Минус на мину даёт плюс.
Когда минус на минус дает плюс
Это первое впечатление, со временем все минусы -оказываются плюсы. Конечно, проще без лишних вопросов запомнить данное утверждение и глубоко не вникать в суть вопроса. Минус на минус даёт плюс. Из трека Каспийский Груз – Была Не Была на RapGeek. Минус умноженный на плюс будет минус.
Сложение и вычитание отрицательных чисел. Что дает плюс на минус.
А кто из нас интересовался почему? Конечно, проще без лишних вопросов запомнить данное утверждение и глубоко не вникать в суть вопроса. Сейчас и без того достаточно информации, которую необходимо «переварить». Но для тех, кого всё же заинтересует этот вопрос, постараемся дать объяснение этому математическому явлению. С древних времён люди пользуются положительными натуральными числами: 1, 2, 3, 4, 5,… С помощью чисел считали скот, урожай, врагов и т. При сложении и умножении двух положительных чисел получали всегда положительное число, при делении одних величин на другие не всегда получали натуральные числа — так появились дробные числа.
Если знак минус отрицает число, то это физическое действие, но если он отрицает само действие, то это просто условное правило. То есть взрослые просто договорились, что если отбор отрицается, как в рассматриваемом вопросе, то отбора нет, неважно сколько раз! При этом всё, что у вас было остаётся с вами, будь то просто число, будь то произведение чисел, то есть много попыток отбора. Вот и всё. Если кто-то не согласен, то подумайте спокойно ещё раз. Ведь и пример с машинами, в котором есть отрицательная скорость и отрицательное время за секунду до встречи это всего лишь условное правило связанное с системой отсчёта. В другой системе отсчёта та же скорость и то же время станут положительными. А пример с зазеркальем связан со сказочным правилом, в котором минус отражаясь в зеркале только условно, но вовсе не физически становится плюсом. Ответить 21. А вот в языке, когда задается вопрос с отрицанием как на него отвечать?
Однако учебники не объясняют, почему правила именно такие. Мы сначала постараемся понять это, исходя из истории развития арифметики, а потом ответим на этот вопрос с точки зрения современной математики. Давным-давно людям были известны только натуральные числа: Их использовали для подсчета утвари, добычи, врагов и т. Но числа сами по себе довольно бесполезны — нужно уметь с ними обращаться. Сложение наглядно и понятно, к тому же сумма двух натуральных чисел — тоже натуральное число математик сказал бы, что множество натуральных чисел замкнуто относительно операции сложения. Умножение — это, по сути, то же сложение, если мы говорим о натуральных числах. В жизни мы часто совершаем действия, связанные с этими двумя операциями например, делая покупки, мы складываем и умножаем , и странно думать, что наши предки сталкивались с ними реже — сложение и умножение были освоены человечеством очень давно. Часто приходится и делить одни величины на другие, но здесь результат не всегда выражается натуральным числом — так появились дробные числа. Без вычитания, конечно, тоже не обойтись. Но на практике мы, как правило, вычитаем из большего числа меньшее, и нет нужды использовать отрицательные числа. Если у меня есть конфет и я отдам сестре , то у меня останется конфеты, а вот отдать ей конфет я при всем желании не могу. Этим можно объяснить, почему люди долго не пользовались отрицательными числами. В индийских документах отрицательные числа фигурируют с VII века н.
Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин — а это уже шаг в направлении превращения математики в абстрактную науку. Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач. Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов. Так, в XIX веке математики поняли, что у целых чисел и многочленов, при всей их внешней непохожести, есть много общего: и те, и другие можно складывать, вычитать и перемножать. Эти операции подчиняются одним и тем же законам — как в случае с числами, так и в случае с многочленами. А вот деление целых чисел друг на друга, чтобы в результате снова получались целые числа, возможно не всегда. То же самое и с многочленами. Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды, непрерывные функции... Наконец, пришло понимание, что если изучить свойства самих операций, то потом результаты можно будет применять ко всем этим совокупностям объектов такой подход характерен для всей современной математики. В итоге появилось новое понятие: кольцо. Это всего-навсего множество элементов плюс действия, которые можно над ними производить. Основополагающими здесь являются как раз правила их называют аксиомами , которым подчиняются действия, а не природа элементов множества вот он, новый уровень абстракции! Желая подчеркнуть, что важна именно структура, которая возникает после введения аксиом, математики говорят: кольцо целых чисел, кольцо многочленов и т.
