Объясните с точки зрения эволюционного учения Дарвина, как смертельный рак может превратиться в несмертельный. 9 классы. какими организмами являются бактерии с точки зрения эволюции. Бактерии — микроорганизмы, клетки которых не содержат ядра (прокариоты). С этой точки зрения, они взяли одну из широко распространенных моделей, так что никаких претензий. История роли микроорганизмов в спорном вопросе о возникновении жизни регулярно описывается в большинстве учебников по микробиологии.
Иллюстрации
- Клеточное строение и жизнедеятельность бактерий.
- Старое новыми словами
- Происхождение, эволюция, место бактерий в развитии жизни на Земле
- Старое новыми словами
Задание Учи.ру
Бактерии делятся бинарным делением клетки. В ходе бинарного деления бактерия делится на две дочерние клетки, являющиеся генетическими копиями материнской. Его основной труд «О некоторых моментах эволюционного процесса с точки зрения современной генетики» (1926 г.) лег в основу синтетической теории эволюции. Микоплазмы являются отдельным классом микроорганизмов, отличающимся как от вирусов, так и от бактерий.
Какими организмами являются бактерии с точки зрения эволюции
3)Какими организмами являются бактерии с точки зрения эволюции (примитивные, высокоорганизованными)? Конспект: Как сохранить земноводных в природе? Сходство строения семян однодольных и двудольных растений состоит в том что продолжите Вред бактерий в природе. Колония таких бактерий не является многоклеточным организмом, а представляет собой клеточную массу — различимое невооружённым глазом скопление клеток. Основные аспекты теории эволюции микроорганизмов. Эволюция микроорганизмов началась более 3 миллиардов лет назад.
Видео этапы эволюции, естественного отбора, искусственного отбора
- какими организмами являются бактерии с точки зрения эволюции
- Вход и регистрация
- Ученые говорят, что все живое произошло от бактерий. Как это можно объяснить?
- Бактерии. Большая российская энциклопедия
- Непременное условие – соответствующая связь
Вирусы как эволюционный фактор
С точки зрения эффективной эволюции это гораздо круче, чем наш секс. • Одними из древнейших бактерий являются цианобактерии. Бактерии являются не только редуцентами, но и продуцентами (создателями) органического вещества, которое может быть использовано другими организмами. Бактерии часто являются симбионтами и паразитами растений и животных.
Эволюция бактерий - Evolution of bacteria
Заходи и смотри, ответил 1 человек: какими организмами являются бактерии с точки зрения эволюции — Знания Сайт. С точки зрения эволюционного учения, бактерии являются. Эволюционное учение.
Долгая счастливая фенотипическая эволюция бактерий
Однако некоторые из них окрашены в красный, зеленый, синий и прочие цвета, что обусловлено пигментами, которые содержатся в цитоплазме, и веществами в слизистой капсуле. В зависимости от формы клетки бактерии различают: бациллы, палочковидные, шарообразные, изогнутые, спиралевидные и т.
Невозможность соединения аминокислот в определенном порядке для образования белка была вычислена математически на предыдущих страницах с помощью теории вероятностей. Однако самообразование белка в условиях первичной атмосферы Земли невозможно и с точки зрения химии. Синтез белка невозможен в воде Как уже упоминалось ранее, при синтезе белка между аминокислотами образуется пептидная связь. Во время этого процесса выделяется одна молекула воды. Эта ситуация коренным образом опровергает утверждения эволюционистов о возникновении жизни в океане.
Потому что в химии, согласно принципу «Ле Шателье», реакция, которая образует воду реакция конденсации , не будет завершена в среде, состоящей из воды. Протекание этой реакции в водной среде характеризуется среди химических реакций, как «наименьшая вероятность». Отсюда следует, что океаны, в которых якобы возникла жизнь, отнюдь не подходящая среда для образования аминокислоты и впоследствии — белка. С другой стороны, они не могут изменить свои суждения перед этими фактами и утверждать, что жизнь возникла на суше. Потому что аминокислоты, предположительно образовавшиеся в ранней атмосфере Земли, могут быть защищены от ультрафиолетовых лучей только в море и океане. На суше же аминокислоты будут разрушены под воздействием ультрафиолетовых лучей. Принцип Ле Шателье опровергает возникновение жизни в море.
А это в свою очередь — еще один тупик в теории эволюции. Очередная безрезультатная попытка: опыт Фокса Оказавшись в безвыходном положении, исследователи-эволюционисты начали придумывать невиданные сценарии по «проблеме воды». Один из знаменитейших среди них Сидней Фокс вывел новую теорию, чтобы решить этот вопрос: аминокислоты, образовавшись в океане, сразу же перенеслись в скалистые места рядом с вулканами. Затем вода в смеси, в состав которой входили и аминокислоты, испарилась под воздействием высокой температуры скалистых мест. В результате «высохшие» аминокислоты могли соединяться для образования белка. Однако этот «тяжелый» выход из положения никем не был признан. Потому что аминокислоты не смогли бы выдержать температуру, о которой говорил Фокс.
Исследования показали, что аминокислоты под воздействием высокой температуры непременно разрушаются. Но Фокс не сдавался. В «специальных условиях» лаборатории, упрощенные аминокислоты были подогреты в сухой среде и соединены. Аминокислоты были соединены, но получить белок так и не удалось. Полученное представляло собой соединение простых, беспорядочных звеньев аминокислот и никоим образом не было похоже на белок. Более того, если бы Фокс подвергал аминокислоты постоянной температуре, то даже образовавшиеся бесполезные звенья аминокислот распались бы. Еще одна деталь, обессмысливающая опыт, заключается в том, что Фокс использовал в своем опыте аминокислоты, содержащиеся в живых организмах, а не те, которые в свое время получил Миллер.
