередующиеся с черным фоном кадр не показывается , зрительная система улавливает. Ведь в режиме снижения яркости включается ШИМ-регулятор подсветки, который быстро включает и гасит пиксели. Циклов включения-гашения за секунду происходит 240, то есть их частота — 240 Гц или 240 кадров в секунду.

Многие геймеры знают, что в играх важно не только количество кадров, но и стабильность их поступления: например, ровные 30 кадров могут восприниматься намного приятнее, чем «болтание» в промежутке от 40 до 50. Это связано с тем, что просадки в некоторых сценах воспринимаются как те самые пресловутые «тормоза» мозг ожидает увидеть определённое движение с той же плавностью, что и остальные, но компьютер не успевает обработать картинку с нужной скоростью. Поэтому иногда разработчики, уделившие недостаточно внимания оптимизации, выпускают игру с ограничением в 30 кадров даже на ПК, что обычно вызывает заметное возмущение среди геймеров. А для консольных игр без многопользовательского режима 30 кадров вообще являются стандартом. Однако в своём исследовании Уилтшир затронул только стабильную частоту кадров и не касался вопроса вертикальной синхронизации и других параметров компьютера, влияющих на восприятие картинки. Глаза и мозг работают в тандеме Споры о том, сколько человеческий глаз может воспринимать кадров в секунду, ведутся давно во многом потому, что на этот вопрос нет однозначного ответа.

Как отмечает Уилтшир, человек не считывает реальность как компьютер, а визуальное восприятие целиком строится на совместной работе глаз и мозга. Поэтому, например, люди по-разному видят движение и свет, а периферийное зрение лучше справляется с некоторыми аспектами картинки, чем основное - и наоборот. Время, за которое человек воспринимает визуальную информацию, суммируется из времени, за которое свет попадает в глаза, времени передачи полученной информации в мозг и времени её обработки. По словам профессора психологии Джордана Делонга Jordan DeLong , обрабатывая визуальные сигналы, мозг постоянно занимается калибровкой, высчитывая средние показатели с тысяч и тысяч нейронов, поэтому вся система более точна, чем её отдельные составляющие. Как отмечает исследователь Эдриен Чопин Adrien Chopin , скорость света едва ли можно изменить, а вот часть визуального восприятия, проходящую в мозгу ускорить вполне реально. Игры - едва ли не единственный способ заметно улучшить основные показатели вашего зрения: чувствительность к контрасту, внимание и способность отслеживать движение множества объектов одновременно. Эдриен Чопин, исследователь когнитивных функций мозга Как отмечает Уилтшир, именно геймеры, которые чаще всего пекутся о высокой частоте кадров, способны воспринимать визуальную информацию быстрее любых других людей. Отличия в восприятии движения и света Если лампочка работает на частоте в 50 или 60 Гц, большинству людей освещение кажется постоянным, однако есть те, кто в таком случае замечает мерцание. Этого эффекта также можно добиться, если крутить головой смотря на LED-фары автомобиля.

Однако оба эти примера не говорят о том, как человеческий глаз воспринимает игры, где главным параметром является движение. Как отмечает профессор Томас Бьюзи Thomas Busey , на высоких скоростях задержка меньше 100 миллисекунд начинает действовать так называемый закон Блоха. Человеческий глаз не способен отличить яркую вспышку, которая длилась наносекунду, от менее яркой протяжённостью в десятую долю секунды. По схожему же принципу работает фотокамера, которая на большой выдержке может впустить в себя больше света. Тем не менее закон Блоха не значит, что ограничение в восприятии для человека останавливается на 100 миллисекундах. В некоторых случаях люди различают артефакты в изображении при 500 кадрах в секунду задержка в 2 миллисекунды. Как отмечает профессор Джордан Делонг, восприятие движения во многом зависит и от того, в каком положении человек находится. Если он сидит на месте и следит за объектом, то это одна ситуация, а если сам куда-то идёт, то совершенно другая. Это связано с отличиями между основным и периферийным зрением, которые достались людям от их первобытных предков.