«Минус на минус» дает плюс
Нужны ОБЪЯСНЕНИЯ, ПОЧЕМУ минус умножить на минус получается плюс. Почему минус на минус даёт плюс? Сохраните себе это видео, чтобы вернуться к нему в любой момент! Требуется доказать, что (-a)(-b)=ab. Чтобы ответить на этот вопрос, мы будем действовать в рамках аксиоматики действительных чисел. Для начала докажем, чт. об этом знают все без исключения.
Действия с минусом. Почему минус на минус дает плюс
2) Почему минус один умножить на плюс один равно минус один? _ Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Мы сформулируем аксиомы кольца (которые, естественно, похожи на правила действий с целыми числами), а затем докажем, что в любом кольце при умножении минуса на минус получается плюс. Требуется доказать, что (-a)(-b)=ab. Чтобы ответить на этот вопрос, мы будем действовать в рамках аксиоматики действительных чисел. Для начала докажем, чт. “Плюс” на “плюс” всегда дает положительный ответ. То же самое и с двумя минусами: как при умножении, так и при делении двух чисел со знаком “-” получается положительное число.
Минус на минус даёт плюс. А почему?
Обычно, переход к алгебре начинается с изучения базисных знаний, таких как понимание переменных и простых уравнений. Первый шаг в изучении алгебры — понимание, что переменные могут быть использованы для представления значений, которые могут меняться. Также необходимо понять, как работать с различными операциями, включающими сложение, вычитание, умножение и деление. Сложение и вычитание позволяют создавать соответствующие алгебраические выражения, в то время как умножение и деление используются для решения более сложных проблем. Другой важный шаг в изучении алгебры — понимание простых уравнений. Уравнение — это математическое выражение, содержащее неизвестное значение обычно обозначенное буквой. Путем решения уравнений можно определить значения переменных и составить сложные алгебраические выражения.
Если мы знаем значения переменных, мы можем использовать их для решения более сложных проблем. Изучение алгебры может быть сложным процессом, но это фундаментальная тема для понимания математики, науки и технологии в целом. Она дает возможность решать более сложные проблемы, и важна для всех, кто хочет иметь стройный ум и научиться мыслить аналитически. Применение в задачах Понятие «плюс на минус» широко используется в математических задачах, особенно в финансовых расчетах. Таким образом, вы получите 15 долларов бонуса за плюс на минус, что означает, что вы получаете проценты как на ваш первоначальный вклад, так и на процент, который заработал этот вклад. Кроме того, плюс на минус используется для описания изменений в показателях.
В целом, плюс на минус — это важное математическое понятие, которое широко применяется в различных областях, таких как финансы, экономика, наука и технологии. Это понятие помогает описать различные виды изменений и расчетов, что делает его необходимым для понимания и применения в реальной жизни. Геометрическое объяснение Что же означает плюс на минус в математике? Как можно объяснить этот феномен геометрически? Одним из способов объяснить плюс на минус является использование координатной плоскости. Рассмотрим пример: есть точка с координатами 3, 4 на координатной плоскости.
Если мы добавим к этой точке вектор с координатами -2, -3 , то мы получим новую точку с координатами 1, 1. То есть мы отняли от x-координаты 2 и от y-координаты 3, что и дает нам плюс на минус. Таким образом, геометрический смысл плюс на минус заключается в том, что мы «отнимаем» вектор от текущей точки на координатной плоскости, что приводит к перемещению точки в новое место.
В конце концов, в реальной жизни почти нет отрицательных чисел: Нельзя представить, что существует — 2 яблока или — 3 карандаша. Вы можете понять, что такое действительное число, что такое отсутствие чисел, но что такое отрицательные числа понять гораздо сложнее. Фактически, любое отрицательное число можно представить как отсутствующий ноль. Например, — 3 означает, что при вычитании вычитающий не добрал три единицы до нуля.