Между тем, он должен был отталкиваться именно от результатов опыта Миллера. Но ни Фокс, ни другие не использовали непригодные аминокислоты, полученные Миллером. Опыт Фокса не был воспринят положительно даже среди эволюционистов, так как полученные Фоксом непонятные цепи аминокислот протеиноиды не могли образоваться в естественных условиях. А белок, являющийся строительным материалом живого, так и не был получен. Вопрос о происхождении белка оставался неразрешенным. В популярном научном журнале 70-х годов «Chemical Engineering News» была опубликована статья относительно опыта Фокса: «Сидней Фокс и другие исследователи, используя специальную технику нагревания, смогли получить соединения аминокислот, называемые «протеиноидами» в условиях, не существовавших на начальном этапе Земли. Вместе с тем, они никак не похожи на упорядоченные белки живых организмов и представляют собой лишь хаотичные, бессмысленные пятна.
Даже если эти молекулы и присутствовали первоначально, то разрушение их впоследствии было неизбежно. Разница между ними подобна разнице между аппаратурой сложной технологии и кучей необработанного металла. Эта вера абсолютно противоречит науке, ибо все опыты и исследования показали, что материя не обладает подобными способностями. Известный английский астроном и математик сэр Фред Хойль объясняет это на следующем примере: «Если бы внутри материи был бы внутренний принцип, побуждающий ее к образованию жизни, то это можно было бы продемонстрировать в любой лаборатории. Например, какой-нибудь исследователь мог бы использовать для опыта бассейн, который представлял бы собой первичный «бульон». Можно было бы заполнить этот бассейн всеми видами неживых химических веществ, закачать любые газы и облучить поверхность радиацией любого вида. Проделав этот опыт в течение целого года, проконтролируйте, сколько ферментов из 2000 жизненно необходимых видов смогло образоваться за этот период.
Я отвечу вам сразу, чтобы вы не теряли времени на этот опыт. Вы не обнаружите ничего, может быть, только несколько аминокислот и других элементарных химических веществ». Биолог-эволюционист Эндрю Скотт признает этот факт следующим образом: «Возьмите немного вещества, перемешайте, подогрейте и немного подождите. Это современная версия происхождения жизни. А такие «основные» силы, как гравитация, электромагнетизм, сильная и слабая ядерные силы довершат начатое вами дело до конца… Интересно, какая же доля этого простого повествования основана на правде и какая — на спекуляции, основанной на предположениях? На самом деле, весь процесс развития от первого химического элемента до живой клетки либо является очень спорным вопросом, либо вовсе окутан мраком. Ультрафиолетовые лучи, достигавшие Земли, неконтролируемые катаклизмы природы, оказывающие разрушительные физические и химические воздействия, явились бы причиной распада протеиноидов.
А нахождение аминокислот в воде, чтобы избежать ультрафиолетовых лучей, невозможно согласно принципу Ле Шателье. В свете этих фактов мнение о том, что протеиноиды являются началом жизни, постепенно утеряло силу среди ученых. Чудо-молекула ДНК Как показывает анализ пройденных нами тем, теория эволюции зашла в полный тупик уже на молекулярном уровне. Эволюционисты не смогли внести ясность в вопрос происхождения аминокислоты. Образование же белка само по себе является загадкой. Плюс ко всему, вопрос не ограничивается аминокислотами и белком; это только начало. А по существу, настоящим тупиком для эволюционистов является уникальный живой организм, называемый клеткой.
Потому что клетка представляет собой не просто массу, состоящую из белков, которые в свою очередь состоят из аминокислот. Напротив, этот живой организм состоит из сотен развитых и настолько запутанных систем, что человек до сих пор не смог разгадать все его секреты. Что и говорить об этих системах, когда эволюционисты не в силах объяснить происхождения даже структурной единицы белка. Теория эволюции, будучи не в состоянии найти последовательное объяснение происхождению наипростейшей молекулы клетки, оказалась в совершенно новом тупике в результате развития генетики и открытия нуклеиновых кислот, то есть ДНК и РНК. Молекула ДНК, находящаяся в ядре каждой из 100 триллионов клеток человека, содержит в себе уникальный план строения человеческого организма. Любая информация, касающаяся человека — от внешности до внутренних органов — зашифрована в ДНК. Молекулы, называемые нуклеотидами или же основаниями , выражаются заглавными буквами A, T, Г, Ц.
Физические различия между людьми исходят из различных сочетаний этих букв. Это своего рода информационный центр с алфавитом из четырех букв. Комбинации этих букв в ДНК определяют строение организма, вплоть до каждой детали. Информация о таких особенностях, как рост, глаза, волосы, цвет кожи, а также весь план 206 костей тела, 600 мышц, сеть из 10 тысяч окончаний слухового нерва, 2 миллионов рецепторов зрительного нерва, 100 миллионов нервных клеток и 100 триллионов клеток в целом — все это запланировано в ДНК каждой клетки.