Когда человек смотрит прямо на объект, он различает мельчайшие детали, однако его зрение плохо справляется с быстро движущимися предметами. Периферийное зрение, напротив, страдает недостатком деталей, но действует намного быстрее. Именно с этой проблемой столкнулись разработчики шлемов виртуальной реальности. Если 60 и даже 30 Гц вполне хватает для монитора, на который человек смотрит прямо, то для того, чтобы зритель нормально чувствовал себя в VR, частоту кадров необходимо повысить до 90 Гц. Всё потому, что шлем даёт картинку и для периферийного зрения. По словам профессора Бьюзи, если пользователь играет в шутер от первого лица, то повышенная частота кадров по большей части позволяет ему лучше воспринимать движение крупных объектов, нежели мелкие детали. Это связано с тем, что во время игры геймер не стоит на одном месте, выжидая врагов, а двигается в виртуальном пространстве с помощью мышки и клавиатуры, также меняя и своё положение относительно противников, которые могут появляться в разных частях монитора. Сколько вешать в кадрах Мнения о том, сколько человеку нужно кадров в секунду, у учёных разошлись. Профессор Бьюзи считает, что для комфорта стоит проходить как минимум отметку в 60 Гц, однако он не знает, будет ли разница для некоторых людей между 120 и 180 кадрами в секунду.

Картинка на кинескопе телевизора не показывается на мгновение, как в кино, а рисуется сверху вниз электронным лучом в течение одного кадра - чуть менее 0. Причём рисуется сначала одна половина кадра, а потом, через строку, другая. Это уменьшает заметность мерцания. В стандарте США - 60 Гц, отсюда и пошла такая частота в мониторах. Но всё равно, действительно, на больших телевизорах, а также на мониторах, которые намного ближе к глазу, мерцание ярких участков заметно, поэтому до перехода на ЖК и плазмы, в больших ЭЛТ-телевизорах искусственно увеличивали частоту до 100 Гц, а в не совсем старых ЭЛТ-мониторах частоту можно было выбирать. На ЖК особого смысла в увеличении частоты уже нет - там каждая точке сохраняет состояние, пока не придёт сигнал на изменение. Хотя крутые компьютерные игроки могут с этим не согласиться. Вообще, развертка попросту говоря - это рисование кадра на экране ТВ бывает не только черезстрочная, но и прогрессивная, то есть кадр рисуется не через строку полями, а весь сразу. Такая картинка лучше для глаз, но есть проблемы с передачей сигнала, так как раньше это требовало более широкой полосы для сигнала, а сейчас - большей скорости цифрового потока.

Поэтому сильно увеличивать частоту нельзя. Кстати, увеличение частоты до 100 Гц на ТВ иногда вызывало новые проблемы: например, бегущая строка двоилась. Кроме того, есть ещё проблемы с плавностью движения. При частоте меньше 20-25 Гц можно забыть о плавности движений: это можно иногда наблюдать на камерах видеонаблюдения, которые работают на частоте 15 Гц часто и меньше - тут уже ради экономии места на винчестерах. Но и при увеличении частоты, как ни странно, тоже возникают проблемы с движениями объектов, но теперь уже из-за того, что видеосигнал сейчас кодируется в цифровую форму, и тут туго приходиться разработчикам кодеков - программ для кодирования видео в цифровой формат. Кроме того, увеличение частоты требует увеличения производительности процессоров устройств, как кодирующих, так и декодирующих. Учитывая, что на современных телевизорах проблем с мерцанием нет, с частотой видео особо не экспериментируют: 25 30 Гц для черезстрочной развертки, и 50 60 для прогрессивной.

То есть означает, что человек может распознавать число кадров намного более 24.

Учеными было исследовано периферийное зрение. Обнаружилось, что оно имеет отличие от прямого зрения по частоте изображения. Поэтому при создании шлемов используют значения не 30-60 Герц, как для телевизора, а выше — 90 Герц. В пятидесятых годах прошлого века выпустили американский фильм, в котором во многих кадрах были вставлены надписи «Ешь попкорн, пей Кока-колу». Так встраивали кадры, которые распознавались только на бессознательном уровне. Маркетинговая компания, которая занималась этим исследованием, рассказала, что продажа попкорна и кока-колы после этого выросла во много раз. В американском телевидении было исследование на тему содержания 25 кадра. В одном популярном американском телешоу вставляли 350 раз на высокой скорости слова «Звони прямо сейчас».