Чаще всего это встречается в бухгалтерских отчетах и финансовой отчетности. Правило знаков В этой теме часто встречается понятие правила знаков, которое рассматривается на уроках математики в шестом классе. Стоит проанализировать эту тему. Это связано с тем, что правило знака является производным от правил умножения для отрицательных и положительных чисел. А умножение «плюса» на «минус» дает «минус». Эти правила легко запомнить, поэтому вам не придется беспокоиться о том, чтобы каждый раз получать множественные числа. Сложение и вычитание отрицательных чисел Давайте рассмотрим каждый процесс отдельно, чтобы не возникало лишних вопросов.
Сложение отрицательных чисел Вычитание отрицательных чисел Вычитание может быть выполнено между: Два отрицательных числа. В этом случае «минус», умноженный на «минус», дает «плюс». После этого мы видим выражение из предыдущего пункта, которое представляет собой сложение отрицательного числа с положительным. Нам нужно поменять местами числа и выполнить вычитание. С отрицательным числом и положительным числом. Это приводит к той же ситуации, что и сложение двух отрицательных чисел. Так же, как «минус» умножить на «плюс», получается «минус».
Полученные числа складываются по модулю, а затем «минус» возвращается к результату. Положительные и отрицательные числа. Этот случай является любимым у авторов примеров. При преобразовании по правилу знаков «минус» в «минус» получается «плюс». Таким образом, результатом является сложение двух положительных чисел. Следует отметить, что прибавление или вычитание нуля не влияет на отрицательное число. Однако вычитание числа из нуля меняет его знак на противоположный.
Если два числа имеют одинаковые знаки, в результате всегда будет плюс. Рассмотрим все возможные варианты. Что дает минус на плюс? При умножении и делении минус на плюс дает минус. Что дает плюс на минус? При умножении и делении в результате мы тоже получаем знак минус. Минус на плюс, плюс на минус. Как вы видите, все варианты умножения и деления положительных и отрицательных чисел исчерпаны, но знак плюс у нас так и не появился. Это мы сформулировали правило для себя, чтобы запомнить.
Что говорить математикам? При умножении или делении положительных и отрицательных чисел в результате получается отрицательное число. Что дает минус на минус? Всегда будет получаться плюс, если мы выполняем умножение или деление. Что дает плюс на плюс? Здесь совсем просто. Умножение или деление плюса на плюс дает всегда плюс. Минус на минус, плюс на плюс. Надеюсь, это вы запомнили: минус на минус дает плюс, плюс на плюс дает минус.
При умножении и делении положительных или отрицательных чисел в результате получается положительное число. Если с умножением и делением двух плюсов всё понятно в результате получается такой же плюс , то с двумя минусами ничего не понятно. По логике, если два плюса дают плюс, то два минуса должны давать минус. Такой большой, жирный минус. Но не тут-то было. Математики думают иначе. Так почему минус и минус превращаются в плюс?
Казалось бы мелочь,а если разОБРАться....? Вот тот самый ПРАВильный равносторонний крест,подробнее о кресте.
Минус на минус дает плюс
Этим можно объяснить, почему люди долго не пользовались отрицательными числами. В индийских документах отрицательные числа фигурируют с VII века н. Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений — это был лишь инструмент для получения положительного ответа. Тот факт, что отрицательные числа, в отличие от положительных, не выражают наличие какой-либо сущности, вызывал сильное недоверие. Люди в прямом смысле слова избегали отрицательных чисел: если у задачи получался отрицательный ответ, считали, что ответа нет вовсе. Это недоверие сохранялось очень долго, и даже Декарт — один из «основателей» современной математики — называл их «ложными» в XVII веке! При таком решении нам даже не встретились отрицательные числа. Что демонстрирует этот нехитрый пример? Во-первых, становится понятна логика, которой определялись правила действий над отрицательными числами: результаты этих действий должны совпадать с ответами, которые получаются другим путем, без отрицательных чисел. Во-вторых, допуская использование отрицательных чисел, мы избавляемся от утомительного если уравнение окажется посложнее, с большим числом слагаемых поиска того пути решения, при котором все действия производятся только над натуральными числами.
Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин — а это уже шаг в направлении превращения математики в абстрактную науку. Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач. Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов. Так, в XIX веке математики поняли, что у целых чисел и многочленов, при всей их внешней непохожести, есть много общего: и те, и другие можно складывать, вычитать и перемножать. Эти операции подчиняются одним и тем же законам — как в случае с числами, так и в случае с многочленами. А вот деление целых чисел друг на друга, чтобы в результате снова получались целые числа, возможно не всегда. То же самое и с многочленами. Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды , непрерывные функции... Наконец, пришло понимание, что если изучить свойства самих операций, то потом результаты можно будет применять ко всем этим совокупностям объектов такой подход характерен для всей современной математики.
В итоге появилось новое понятие: кольцо. Это всего-навсего множество элементов плюс действия, которые можно над ними производить. Основополагающими здесь являются как раз правила их называют аксиомами , которым подчиняются действия, а не природа элементов множества вот он, новый уровень абстракции! Желая подчеркнуть, что важна именно структура, которая возникает после введения аксиом, математики говорят: кольцо целых чисел, кольцо многочленов и т. Отталкиваясь от аксиом, можно выводить другие свойства колец. Мы сформулируем аксиомы кольца которые, естественно, похожи на правила действий с целыми числами , а затем докажем, что в любом кольце при умножении минуса на минус получается плюс. Кольцом называется множество с двумя бинарными операциями т. Заметим, что кольца, в самой общей конструкции , не требуют ни перестановочности умножения, ни его обратимости т. Если вводить эти аксиомы, то получаются другие алгебраические структуры, но в них будут верны все теоремы, доказанные для колец.
Для этого нам потребуется установить некоторые факты. Сперва докажем, что у каждого элемента может быть только один противоположный. В самом деле, пусть у элемента A есть два противоположных: B и С. Заметим теперь, что и A, и - -A являются противоположными к одному и тому же элементу -A , поэтому они должны быть равны. Значит, это произведение равно нулю. А то, что в кольце ровно один ноль ведь в аксиомах сказано, что такой элемент существует, но ничего не сказано про его единственность! Евгений Епифанов 1 Почему минус один умножить на минус один равно плюс один? Мы сначала постараемся понять это, исходя из истории развития арифметики, а потом ответим на этот вопрос с точки зрения современной математики. Но числа сами по себе довольно бесполезны - нужно уметь с ними обращаться.
Сложение наглядно и понятно, к тому же сумма двух натуральных чисел - тоже натуральное число математик сказал бы, что множество натуральных чисел замкнуто относительно операции сложения. Умножение - это, по сути, то же сложение, если мы говорим о натуральных числах. В жизни мы часто совершаем действия, связанные с этими двумя операциями например, делая покупки, мы складываем и умножаем , и странно думать, что наши предки сталкивались с ними реже - сложение и умножение были освоены человечеством очень давно. Часто приходится и делить одни величины на другие, но здесь результат не всегда выражается натуральным числом - так появились дробные числа. Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений - это был лишь инструмент для получения положительного ответа. Это недоверие сохранялось очень долго, и даже Декарт - один из «основателей» современной математики - называл их «ложными» в XVII веке! Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин - а это уже шаг в направлении превращения математики в абстрактную науку. Эти операции подчиняются одним и тем же законам - как в случае с числами, так и в случае с многочленами. Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды, непрерывные функции...
Заметим, что кольца, в самой общей конструкции, не требуют ни перестановочности умножения, ни его обратимости т. Заметим теперь, что и A , и — —A являются противоположными к одному и тому же элементу —A , поэтому они должны быть равны. Но для уровня старшекласника-первокурсника. Допустим мы идем вдоль дороги, нас обгоняет машина и начинает удаляться. Время растет - и расстояние до нее растет. Скорость такой машины будем считать положительной, она может быть например 10 метров в секунду. Кстати, а сколько это километров в час? Наверное дорога плохая... А вот машина идущая нам навстречу не удаляется, а приближается.