Для сапрофитных бактерий характерно питание отмершими остатками или выделениями других живых организмов. Благодаря сапрофитным бактериям происходит процесс гниения и брожения. По сути сапрофиты — это санитары нашей планеты, разлагающие остатки пищи, трупы животных, экскременты, сухие листья, ветки и др. Отношение бактерий к кислороду По отношению к кислороду все бактерии, как и другие организмы, делятся на две большие группы: 1. Анаэробы — бактерии способные обходиться без кислорода полностью или частично. Бактерии, которые могут жить как в присутствии кислорода, так и без него — называют факультативными от фр. К ним относят бактерии гниения или уксуснокислые бактерии. Микроаэрофильные бактерии лучше растут в атмосфере с низким содержанием кислорода. Бактерии, для которых кислород губителен, называют облигатными от лат. К ним относят винные бактерии или бактерии ботулизма. Аэробы — дышащие кислородом бактерии синегнойные, лактобактерии и др. Дыхание многих бактерий похоже на дыхание растений и животных. Они поглощают кислород воздуха и выделяют углекислый газ и энергию. Отношение бактерий к азоту Определенная часть бактерий способна обходиться без органического азота, входящего в состав белковой пищи, так как они самостоятельно могут его усваивать из атмосферы. Благодаря такой группе азотфиксирующих бактерий, азот входящий в состав воздуха, усваивается растениями, далее через пищевую цепь он поступает в другие живые организмы, встраиваясь в органические соединения белки и нуклеиновые кислоты. Подобные бактерии образуют симбиоз с корнями бобовых растений клубеньковые бактерии. Размножение бактерий Размножаются бактерии простым поперечным делением клеток перетяжкой. Цитоплазма клетки «перешнуровывается», и клетка делится пополам.
Подвижные передвигаются при помощи жгутиков или за счет волнообразных сокращений. Большинство бактерий бесцветны. Однако некоторые из них окрашены в красный, зеленый, синий и прочие цвета, что обусловлено пигментами, которые содержатся в цитоплазме, и веществами в слизистой капсуле.
Происхождение, эволюция, место бактерий в развитии жизни на Земле
Однако выделение вирусных элементов из геномов останков древних существ позволяет проследить их распространение и изменение. Откуда взялись бесклеточные организмы В настоящее время выдвинуты следующие теории происхождения вирусов в ходе эволюции: регрессия одноклеточных микроорганизмов; переход доклеточных форм к паразитическому способу жизни; отсоединение отдельных участков ДНК или РНК клеточных организмов с сохранением зависимости. У каждой теории существуют недостатки, не позволяющие ее принять за единую правильную версию. Изменчивость и наследственность вирусов Эволюцию вирусов ученые пытаются проследить, проводя анализ геномов современных микроорганизмов. Выяснено, что развитие вирусов происходит в результате изменения последовательностей соединения участков ДНК или РНК под воздействием различных внешних факторов. Это приводит к возникновению более адаптированных к создавшимся условиям мутантов, способным сразу же воспроизводить себе подобных. Такая быстрота генетических изменений ускоряет эволюцию данных микроорганизмов, способствует появлению новых заболеваний, повышает устойчивость вирусов к неблагоприятным воздействиям. Особенности эволюции вирусов на современном этапе В ходе эволюции, помимо мутаций, у вирусов выработалась «антигенная изменчивость», результатом которой является создание новых штаммов микроорганизмов. Данный процесс заключается в «перемешивании» генов различных вирусов при заражении клетки микрочастицами, имеющими сходное происхождение. Возникающие штаммы обладают большей вирулентностью, способностью противостоять антимикробным препаратам и дезинфицирующим средствам, а также заражать другие виды макроорганизмов.
Почему вирусы называют двигателями эволюции Изучение роли вирусов в эволюции жизни на Земле привело ученых к выводу, что их жизнедеятельность спровоцировала треть всех изменений, оказывающих влияние на геном животных и человека. Постоянное противостояние этим микроорганизмам привело к формированию всех органов и тканей, выполняющих различные функции. Поэтому вирусы еще называют стихийным злом эволюции. Однако считается, что живой мир планеты не был бы таким, какой он есть сейчас, если бы не вирусы. Влияние вирусов на эволюцию человека происходило во время инфицирования клеток, участвующих в процессе размножения. Образовавшиеся провирусы внедрялись в геном, становясь частью наследственной информации. Подобные мутации повлияли на изменения геномов даже в большей степени, чем это было возможно в ходе естественной эволюционной изменчивости. Исследуя роль вирусов в эволюции эукариотических клеток, ученые обнаружили вирусное происхождение некоторых структурных элементов. Также существует теория вирусного возникновения ядра.
В ее основу положено происхождение клеточного ядра от большого ДНК-содержащего вируса. Проникнув в архею и начав размножаться, микроорганизм стал полностью ее контролировать. Как повлияло появление многоклеточных организмов на ход эволюции Первыми прокариотами, которые могли появиться в водной среде, считаются анаэробные микроорганизмы, осуществлявшие свою жизнедеятельность за счет брожения. Через 1 млрд лет после того, как появился кислород, все эукариоты, большинство которых является аэробами, начали активно заселять водные пространства планеты. Размножаясь, одноклеточные микроорганизмы образовывали многочисленные колонии. Большая скученность привела к появлению у них специализации и определенных клеточных структур. У одних сохранились жгутики и ворсинки, другие их потеряли, сохранив взамен ложноножку. Таким образом, происходит расслоение колоний, где каждый устойчивый слой выполняет определенные функции. Это можно считать началом эволюции одноклеточных форм до наиболее высокоразвитых животных.
К первым многоклеточным животным относятся губки, кишечнополостные и членистоногие. Дальнейшее развитие было направлено на усовершенствование способов передвижения, дыхания и координации функций клеток организма.
Бактерий много в почве, на дне озер и океанов — повсюду, где накапливается органическое вещество.
Некоторые бактерии переносят очень высокую соленость среды; в частности, это единственные организмы, обнаруженные в Мертвом море. В атмосфере они присутствуют в каплях воды, и их обилие там обычно коррелирует с запыленностью воздуха. Так, в городах дождевая вода содержит гораздо больше бактерий, чем в сельской местности.
В холодном воздухе высокогорий и полярных областей их мало, тем не менее они встречаются даже в нижнем слое стратосферы на высоте 8 км. Густо заселен бактериями обычно безвредными пищеварительный тракт животных. Эксперименты показали, что для жизнедеятельности большинства видов они не обязательны, хотя и могут синтезировать некоторые витамины.