Но никто так и не позвонил. В конце телешоу ведущий рассказал, что в шоу содержалось послание, и попросил прислать правильный ответ про содержание. Было прислано множество писем, но ни одно из них не содержало правильного ответа. Подробно о восприимчивости глаз Первые немые фильмы, упомянутые в начале статьи, снимались в режиме 16 кадров в секунду. Это позволяло расходовать пленку по минимуму 1 фут в секунду , не теряя эффекта движения на экране. Кроме того, так было удобнее подсчитывать необходимое для фильма количество пленки. Выглядели эти фильмы совсем не так, как современные: движения актеров были резкими, ускоренными, им явно недоставало плавности и легкости. Но в то время люди воспринимали их практически как реальность.

Таким образом, понятно, что при количестве кадров в секунду, равном 16, человеческий глаз уже принимает их за движение. Несмотря на то, что они могут казаться немного резкими, ускоренными или угловатыми, глаз и мозг не могут различить отдельные изображения, принимая их за одно целое — движение. Когда кино стало звуковым, количество кадров увеличилось. Это потребовалось, чтобы можно было записывать звук на специальную дорожку рядом с кадрами. С этим нововведением движения актеров на экране стали более плавными и естественными, глазу зрителя стало проще воспринимать их. Изобретенный чуть позже 24-кадровый режим, был оптимален и технически, и эстетически. Но со временем количество кадров только увеличивалось, а качество съемки улучшалось. Сегодня обычное видео — это примерно 60 кадров в секунду, а видео в формате 3D — 90 кадров.

Звук Всё сложнее стало со звуком. Теперь нельзя крутить фильм быстрее или медленнее. Нужно соблюдать постоянную кадровую частоту, чтобы скорость, а значит и тембр голоса не изменялся на протяжении фильма. С 16 FPS была проблема, звук не звучал точно, как задумывалось. Нужно было выбрать новую частоту, чтобы она была больше 16 и в итоге давала 48 проецируемых FPS. В итоге, вместо трёхлезвийного обтюратора стали использовать двулезвийный. И утвердили новый фрейм рейт — 24 FPS. Всё просто и удобно.

То есть мы знаем, что половина секунды — 12 FPS, треть — 8, а четверть — 6. Тут вроде становится понятно — мы и сейчас используем 24 FPS. Тогда зачем нам 25, 30 и тем более 29,97? Как проводят исследования? Эксперименты в области выявления возможностей органов зрения человека проводятся постоянно, и ученые не собираются останавливаться на достигнутом. Например, проводят такое тестирование: контрольная группа людей просматривает предложенные видеозаписи с различной частотой кадров. В определенные фрагменты в разных промежутках времени вставлены кадры с каким—либо дефектом. Они изображают какой-то лишний, не вписывающийся в общую канву предмет.

Это может быть быстро движущийся летящий объект. Это обстоятельство не вызывало бы такого удивления, если бы не знать, что это видео демонстрировали с частотой 220 кадров в секунду. Конечно, рассмотреть подробно изображение никто не смог, но даже тот факт, что люди просто смогли заметить мелькание на экране при такой кадровой частоте, говорит сам за себя. Сколько кадров в секунду видит человек, интересно многим. Более любопытные подробности рассмотрим далее. История 25 кадра Сублиминальную рекламу а это не что иное, как 25 кадр разработал Дмеймс Вайкери. Он опубликовал результаты о действии такого маркетингового хода: большинство людей после сеанса покупали ту вещь, реклама которой присутствовала на дополнительном 25 кадре. Однако впоследствии автор признался, что данные были сфабрикованы.

Что происходит, когда мы видим 25 кадр? Приглядитесь к фаер-шоу: когда человек быстро крутит горящий предмет, Вам он покажется огромным огненным кругом — Вы не сможете различить движение объекта.

Это наиболее важно при игре в видеоигры, поскольку они являются активными средствами — вы взаимодействуете с тем, что происходит в игре. Способность интуитивно обрабатывать и реагировать на все, что происходит на вашем экране, очень важна.

Когда вы смотрите фильмы и телепередачи, визуальные эффекты являются пассивным медиа — это означает, что вы просто наблюдаете за тем, что происходит, и вам не нужно взаимодействовать с тем, что происходит на экране. Как человеческий глаз воспринимает свет? В наших глазах есть два типа фоторецепторов: палочки и колбочки. Палочки отвечают за способность глаза воспринимать слабое освещение, в то время как колбочки обрабатывают зрение при ярком свете и цветовосприятие.