Поэтому и скорость ее удобно считать отрицательной.
Особняком на общем бравурном фоне смотрится рейтинговое агентство Fitch, эксперты которого ожидают повышения ставки на 25 б. Конечно, в их рассуждениях есть логика. Американскому фондовому рынку поддержка явно не нужна — он на историческом максимуме, и, как писал Грибоедов, «нельзя ли пожалеть о ком-нибудь другом? Например, сегодня от индекса экономических настроений институциональных инвесторов Германии ZEW никто ничего хорошего и не ждал: предполагалось, что он понизится с и без того отрицательных апрельских значений минус 2,1 до минус 5,7 — но он в итоге рухнул до минус 21,1.
В Евросоюзе в целом — та же картина: минус 20,2 при прогнозе минус 3,6 и практически нейтральных минус 1,6 в апреле. Правда, зато у Евросоюза за апрель нарисовалось неплохое сальдо торгового баланса — при прогнозе 8,8 млрд евро вышло целых 15,7 млрд, почти вдвое — правда, в марте было вообще 23,2 млрд евро, но и то хлеб. В то же время рано или поздно рецессия случится. И, казалось бы, самое время регулятору «поднакопить жирок», чтобы не выглядеть в сложной ситуации подобно ЕЦБ. Собственно, глава ЕЦБ Марио Драги и был сегодня одним из двух главных героев новостей: инфляция в еврозоне никак не хочет расти, и застой экономики потихоньку стучится в двери.
В итоге на фоне сохраняющейся уже более двух лет нулевой ставки Драги пришлось пообещать дальнейшее ее снижение или скупку активов — то есть, собственно, просто раздачу денег в том или ином виде. Причем практика такой раздачи у ЕЦБ уже есть, и результат ее мы как раз сейчас и наблюдаем.
Этим многие недовольны, так как те проблемы, которые заставили осуществить ввод «негативных» ставок, а именно: низкая инфляция и низкий экономический рост, никуда не делись. За что же критикуют политику отрицательных ставок? Во-первых, это своеобразный налог на банковскую систему. Банки держат излишнюю ликвидность, невостребованную реальным сектором. Центральные банки зачастую штрафуют коммерческие за то, что они вынуждены хранить у себя эту ликвидность. Именно поэтому начали вводить многоуровневую систему отрицательных ставок, когда определенное количество резервов не облагается отрицательной процентной ставкой, а все, что выше, — облагается. Во-вторых, отрицательные ставки снижают банковскую маржу и, таким образом, бьют по прибыльности банковской системы. В-третьих, рыночные ставки могут просто потерять чувствительность.
Когда центральные банки понижают ставки ниже нуля, рыночные ставки на это не реагируют. В таком случае маржа может и не снизиться, но перестанет работать сама денежно-кредитная политика. Однако это теория, и нужно разобраться в том, происходит так в действительности или нет. Для этого нужно анализировать опыт разных стран. Сложно оценить влияние самих отрицательных ставок, так как они всегда вводились одновременно с другими нестандартными мерами. Если рассматривать ряд исследований, то можно заметить, что ставки по депозитам редко уходят в минус. Зачастую это корпоративные клиенты, потому что они обязаны держать деньги в банке. Собственно, здесь приходится терпеть отрицательные ставки. В конце выступления Олег Замулин заявил: «Выводы делать рано! Надо еще поизучать эту тему и посмотреть на опыт».
Когда у банков проблемы с прибылью… «Количество возможных инструментов, которыми центральные банки могут пользоваться, в течением времени не меняется», — сообщил Олег Шибанов, директор финансового центра «Сколково-РЭШ».
В другой системе отсчёта та же скорость и то же время станут положительными. А пример с зазеркальем связан со сказочным правилом, в котором минус отражаясь в зеркале только условно, но вовсе не физически становится плюсом. Ответить 21. А вот в языке, когда задается вопрос с отрицанием как на него отвечать? Как на него ответить при условии, что я чай хочу? Ответить 29. Вообще вопрос сам по себе не детский и ответ на него лично меня совсем не убедил. На чём основывается доказательство, на кольцах? Насколько понимаю я, именно там начинаются проблемы, которые в итоге приводят к кольцам и прочей ахинее при ответе на такой простой детский вопрос.