Однако у жвачных коров, антилоп, овец и многих термитов они участвуют в переваривании растительной пищи. Кроме того, иммунная система животного, выращенного в стерильных условиях, не развивается нормально из-за отсутствия стимуляции бактериями. Нормальная бактериальная «флора» кишечника важна также для подавления попадающих туда вредных микроорганизмов.
Толщина их обычно составляет 0,5—2,0 мкм, а длина — 1,0—8,0 мкм. Разглядеть некоторые формы едва позволяет разрешающая способность стандартных световых микроскопов примерно 0,3 мкм , но известны и виды длиной более 10 мкм и шириной, также выходящей за указанные рамки, а ряд очень тонких бактерий может превышать в длину 50 мкм. На поверхности, соответствующей поставленной карандашом точке, уместится четверть миллиона средних по величине представителей этого царства.
По особенностям морфологии выделяют следующие группы бактерий: кокки более или менее сферические , бациллы палочки или цилиндры с закругленными концами , спириллы жесткие спирали и спирохеты тонкие и гибкие волосовидные формы. Некоторые авторы склонны объединять две последние группы в одну — спириллы. Прокариоты отличаются от эукариот главным образом отсутствием оформленного ядра и наличием в типичном случае всего одной хромосомы — очень длинной кольцевой молекулы ДНК, прикрепленной в одной точке к клеточной мембране.
У прокариот нет и окруженных мембранами внутриклеточных органелл, называемых митохондриями и хлоропластами. У эукариот митохондрии вырабатывают энергию в процессе дыхания, а в хлоропластах идет фотосинтез см. У прокариот вся клетка целиком и в первую очередь — клеточная мембрана берет на себя функцию митохондрии, а у фотосинтезирующих форм — заодно и хлоропласта.
Как и у эукариот, внутри бактерии находятся мелкие нуклеопротеиновые структуры — рибосомы, необходимые для синтеза белка, но они не связаны с какими-либо мембранами. За очень немногими исключениями, бактерии не способны синтезировать стеролы — важные компоненты мембран эукариотической клетки. Снаружи от клеточной мембраны большинство бактерий одето клеточной стенкой, несколько напоминающей целлюлозную стенку растительных клеток, но состоящей из других полимеров в их состав входят не только углеводы, но и аминокислоты и специфические для бактерий вещества.
Эта оболочка не дает бактериальной клетке лопнуть, когда в нее за счет осмоса поступает вода. Поверх клеточной стенки часто находится защитная слизистая капсула. Многие бактерии снабжены жгутиками, с помощью которых они активно плавают.
Жгутики бактерий устроены проще и несколько иначе, чем аналогичные структуры эукариот. Сенсорные функции и поведение. Многие бактерии обладают химическими рецепторами, которые регистрируют изменения кислотности среды и концентрацию различных веществ, например сахаров, аминокислот, кислорода и диоксида углерода.
Для каждого вещества существует свой тип таких «вкусовых» рецепторов, и утрата какого-то из них в результате мутации приводит к частичной «вкусовой слепоте». Многие подвижные бактерии реагируют также на колебания температуры, а фотосинтезирующие виды — на изменения освещенности. Некоторые бактерии воспринимают направление силовых линий магнитного поля, в том числе магнитного поля Земли, с помощью присутствующих в их клетках частичек магнетита магнитного железняка — Fe3O4.
В воде бактерии используют эту свою способность для того, чтобы плыть вдоль силовых линий в поисках благоприятной среды. Условные рефлексы у бактерий неизвестны, но определенного рода примитивная память у них есть. Плавая, они сравнивают воспринимаемую интенсивность стимула с ее прежним значением, то есть определяют, стала она больше или меньше, и, исходя из этого, сохраняют направление движения или изменяют его.
Размножение и генетика. Бактерии размножаются бесполым путем: ДНК в их клетке реплицируется удваивается , клетка делится надвое, и каждая дочерняя клетка получает по одной копии родительской ДНК. Бактериальная ДНК может передаваться и между неделящимися клетками.
При этом их слияния как у эукариот не происходит, число особей не увеличивается, и обычно в другую клетку переносится лишь небольшая часть генома полного набора генов , в отличие от «настоящего» полового процесса, при котором потомок получает по полному комплекту генов от каждого родителя. Такой перенос ДНК может осуществляться тремя путями. При трансформации бактерия поглощает из окружающей среды «голую» ДНК, попавшую туда при разрушении других бактерий или сознательно «подсунутую» экспериментатором.
Процесс называется трансформацией, поскольку на ранних стадиях его изучения основное внимание уделялось превращению трансформации таким путем безвредных организмов в вирулентные. Фрагменты ДНК могут также переноситься от бактерии к бактерии особыми вирусами — бактериофагами. Это называется трансдукцией.
Известен также процесс, напоминающий оплодотворение и называемый конъюгацией: бактерии соединяются друг с другом временными трубчатыми выростами копуляционными фимбриями , через которые ДНК переходит из «мужской» клетки в «женскую». Иногда в бактерии присутствуют очень мелкие добавочные хромосомы — плазмиды, которые также могут переноситься от особи к особи. Если при этом плазмиды содержат гены, обусловливающие резистентность к антибиотикам, говорят об инфекционной резистентности.
Она важна с медицинской точки зрения, поскольку может распространяться между различными видами и даже родами бактерий, в результате чего вся бактериальная флора, скажем кишечника, становится устойчивой к действию определенных лекарственных препаратов. При самых благоприятных условиях некоторые бактерии могут удваивать свою общую массу и численность примерно каждые 20 мин. Это объясняется тем, что ряд их важнейших ферментных систем функционирует с очень высокой скоростью.