У каждого человека на планете разное количество палочек, колбочек и их подвидов красных, зеленых и синих колбочек на лице. Таким образом, то, как люди видят мир включая цифровой мир, отображаемый на экране , может варьироваться от незначительного до значительного. Когда вы смотрите на экран, ваши глаза получают свет, излучаемый экраном. В зависимости от того, сколько у вас палочек и колбочек а также от распределения их подтипов , вы можете заметить визуальные изменения легче или сложнее, чем другие.

Может ли человеческий глаз видеть 90 Гц? В некоторых случаях человеческий глаз может видеть детали на скоростях выше 90 Гц. Возвращаясь к исследованию, о котором мы упоминали ранее, ученые обнаружили, что при правильных условиях люди могут видеть частоту обновления до 500 Гц.

В топку FPS? Исследование доказало, что далеко не каждый геймер способен увидеть 60 к/с

Сколько FPS может увидеть человеческий глаз. Мы поддержим ученых, которые подтверждают тот факт, что человеческий глаз видит до 50-60 кадров в секунду. Сегодня я вам расскажу сколько кадров в секунду видит глаз человека! В научном журнале PLOS ONE были опубликованы результаты научных изысканий, которые подтверждают, что глаза некоторых людей действительно видят мир в более высоком разрешении и могут формировать изображения быстрей, но такими исключительными глазами.

Сколько герц воспринимает человеческий глаз. Сколько видит ФПС человеческий глаз

В чем разница между камерой и человеческим глазом? Эта статья о том, какую частоту кадров может воспринимать человеческий глаз.
В чем разница между камерой и человеческим глазом? Сколько fps видит человеческий глаз Органы зрения человека – не искусственное приспособление.

Сколько кадров в секунду видит человек. Строение глаза и интересные факты

В научном журнале PLOS ONE были опубликованы результаты научных изысканий, которые подтверждают, что глаза некоторых людей действительно видят мир в более высоком разрешении и могут формировать изображения быстрей, но такими исключительными глазами. Заблуждение на тему «какой уровень FPS не может видеть человеческий глаз», похоже, началось с того, что люди говорили «мы не можем видеть больше 24 FPS». Сколько ФПС видит глаз человека.

Сколько FPS видит человеческий глаз?

Если выдержка маленькая, то на плёнку запишется меньше движения, то есть motion blur будет слабее; а если выдержка большая, то запишется больше движения и эффект проявится сильнее. Обтюратор в действии. Via Википедия Если motion blur — такая полезная вещь, то почему кинематографисты стремятся от него избавиться? Ну, при добавлении motion blur вы теряете детализацию; а избавившись от него — теряете плавность движений. Так что когда режиссёры хотят снять сцену с большим количеством деталей, вроде взрыва с большим количеством вылетающих частиц или сложной сцены с действием, они часто выбирают маленькую выдержку, которая уменьшает размытие и создаёт чёткий эффект кукольной мультипликации. Визуализация захвата Motion Blur.

Via Википедия Так почему бы его просто не добавить? Motion blur значительно улучшает анимацию в играх и на веб-сайтах даже на низких фреймрейтах. К сожалению, его внедрение слишком дорого обходится. Если для выпуска приемлемого материала на 24 FPS вам нужно делать рендеринг на 96 FPS, то вместо этого вы можете просто поднять фреймрейт, так что зачастую это не вариант для контента, который рендерится в реальном времени. Исключениями являются видеоигры, где заранее известна траектория движения объектов, так что можно рассчитать приблизительный motion blur , а также системы декларативной анимации вроде CSS Animations и, конечно, CGI-фильмы как у Pixar.

Чтобы не путать их, мы используем Гц для частоты обновления и FPS для фреймрейта. Если вы задаётесь вопросом, почему на вашем ноутбуке так некрасиво выглядит воспроизведение дисков Blu-Ray, то часто причина в том, что фреймрейт неравномерно делится на частоту обновления экрана в противоположность им, DVD конвертируются перед передачей. Да, частота обновления и фреймрейт — не одно и то же. Согласно Википедии, «[.. Так что фреймрейт соответствует количеству отдельных кадров на экране, а частота обновления соответствует числу раз, когда изображение на экране обновляется или перерисовывается.