Почему минус на минус даёт плюс? Сохраните себе это видео | Резерв Математик Андрей
В этом случае, «плюс» на «минус» дает «минус», потому что мы складываем положительное число с отрицательным числом. Если оба множителя положительные или оба отрицательные, то результат будет положительным. Если один множитель положительный, а другой отрицательный, то результат будет отрицательным. В этом случае, «плюс» на «минус» дает «минус», потому что один множитель положительный, а другой отрицательный.
А давайте зададимся... Давным-давно людям были известны только натуральные числа: 1, 2, 3,... Их использовали для подсчета утвари, добычи, врагов и т. Но числа сами по себе довольно бесполезны — нужно уметь с ними обращаться. Сложение наглядно и понятно, к тому же сумма двух натуральных чисел — тоже натуральное число математик сказал бы, что множество натуральных чисел замкнуто относительно операции сложения. Умножение — это, по сути, то же сложение, если мы говорим о натуральных числах. В жизни мы часто совершаем действия, связанные с этими двумя операциями например, делая покупки, мы складываем и умножаем , и странно думать, что наши предки сталкивались с ними реже — сложение и умножение были освоены человечеством очень давно.
Часто приходится и делить одни величины на другие, но здесь результат не всегда выражается натуральным числом — так появились дробные числа. Без вычитания, конечно, тоже не обойтись. Но на практике мы, как правило, вычитаем из большего числа меньшее, и нет нужды использовать отрицательные числа. Этим можно объяснить, почему люди долго не пользовались отрицательными числами. В индийских документах отрицательные числа фигурируют с VII века н. Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений — это был лишь инструмент для получения положительного ответа.
Отрицательные качества, такие как раздражительность и непостоянство, неожиданно тоже помогли договориться, но только если присутствовали у обеих сторон.
В холодные зимние месяцы, в некоторых домах, суммы за отопление квартир зашкаливают за 8-9 тысяч, а платежкой за отопление в 5 тысяч вообще никого не удивишь. Разумеется, такие огромные платежи вызывали и вызывают постоянное недовольство населения причем не только в нашем регионе. Видимо поэтому правительством РФ было принято постановление, в котором регионам было разрешено самим определять, как брать плату за отопление: только во время отопительного периода, или все 12 месяцев в году, по среднемесячным показаниям прибора учета за прошлый год. Вот отсюда и возникли разнообразные перерасчеты и цифры с минусами. Но нужно обратить внимание на последний абзац «платежки», в котором сказано: «С мая 2013 года потребители могут осуществлять оплату на выбор, как по среднему значению показаний прибора учета за 2012 год, так и по фактическим показаниям прибора учета за 2013 год.
Плюс на минус дает... плюс
Новости. Американские психологи обнаружили, что добиться согласия легче, если люди, ищущие решение, имеют похожий настрой или черты характера. Что дает плюс на минус в математике Зачем нужен знак плюс перед минусом в математике и как он влияет на решение выражений. Кандидат в депутаты пытается дважды пропиариться на несостоявшемся протесте. И получается, что минус на минус, дал плюс. Лента новостей Друзья Фотографии Видео Музыка Группы Подарки на МИНУС даёт ПЛЮС. Разговор о введении НСОТ в Воронежской области мы начали 13 ноября прошлого года в «УГ» №46: в рубрике «Журналистское расследование» вышла статья «Повышение со знаком минус».
Когда минус на минус дает плюс?
«Минус» на «минус» дает «плюс» – об этом знают все без исключения. Плюс в том, что повзрослев такие дети право на имущественный вычет не теряют. Не важно, что по математическим правилам минус на плюс дает минус. Правило минус на минус дает плюс помогает легко выполнить вычитание двух отрицательных чисел. «Враг моего врага — мой друг». Рисунок © Е.В. Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Иначе говоря, чтобы умножение было осмысленным, "минус на плюс" должен давать "минус".