Так, кролику для синтеза белковой молекулы требуются считанные минуты, а бактерии — секунды. Однако в естественной среде, например в почве, большинство бактерий находится «на голодном пайке», поэтому если их клетки и делятся, то не каждые 20 мин, а раз в несколько дней. Бактерии бывают автотрофами и гетеротрофами.
Автотрофы «сами себя питающие» не нуждаются в веществах, произведенных другими организмами. В качестве главного или единственного источника углерода они используют его диоксид CO2. Включая CO2 и другие неорганические вещества, в частности аммиак NH3 , нитраты NO—3 и различные соединения серы, в сложные химические реакции, они синтезируют все необходимые им биохимические продукты.
Гетеротрофы «питающиеся другим» используют в качестве основного источника углерода некоторым видам нужен и CO2 органические углеродсодержащие вещества, синтезированные другими организмами, в частности сахара. Окисляясь, эти соединения поставляют энергию и молекулы, необходимые для роста и жизнедеятельности клеток. В этом смысле гетеротрофные бактерии, к которым относится подавляющее большинство прокариот, сходны с человеком.
Главные источники энергии. Если для образования синтеза клеточных компонентов используется в основном световая энергия фотоны , то процесс называется фотосинтезом , а способные к нему виды — фототрофами. Фототрофные бактерии делятся на фотогетеротрофов и фотоавтотрофов в зависимости от того, какие соединения — органические или неорганические — служат для них главным источником углерода.
Фотоавтотрофные цианобактерии сине-зеленые водоросли , как и зеленые растения, за счет световой энергии расщепляют молекулы воды H2O. У зеленых и пурпурных серных бактерий световая энергия используется для расщепления не воды, а других неорганических молекул, например сероводорода H2S. В результате также образуется водород, восстанавливающий диоксид углерода, но кислород не выделяется.
Бактерии нуждаются в пище, влаге, в определённой температуре для поддержании своей жизнедеятельности. При наступлении неблагоприятных для их жизни условий, например при недостатке пищи, влаги или при резком понижении или повышении температуры, протоплазма бактерии сжимается в шарик и покрывается новой прочной оболочкой. Такое состояние бактерий называется cпopoй. В состоянии споры бактерия не питается и не движется - она находится в покое.
Споры многих бактерий выдерживают длительное высушивание, кипячение, замораживание, а также действие различных ядов. Попав во влажную питательную среду, споры набухают и затем прорастают. Из споры снова образуется бактерия, которая начинает двигаться, питаться и размножаться. Так, путём образования спор бактерии сохраняют своё существование.
Таким образом, бактерии объединяются в царство мельчайших организмов очень простого строения. Бактерии большей частью питаются органическими веществами; среди них встречаются сапрофиты и паразиты. Бактерии растут и размножаются очень быстро. Поэтому они быстро распространяются.
Исключением являются такие растения , как нитчатые цианобактерии и актиномицеты. Рисунок 1. Формы бактерий В строении бактерий выделяют три обязательных клеточных элемента: цитоплазматическую мембрану, нуклеотид, рибосомы. Эта клеточная оболочка выполняет основные механические и физиологические функции.
Микробиологи делят все виды бактерий на грамположительные, грамотрицательные и бактерии без клеточной стенки микоплазмы , так как в связи с особенностями строения клеточной стенки бактерии по-разному реагируют на окрашивание способом Грама. У грамположительных бактерий стенка утолщена и содержит большее количество муреина, тогда как у грамотрицательных видов клеточная стенка тонкая, а снаружи имеется мембрана, включающая белки, фосфолипиды, липополисахариды. Многие бактерии имеют на своей поверхности ворсинки либо жгутики, обеспечивающие передвижение организма. Некоторые бактерии покрыты снаружи слизистыми капсулами, состоящими из полисахаридов в некоторых случаях полипептидов или гликопротеинов.
Рисунок 2. Строение клетки бактерии От клеточной стенки цитоплазму бактерий отделяет цитоплазматическая мембрана. Такие важные для жизнедеятельности организма процессы, как дыхание, хемосинтез, фиксация азота и др. В мембране осуществляется биосинтез клеточной стенки, а также спорообразование.
В целом клетка бактерии устроена достаточно просто. Вся генетическая информация об организме бактерии, необходимая для ее жизнедеятельности, заключена в одной ДНК, которая присутствует в клетке в виде замкнутого кольца.
Это временная защитная форма бактерий, когда клетка не двигается и не питается, находясь в состоянии покоя долгое время Рис. Споры бактерий способны пролежать под землей до 20-30 лет. С помощью ветра споры разносятся на большие расстояния, а попав в благоприятные условия, «просыпаются», превращаясь в обычную клетку, способная вновь размножаться.
Цианобактерии Именно цианобактерии стали одними из первых представителей живых организмов на Земле. Некоторые ископаемые останки цианобактерий имеют возраст превышающий 3 мдрд лет Рис. У них отсутствует ядро, что объединяет их с бактериями, а возможность фотосинтезировать относит к водорослям. Именно благодаря фотосинтезу, они первыми обогатили атмосферу нашей планеты кислородом, что сделало ее пригодной для существования живых организмов. Цианобактерии представлены как одноклеточными, так и многоклеточными формами.
Носток — съедобная синезеленая водоросль, употребляемая в пищу в разных странах Китай, Монголия, Южная Америка Рис. Побочным продуктом такой реакции — кислород. Некоторые цианобактерии не способны выделять кислород, так как при фотосинтезе они не используют воду. К автотрофным бактериям так же относят и хемосинтезирующие формы, использующие энергию химических реакций азотобактерии, железобактерии, серобактерии и др. Гетеротрофные от греч.