В идеальном случае частота обновления и фреймрейт полностью синхронизированы, но в определённых ситуациях есть причины использовать частоту обновления в три раза выше фреймрейта, в зависимости от используемой проекционной системы. Новая проблема у каждого дисплея Кинопроекторы Многие думают, что во время работы кинопроекторы прокручивают плёнку перед источником света. Но в таком случае мы бы наблюдали непрерывное размытое изображение. Вместо этого для отделения кадров друг от друга здесь используется затвор , как и в случае с кинокамерами. После отображения кадра затвор закрывается и свет не проходит до тех пор, пока затвор не откроется для следующего кадра, и процесс повторяется.

Затвор кинопроектора в действии. Из Википедии. Однако это не полное описание. Эти затемнения между кадрами разрушат иллюзию. Для компенсации проекторы на самом деле закрывают затвор два или три раза на каждом кадре.

Конечно, это кажется нелогичным — почему в результате добавления дополнительных мерцаний нам кажется, что их стало меньше? Задача в том, чтобы уменьшить период затемнения, который оказывает непропорциональный эффект на зрительную систему. Порог слияния мерцания тесно связанный с инерцией зрительного восприятия описывает эффект от этих затемнений. Вся концепция в целом немного сложнее, но на практике вот как можно избежать мерцания: Использовать иной тип дисплея, где нет затемнения между кадрами, то есть он постоянно отображает кадр на экране. Применить постоянные, неизменяемые фазы затемнений с продолжительностью менее 16 мс Мерцающие ЭЛТ Мониторы и телевизоры ЭЛТ работают, направляя электроны на флуоресцентный экран, где содержится люминофор с низким временем послесвечения.

Насколько мало время послесвечения? Настолько мало, что вы никогда не увидите полное изображение! Вместо этого в процессе электронного сканирования люминофор зажигается и теряет свою яркость менее чем за 50 микросекунд — это 0,05 миллискунды! Для сравнения, полный кадр на вашем смартфоне демонстрируется в течение 16,67 мс. Так что единственная причина, почему ЭЛТ вообще работает — это инерция зрительного восприятия.

Из-за длительных тёмных промежутков между подсветками ЭЛТ часто кажутся мерцающими — особенно в системе PAL, которая работает на 50 Гц, в отличие от NTSC, работающей на 60 Гц, где уже вступает в действие порог слияния мерцания. Чтобы ещё более усложнить дело, глаз не воспринимает мерцание одинаково на каждом участке экрана. На самом деле периферийное зрение, хотя и передаёт в мозг более размытое изображение, более чувствительно к яркости и обладает значительно меньшим временем отклика. Вероятно, это было очень полезно в древние времена для обнаружения диких животных, прыгающих сбоку, чтобы вас съесть, но это доставляет неудобства при просмотре фильмов по ЭЛТ с близкого расстояния или под странным углом. Размытые ЖК-дисплеи Жидкокристаллические дисплеи LCD , которые классифицируются как устройства выборки и хранения , на самом деле довольно удивительные, потому что у них вообще нет затемнений между кадрами.

Текущее изображение непрерывно демонстрируется на нём, пока не поступит новое изображение. Позвольте повторить: На ЖК-дисплеях нет мерцания, вызванного обновлением экрана, независимо от частоты обновления. Но теперь вы думаете: «Погодите, я недавно выбирал телевизор, и каждый производитель рекламировал, чёрт побери, более высокую частоту обновления экрана!

Особенно часто это случается в эпизодах, где объект на крупном плане быстро перемещается вдоль экрана. И в-третьих, отнюдь не любой контент выигрывает за счёт добавления плавности. Безусловно, это полезно для фильмов и мультфильмов в 3D — тогда объёмность кажется более насыщенной. Хороши системы расчёта новых кадров и для картин, где преобладают панорамные съёмки и высок уровень детализации, вроде того же «Аватара», «Трона: наследие » или «Лабиринта Фавна ». А также всё это прекрасно подойдёт для документальных лент, сериалов или спортивных трансляций. Наоборот, с эффектом плавности практически невозможно смотреть некоторые категории фильмов с нарочито «трясущейся» камерой, вроде «Ультиматума Борна », «Монстро » и ряда боевиков — с дополнительными кадрами происходящее на экране выглядит кашей с артефактами. Наконец, в-четвертых, как мы уже говорили выше, иногда добавление реалистичности и эффекта театральности через системы плавности изображения превращает определённые фильмы в смехотворные спектакли.