Правило минус на минус дает
А потом я решил набрать малышей, и раз уж получается плюс, мы назвали малышей «Плюсики». Существенным плюсом театрального творчества стала продуктивная работа со сложными подростками и детьми из «группы риска». Это самые талантливые дети, серьезно! Они за свою жизнь много повидали и умеют показывать на сцене настоящие эмоции. А когда им помогаешь развиваться — они меняются на глазах, становятся другими людьми и выходят из зоны дискомфорта. На данный момент здесь есть ребята, которые вызывали раздражение в обществе и всем мешали. Сейчас они становятся другими: искренними, добрыми и честными людьми. Многие ребята переосмыслили свою жизнь кардинально, поучаствовав в спектакле, некоторые благодаря репетициям нашли друзей и не только изменились сами, но и помогли родителям взглянуть на жизнь по-другому. Он должен кайфовать от работы с детьми, и тогда они не будут пропускать, опаздывать, кричать на уроках, срывать их, будут впитывать всё как губка. Но терпение тоже нужно, ведь педагога ожидают такие испытания, как подростковый возраст, детские выходки и замашки — все это нужно перетерпеть, спокойно объяснить, в чем ребенок не прав, и спокойно разрулить ситуацию.
Я обожаю свою работу и всем желаю найти такую, для которой вы с удовольствием будете просыпаться по утрам, а на выходных помышлять о том, чтобы быстрее наступили будние дни. Дети присматривались ко мне: попробуй начни сразу открываться парню, который весь в татуировках! Но со временем и мнение, и отношение поменялись настолько, что ребята могли прийти и просто рассказать, что их тревожит, поделиться радостями и проблемами. Это очень круто, когда у тебя получается завоевать доверие детей.
Поэтому детям кажется логичнее, что при умножении отрицательной материи должно происходить приумножение именно отрицательной материи.
Но и здесь не всё гладко, ведь для приумножения отрицательной материи достаточно чтобы только одно число было с минусом. При этом один из сомножителей, который обозначает не вещественное наполнение, а разы повторения отобранной материи всегда положительный, так как разы не могут быть отрицательными даже если повторяется отрицательная отобранная материя. А для того, чтобы знак минус воспринимался не как признак мнимого числа, то есть отрицательной материи, а как действие, взрослым нужно договориться сначала между собой, что если знак минус стоит пред числом, то он обозначает отрицательное действие с числом, которое всегда положительное, а не мнимое. Если же знак минус стоит перед другим знаком, то он обозначает отрицательное действие с первым знаком, то есть меняет его на противоположный. Тогда всё станет на свои места естественным образом.
Затем надо объяснить это детям и они прекрасно поймут и усвоят такое понятное правило взрослых. Ведь сейчас все взрослые участники обсуждения фактически пытаются объяснить необъяснимое, так как физического объяснения этому вопросу нет, это просто условность, правило. А объяснять абстракцию абстракцией же - это тавтология. Если знак минус отрицает число, то это физическое действие, но если он отрицает само действие, то это просто условное правило.
В холодные зимние месяцы, в некоторых домах, суммы за отопление квартир зашкаливают за 8-9 тысяч, а платежкой за отопление в 5 тысяч вообще никого не удивишь. Разумеется, такие огромные платежи вызывали и вызывают постоянное недовольство населения причем не только в нашем регионе. Видимо поэтому правительством РФ было принято постановление, в котором регионам было разрешено самим определять, как брать плату за отопление: только во время отопительного периода, или все 12 месяцев в году, по среднемесячным показаниям прибора учета за прошлый год. Вот отсюда и возникли разнообразные перерасчеты и цифры с минусами. Но нужно обратить внимание на последний абзац «платежки», в котором сказано: «С мая 2013 года потребители могут осуществлять оплату на выбор, как по среднему значению показаний прибора учета за 2012 год, так и по фактическим показаниям прибора учета за 2013 год.
Если один множитель положительный, а другой отрицательный, то результат будет отрицательным.
В этом случае, «плюс» на «минус» дает «минус», потому что один множитель положительный, а другой отрицательный. Если оба числа положительные или оба отрицательные, то результат будет положительным. Если одно число положительное, а другое отрицательное, то результат будет отрицательным.