В свою очередь эти бактерии подразделяются на паразитов и сапрофитов. Паразиты являются болезнетворными формами, которые питаются тканями своих хозяев, вызывая различные заболевания растений бактериозы , животных и человека. Для сапрофитных бактерий характерно питание отмершими остатками или выделениями других живых организмов. Благодаря сапрофитным бактериям происходит процесс гниения и брожения. По сути сапрофиты — это санитары нашей планеты, разлагающие остатки пищи, трупы животных, экскременты, сухие листья, ветки и др.
Ускоренная эволюция бактерий происходила 3 млрд лет назад
Строение бактериальной клетки: 1 — клеточная стенка; 2 — наружная цитоплазматическая мембрана; 3 — хлоросома; 4 — нуклеоид; 5 — мезосома; 6 — вакуоли; 7 — жгутики; 8 — рибосомы. Мезосомы различаются формой, размерами, локализацией в клетке. Наиболее просто устроенные имеют вид везикул пузырьков , более сложные имеют пластинчатое и трубчатое строение. Предполагают, что мезосомы принимают участие в формировании поперечной перегородки при делении клетки.
Мезосомы, связанные с нуклеоидом, играют определенную роль в репликации ДНК и последующем расхождении хромосом. Возможно, мезосомы обеспечивают разделение клетки на отдельные обособленные отсеки, создавая тем самым благоприятные условия для протекания ферментативных процессов. В клетках фотосинтезирующих бактерий имеются внутрицитоплазматические мембранные образования — хроматофоры , обеспечивающие протекание бактериального фотосинтеза.
Цитоплазма и цитоплазматические включения Цитоплазма представляет собой внутреннее содержимое клетки. В цитоплазме различают: цитозоль — густую гомогенную часть, содержащую растворимые компоненты РНК, белки, вещества субстрата и продукты метаболизма; структурные элементы: рибосомы, внутрицитоплазматические включения и нуклеоид. Рибосомы Рибосомы свободно лежат в цитоплазме и не связаны с мембранами как у эукариот.
Для бактерий характерны 70S-рибосомы, образованные двумя субъединицами: 30S и 50S. Рибосомы бактериальных клеток собраны в полисомы, образованные десятками рибосом. Цитоплазматические включения Бактериальные клетки могут иметь разнообразные цитоплазматические включения — газовые вакуоли, пузырьки, содержащие бактериохлорофилл, полисахариды , отложения серы и другие.
Нуклеоид Бактерии не имеют структурно оформленного ядра. Генетический аппарат бактерий называют нуклеоидом. Он представляет собой молекулу ДНК, сосредоточенную в ограниченном пространстве цитоплазмы.
Молекула ДНК имеет типичное строение. Она состоит из двух полинуклеотидных цепей, образующих двойную спираль. В отличие от эукариот, ДНК имеет кольцевую структуру, а не линейную.
Молекулу ДНК бактерий отождествляют с одной хромосомой эукариот. ДНК бактерий закреплена на цитоплазматической мембране в области мезосомы. Клетки многих бактерий имеют нехромосомные генетические элементы — плазмиды.
Для эволюции бактерий характерен ярко выраженный физиолого-биохимический уклон: при относительной бедности жизненных форм и примитивном строении, они освоили практически все известные сейчас биохимические процессы. Прокариотная биосфера имела уже все существующие сейчас пути трансформации вещества. Эукариоты, внедрившись в неё, изменили лишь количественные аспекты их функционирования, но не качественные, на многих этапах циклов элементов бактерии по-прежнему сохраняют монопольное положение. Одними из древнейших бактерий являются цианобактерии. В породах, образованных 3,5 млрд лет назад, обнаружены продукты их жизнедеятельности — строматолиты, бесспорные свидетельства существования цианобактерий, относятся ко времени 2,2-2,0 млрд лет назад. Благодаря им в атмосфере начал накапливаться кислород, который 2 млрд лет назад достиг концентраций, достаточных для начала аэробного дыхания. Появление кислорода в атмосфере нанесло серьёзный удар по анаэробным бактериям. Они либо вымирают, либо уходят в локально сохранившиеся бескислородные зоны.
Вот например, крокодил…». Однако подобные идеи не могли долго противостоять развивающейся науке и были опровергнуты следующим опытом итальянского врача Франческо Реди 1626-1697 : он покрыл свежее мясо кисеёй, и через некоторое время личинки мух появились не в мясе, а на поверхности кисеи. Этим было показано, что червячки образуются не самопроизвольно, а развиваются из яичек, откладываемых мухами. Он высказал также тезис ошибочно приписываемый Гарвею , "Omne vivum ex ovo" - Всё живое из яйца". Но и после этого учёные разных стран защищали точку зрения, согласно которой из разлагающегося органического вещества зарождаются микроскопические существа. История роли микроорганизмов в спорном вопросе о возникновении жизни регулярно описывается в большинстве учебников по микробиологии. Поиски экспериментальных доказательств за и против учения о самозарождении жизни были наиболее сильным импульсом, способствующим бактериологическим исследованиям в 18 и 19 столетиях. В 18 веке русский учёный Тереховский и итальянец Лаццаро Спалланцани 1729-1799 показали, что если сосуды, в которых находится жидкость, хорошо прогреть, то в них живых существ не образуется. Ставились также опыты, при которых в сосуд с обеспложенной жидкостью воздух пропускался через крепкую серную кислоту или через слой стерилизованной ваты. Результаты этих опытов говорили против возможности самопроизвольного зарождения. Французская академия учредила премию тому, кто раз и навсегда покончит с этими спорами, волновавшими весь учёный мир. Луи Пастер провёл серию тщательно продуманных опытов. Сейчас его колбы с S —образным горлышком являются символом исследования, которое вынесло смертный приговор теории самозарождения. Он первым доказал. Что в воздухе содержатся видимые под микроскопом живые организмы. В 1864 году Пастер доложил Французской академии о своих результатах. Окончательное решение вопроса стало возможным в 19 веке после открытий Ф. Коном и Р. Кохом устойчивых к нагреванию спор бактерий, работ Листера, Тиндаля. Таким образом, вопрос о возникновении жизни долгое время служил импульсом исследований бактерий и других микроорганизмов. Возможно, есть несообразие в том, что говоря об экспериментах Пастера как о победе разума над мистицизмом, мы тем не менее, вынуждены вернуться к идее о самопроизвольном зарождении, пусть в её более совершенном, научном понимании, а именно к химической эволюции. Согласно гипотезе химической эволюции, жизнь возникла из неживого вещества, то есть произошла в результате эволюции материи.