Сразу видны плохо нарисованные задники, прилепленные во время постпродакшена посредственные спецэффекты, а также прочие радости. Ну а про старые фильмы и говорить нечего — при просмотре классических «Звёздных войн » вы воочию убедитесь, что все космические корабли — это и в самом деле пластиковые макеты, снятые в комнате с черными обоями. Кстати, если кому-то вдруг пришла в голову мысль, что системы расчета дополнительных кадров помогут избавиться от тормозов в играх, — это, естественно, не так. Управление станет несколько «ватным» — изображение будет реагировать с некоторой задержкой на действия игрока. В общем, играть с включенной «уплавняловкой» невозможно. Поэтому у систем добавления плавности есть достаточно много идеологических противников, жалующихся на потерю кинематографичности в некоторых фильмах. И таких людей вполне можно понять. Отсюда простой вывод: использовать «уплавняловки» нужно очень избирательно, в зависимости от проигрываемое контента. Однако в целом существование подобных технологий полностью себя оправдывает — в тех случаях, когда это действительно применимо, картинка на экране телевизора будет просто-таки доставлять вам удовольствие. Если же вы обдумываете покупку нового телевизора или вдруг на вашей домашней панели уже предусмотрены подобные возможности , то стоит обратить внимание на наличие систем добавления плавности.

Можно попросить продавцов в гипермаркете включить демонстрационный режим на интересующей вас модели, желательно динамичный трейлер какого-нибудь фильма или сразу 3D-изображение. По результатам просмотра выводы сделаете уже сами. В начале кинопленка была очень дорогая — на столько, что для того, чтобы ее экономить, режиссеры пытались использовать наименьшее количество кадров, которое обеспечивало плавность движения. Этот порог колебался от 16 до 24 кадров в секунду и в конечном счете был выбран единый уровень в 24 кадра в секунду. Такой стандарт установился на многие десятилетия и до сих пор используется в кинематографии. Когда появилось телевидение, в разных странах начали использовать разное количество кадров в секунду, в зависимости от частоты напряжения переменного тока в электросети. Таким образом, произошел раскол в мировых стандартах. Страны, в которых частота напряжения составляла 60 Гц, такие как США и Япония, приняли решение на введение телевидения на скорости 30 кадров в секунду, а страны с частотой 50 Гц в основном, в Европе и Азии выбрали стандарт 25 кадров в секунду. Цифровая эра принесла огромные технологические изменения. Во-первых, большинство камер и дисплеев может поддерживать несколько различных скоростей записи, так что вы можете продолжать использовать все старые стандарты частоты кадров.

Во-вторых, появились новые возможности. Спецификации High Definition HD и Ultra High Definition UHD или в народе 4K используют 60 кадров в секунду, что позволяет разработчикам записывать более динамичные фильмы, и даже создавать качественные иллюзии трехмерного изображения. Какое количество кадров выбрать Выбор количества кадров зависит от творческого видения и эффекта, который Вы хотите получить. Меньшая скорость делает так, что мозг подсознательно признает, что наблюдаемое изображение является «фальшивкой», поэтому выбор 24 кадров в секунду может отлично подчеркнуть концепцию на основе воображения, например, в сказках и других нереальных фильмах. Чем выше количество кадров, тем более реалистично выглядят сцены, поэтому такая скорость идеально подходит для современных художественных, документальных или фильмов в стиле экшен. Хотя 60 кадров в секунду является лучшим технически решением для достижения плавности, но покадровые анимационные ролики отлично выглядят и при 12 кадрах в секунду, а увидеть мяч во время матча, записанного с частотой 24 кадра в секунду — это уже практически невозможно. Часто разработчики пытаются придерживаться частоты кадров традиционно используемой в их регионе, то есть 29,97 кадра в секунду в США и Японии и 25 кадров в секунду в Европе и большинстве стран Азии. Постарайтесь, чтобы ваш выбор был продуман. Помните, что человеческий глаз является сложным устройством и не распознает отдельных кадров, поэтому эти рекомендации не следует рассматривать в качестве доказанных научно фактов, а, скорее, как результат многолетних наблюдений разных людей. Ниже вы найдете информацию об общих цифрах кадров, используемых в фильмах и клипах: 12 кадров в секунду : абсолютный минимум, необходимый для появления движения.