Бихи в своей книге «Предел эволюции» приравнял роль мутаций в сопротивляемости антибиотиков и патогенов, к например, окопной войне, в результате которой мутации уничтожают некоторые функции, чтобы преодолеть восприимчивость. Это так, как если бы вы положили жевательную резинку в механические часы; они не могли быть созданы таким образом. Много шумихи без причины снова Бихи прав; здесь нет ничего, что было бы за «пределами эволюции», то есть все это не имеет никакого отношения к происхождению ферментов и каталитических путей, что должна объяснить эволюция. Блаунт обнаружил, что к использованию бактериями цитрата привели три шага: 1. Потенцирование: Шаг, включающий в себе по меньшей мере 2 мутации. Он обнаружил одну возможную мутацию, единичное изменение нуклеотида SNP , повреждающее ген, известный как arcB, который регулирует работу цикла Кербса ЦТК , что могло привести к ускоренному метаболизму цитрата. Актуализация: дупликация гена, производящего белок-транспортер цитрата, что позволило использовать цитрат. Дупликация гена в месте без обычной контролирующей его последовательности позволило его экспрессии в присутствии кислорода поскольку он попал под контроль уже существующего промотора, который был «включен» в присутствии кислорода. Это важнейший шаг, позволивший появиться ограниченной способности использовать цитрат в аэробной среде. Усовершенствование: дальнейшая дупликация этой последовательности два или три раза известна как амплификация. Этот процесс увеличил «дозу генов», что привело к росту количества произведенного белка-транспортера цитрата, таким образом увеличивая общее потребление цитрата. Прежде чем это исследование было проведено, я предположил выше , что скорее всего мутации привели к тому, что бактерия стала способна перерабатывать цитрат в присутствии кислорода. Первым моим предположением было то, что контролирующая система, останавливающая переработку цитрата в присутствии кислорода, была поломана. Несмотря на то, что все намного сложнее, чем просто поломка контролирующей системы останавливающей производство белка-транспортера в присутствии кислорода , все же оказалось, что на самом деле предположение было близким к тому, что произошло, что указывает на то, что мышление о сотворении делает хорошие научные предсказания. В то время как существующие контрольные системы не были сломаны, ген-транспортер был реплицирован скопирован в другое место без контролирующих систем, потому производство транспортера уже больше не было подавлено в присутствии кислорода. Скопированный ген-транспортер попал под контроль уже существующего промотора последовательность промотора rnk , включенного в присутствии кислорода. Потому способность клетки контролировать транспортер цитрата была вправду нарушена клетка уже была не способна отключить производство транспортера. Потому теперь клетка производит белок-транспортер цитрата независимо от нужды клетки. Это связано с тем, что контролирующая система была поломана. Мутировавшая клетка не может выключить производство гена-транспортера цитрата. Несмотря на все фанфары на блогах эволюционистов, включая самого Блаунта, я не говорил, что «эволюционные инновации» невозможны и так же никто из известных мне креационных биологов; смотрите статью: Can mutations create new information? То, что мы говорим, это то, что тот тип наблюдаемых «эволюционных» то есть «натуральных» инноваций не предлагают никакого подтверждения идеи, будто микробы превратились в микробиологов. На это требовалось бы не только дупликация уже существующих генов, поломки контрольных систем или кооптации существующих контрольных систем, но появление тысяч новых семейств генов семейства генов отличаются друг от друга довольно сильно , которых нет у микробов, вместе с их контрольными системами. Более того, потеряв способность отключения производства гена-транспортера цитрата, теперь бактерия тратит ресурсы зря, производя транспортер цитрата тогда, когда он ей не нужен.
Ускоренная эволюция бактерий происходила 3 млрд лет назад
Такая передача может осуществляться при прямом контакте двух клеток конъюгация , при участии бактериофагов трансдукция или путём попадания генов в клетку из внешней среды без межклеточного контакта. Всё это имеет большое значение для микроэволюции бактерий и приобретения ими новых свойств. Размножение Большинство бактерий размножаются путём деления надвое, реже почкованием, а некоторые например, актиномицеты — с помощью экзоспор или обрывков мицелия. Известен способ множественного деления с образованием мелких репродуктивных клеток-баеоцитов у ряда цианобактерий. Многоклеточные прокариоты могут размножаться отделением от трихом одной или нескольких клеток.
Некоторые бактерии характеризуются сложным циклом развития, в процессе которого могут меняться морфология клеток и образовываться покоящиеся формы: цисты , эндоспоры, акинеты. Миксобактерии способны образовывать плодовые тела, часто причудливых конфигураций и окрасок. Отличительной особенностью бактерий является способность к быстрому размножению. Например, время удвоения клеток кишечной палочки Escherichia coli составляет 20 мин.