Меньшие скорости будут восприниматься как набор отдельных изображений. Это неплохой вариант, который подойдет для создания атмосферы старого фильма. Большинство людей не видит особой разницы в плавности движений при съемке выше 60 кадров в секунду. Это количество кадров, отлично подходит для отображения динамичного экшена. Анимация с частотой 12 кадров в секунду Этот фильм , снятый с частотой 12 кадров в секунду, показывает, какого эффект можно достичь при помощи записи с малым числом кадров. Калифорния со скоростью 60 кадров в секунду Этот фильм снят с частотой 60 кадров в секунду, имеет более четкое и более плавное изображение. Он полная противоположность предыдущего примера. Помните, что необходимо изменить настройки качества отображения видео в YouTube на 720p или 1080p нажав на значок шестеренки в плеере YouTube. Высокая частота кадров — лучшее решение для YouTube До недавнего времени максимальное количество кадров на YouTube составляло 30 кадров в секунду, но, в настоящее время, уже можно просматривать видео с 60 кадрами в секунду а также, конечно, с 48 и 50 кадрами в секунду. Разработчики любят создавать анимации и видео из игр в формате 60 кадров в секунду, потому что такая скорость позволяет использовать эффектное изображение с игровой консоли, отображаемого с высокой частотой кадров, — в результате, запись получается более четкой и более плавной.

Прямые трансляции также могут быть показаны с большим количеством кадров в секунду. Благодаря этому изображение будет плавным в степени, достаточной для презентаций, игр и других динамических материалов. Запись в формате 60 кадров в секунду может также использоваться в более общих фильмах. При съемке панорамных видео запись со скоростью 60 кадров в секунду помогает сохранить четкость и плавность движений, а слишком быстрый поворот камеры при более низких скоростях записи кадров может вызвать нестабильность изображения или потерю фокуса. Это происходит потому, что при записи с меньшим количеством кадров, например, с 24 кадрами в секунду, затвор камеры остается открытым дольше, что приводит к размытости движения. А при 60 кадрах в секунду, можно записать шаг, который будет выглядеть естественно, и сократить время открытия диафрагмы, что даёт кристально чистое изображение. Высокая частота кадров может быть также полезна во время затемнения и осветления изображений, когда при более низких значениях может произойти потеря качества изображения. Конечно, вы не должны использовать одну фиксированную частоту кадров во всем фильме. Например, вы можете выбрать 24 кадра в секунду, чтобы получить романтический эффект, а потом перейти на 60 кадров в секунду, когда это потребуется: Взрывы : взрывы в кино, снятые с частотой 24 кадра в секунду, выглядят либо четкими, но прерывистыми, либо размытыми, но плавными. При большем числе кадров в секунду можно отобразить очень быстрые взрывы детально, с высокой плавностью и четкостью..

Жидкости : при высокой частоте кадров Вы получаете возможность расширенных настроек диафрагмы при съемке быстро движущихся жидкостей. Динамические сцены : например, бокс, борьба и т. Выстрелы и другие быстро движущиеся объекты : размытие движения при более низких частотах кадров делают невозможным отслеживание быстро движущихся объектов. В сценах, снятых с большим количеством кадров в секунду эта проблема не возникает. Вам не придется выбирать между размытие и низкой детализацией В сценах с быстрым действием и большим количеством мелких, движущихся объектов, как в этом клипе Nintendo , частота в 60 кадров в секунду позволяет зафиксировать все мельчайшие детали, сохраняя при этом необычайную плавность изображения. Сделайте это Запишите минутное видео с большим, а потом, с небольшим количеством кадров. Поделитесь этой записью с сообществом и спросите участников, что им понравилось в этих фильмах. Редактор PC Gamer Алекс Уилтшир Alex Wiltshire поговорил с нейробиологами и психологами, чтобы выяснить, сколько кадров в секунду в играх нужно человеческому глазу и мозгу. Ответ на вопрос оказался непростым. Многие геймеры знают, что в играх важно не только количество кадров, но и стабильность их поступления: например, ровные 30 кадров могут восприниматься намного приятнее, чем «болтание» в промежутке от 40 до 50.

Это связано с тем, что просадки в некоторых сценах воспринимаются как те самые пресловутые «тормоза» мозг ожидает увидеть определённое движение с той же плавностью, что и остальные, но компьютер не успевает обработать картинку с нужной скоростью. Поэтому иногда разработчики, уделившие недостаточно внимания оптимизации, выпускают игру с ограничением в 30 кадров даже на ПК, что обычно вызывает заметное возмущение среди геймеров. А для консольных игр без многопользовательского режима 30 кадров вообще являются стандартом. Однако в своём исследовании Уилтшир затронул только стабильную частоту кадров и не касался вопроса вертикальной синхронизации и других параметров компьютера, влияющих на восприятие картинки. Глаза и мозг работают в тандеме Споры о том, сколько человеческий глаз может воспринимать кадров в секунду, ведутся давно во многом потому, что на этот вопрос нет однозначного ответа. Как отмечает Уилтшир, человек не считывает реальность как компьютер, а визуальное восприятие целиком строится на совместной работе глаз и мозга. Поэтому, например, люди по-разному видят движение и свет, а периферийное зрение лучше справляется с некоторыми аспектами картинки, чем основное - и наоборот. Время, за которое человек воспринимает визуальную информацию, суммируется из скорости света, попадающего глаза, скорости передачи полученной информации в мозг и скорости её обработки. По словам профессора психологии Джордана Делонга Jordan DeLong , обрабатывая визуальные сигналы, мозг постоянно занимается калибровкой, высчитывая средние показатели с тысяч и тысяч нейронов, поэтому вся система более точна, чем её отдельные составляющие. Как отмечает исследователь Эдриен Чопин Adrien Chopin , скорость света едва ли можно изменить, а вот часть визуального восприятия, проходящую в мозгу ускорить вполне реально.

Игры - едва ли не единственный способ заметно улучшить основные показатели вашего зрения: чувствительность к контрасту, внимание и способность отслеживать движение множества объектов одновременно. Эдриен Чопин, исследователь когнитивных функций мозга Как отмечает Уилтшир, именно геймеры, которые чаще всего пекутся о высокой частоте кадров, способны воспринимать визуальную информацию быстрее любых других людей. Отличия в восприятии движения и света Если лампочка работает на частоте в 50 или 60 Гц, большинству людей освещение кажется постоянным, однако есть те, кто в таком случае замечает мерцание. Этого эффекта также можно добиться, если крутить головой смотря на LED-фары автомобиля.

С каждым опыт ставили несколько раз, и результаты не менялись.

Мы считаем, что индивидуальные различия в скорости восприятия могут стать очевидными в ситуациях с высокой скоростью, когда может потребоваться обнаружить или отслеживать быстродвижущиеся объекты, например, в спортивных состязаниях с мячом, или в ситуациях, когда визуальные сцены быстро меняются, например, в соревновательных играх. Одни могут иметь преимущество перед другими еще до того, как возьмут в руки ракетку и ударят по теннисному мячу или схватят контроллер и прыгнут в какой-нибудь фантастический мир онлайн.

Открыть меню Сколько FPS может видеть человеческий глаз? Сколько кадров в секунду FPS мы можем увидеть? Это загадка, потому что человеческий глаз на самом деле не видит «кадров в секунду», а способности у всех разные. Мы поговорим о биологии, но реальный вопрос заключается в том, каков предел FPS на экране, и нужна ли вам панель, поддерживающая слишком много FPS.

Самый высокий FPS, который может почувствовать человек Прежде всего, люди на самом деле не видят каждый кадр в секунду, поскольку именно так монитор отображает изображение. Когда мы видим изображения на экране, наши глаза, по сути, поглощают свет, чтобы наш мозг мог понять, что мы видим. Мы объединяем несколько изображений, которые быстро отображаются в наших головах, и интерпретируем их как непрерывное движение. В ходе исследования, которое проверило возможности человеческого глаза, ученые обнаружили, что точные циклы в секунду, которые люди могут отслеживать своими глазами, постоянно меняются. Обычно регистрируемая максимальная частота составляет от 60 Гц до 90 Гц. Но при правильных условиях в некоторых случаях тестеры могут воспринимать вещи на частотах до 500 Гц.

Однако это происходит при определенных условиях и не точно воспроизводит то, что вы чувствуете, когда играете в игры или смотрите фильмы. Далее давайте узнаем, как монитор выводит изображение. Свет, создаваемый искусственными источниками, не так постоянен, как кажется.

Похожие новости:

Оцените статью
Добавить комментарий