Подсчитано, что потомство одной клетки в случае неограниченного роста уже через 48 ч превысило бы массу Земли в 150 раз. Условия обитания Бактерии приспособились к разным условиям существования. Некоторые бактерии чрезвычайно устойчивы к ионизирующему излучению и живут даже в воде охлаждающих контуров атомных реакторов Deinococcus radiodurans. Ряд бактерий барофилы, или пьезофилы хорошо переносят гидростатическое давление до 101 тыс.
В то же время есть бактерии, не выдерживающие даже незначительного увеличения атмосферного давления. Как правило, бактерии предпочитают нейтральные условия среды обитания рН около 7,0 , хотя встречаются как экстремальные ацидифилы, способные к росту при рН 0,1—0,5, так и алкалифилы, развивающиеся при рН до 13,0. Подавляющее большинство изученных бактерий — аэробы. Факультативные анаэробы растут как в присутствии O2, так и в его отсутствие; они способны переключать метаболизм с аэробного дыхания на брожение или анаэробное дыхание энтеробактерии.
Рост аэротолерантных анаэробов не угнетается в присутствии небольшого количества O2, т. Для строгих анаэробов даже следы O2 в среде обитания являются губительными. Многие бактерии переживают неблагоприятные условия среды, образуя покоящиеся формы. Типы питания Для бактерий характерны интенсивный обмен веществами между клеткой и внешней средой и пластичность метаболизма.
Они обладают высокой способностью к адаптации, легко приспосабливаясь к различным в том числе экстремальным условиям среды, способны переключаться с одного типа питания на другой. Как и другие организмы, бактерии запасают энергию главным образом в форме АТФ , образующегося в процессе фотосинтеза, дыхания и различных типов брожения. В зависимости от источника используемого углерода они делятся на автотрофов полностью удовлетворяют свои потребности за счёт CO2 и гетеротрофов нуждаются в готовых органических соединениях. Однако эти термины не отражают всё многообразие типов питания у бактерий.
Поэтому при их характеристике указывают на источник энергии, доноров водорода электронов и вещества, используемые в биосинтетических процессах. Для большинства бактерий источником энергии служит окисление химических веществ хемотрофы. Ряд бактерий в том числе пурпурные и зелёные бактерии , цианобактерии в ходе фотосинтеза преобразуют энергию света в энергию химических связей органических соединений фототрофы.
Белки мембраны в основном представлены структурными белками, обладающими ферментативной активностью. Обычно темпы роста цитоплазматической мембраны опережают темпы роста клеточной стенки. Это приводит к тому, что мембрана часто образует многочисленные инвагинации впячивания различной формы — мезосомы. Строение бактериальной клетки: 1 — клеточная стенка; 2 — наружная цитоплазматическая мембрана; 3 — хлоросома; 4 — нуклеоид; 5 — мезосома; 6 — вакуоли; 7 — жгутики; 8 — рибосомы. Мезосомы различаются формой, размерами, локализацией в клетке.
Наиболее просто устроенные имеют вид везикул пузырьков , более сложные имеют пластинчатое и трубчатое строение. Предполагают, что мезосомы принимают участие в формировании поперечной перегородки при делении клетки. Мезосомы, связанные с нуклеоидом, играют определенную роль в репликации ДНК и последующем расхождении хромосом. Возможно, мезосомы обеспечивают разделение клетки на отдельные обособленные отсеки, создавая тем самым благоприятные условия для протекания ферментативных процессов. В клетках фотосинтезирующих бактерий имеются внутрицитоплазматические мембранные образования — хроматофоры , обеспечивающие протекание бактериального фотосинтеза. Цитоплазма и цитоплазматические включения Цитоплазма представляет собой внутреннее содержимое клетки. В цитоплазме различают: цитозоль — густую гомогенную часть, содержащую растворимые компоненты РНК, белки, вещества субстрата и продукты метаболизма; структурные элементы: рибосомы, внутрицитоплазматические включения и нуклеоид. Рибосомы Рибосомы свободно лежат в цитоплазме и не связаны с мембранами как у эукариот.
Для бактерий характерны 70S-рибосомы, образованные двумя субъединицами: 30S и 50S. Рибосомы бактериальных клеток собраны в полисомы, образованные десятками рибосом. Цитоплазматические включения Бактериальные клетки могут иметь разнообразные цитоплазматические включения — газовые вакуоли, пузырьки, содержащие бактериохлорофилл, полисахариды , отложения серы и другие. Нуклеоид Бактерии не имеют структурно оформленного ядра. Генетический аппарат бактерий называют нуклеоидом. Он представляет собой молекулу ДНК, сосредоточенную в ограниченном пространстве цитоплазмы. Молекула ДНК имеет типичное строение. Она состоит из двух полинуклеотидных цепей, образующих двойную спираль.
В отличие от эукариот, ДНК имеет кольцевую структуру, а не линейную.
Некоторые бактерии, живущие внутри кишечника животных, в том числе и человека, потребляя и перерабатывая их пищу, поставляют им витамины группы B и K. Автотрофные бактерии: Фотобактерии — используют солнечный свет для синтеза органических веществ из неорганических. Этот процесс называется фотосинтез. К фотобактериям относятся цианобактерии.
Хемобактерии — получают энергию от окисления неорганических соединений, например, железобактерии, серобактерии, нитрифицирующие бактерии. Пережидание неблагоприятных условий Бактерии нуждаются в пище, влаге, в определённой температуре для поддержания своей жизнедеятельности. При наступлении неблагоприятных для их жизни условий, например при недостатке пищи, влаги или при резком понижении или повышении температуры, протоплазма бактерии сжимается в шарик и покрывается новой прочной оболочкой. Такое состояние бактерий называется cпopoй. Споры бактерий — тельца, образующиеся внутри некоторых бактерий в определенные стадии их существования или при ухудшении условий окружающей среды.
Споры бактерий устойчивы к различным физическим и химическим воздействиям и сохраняются в течение многих лет, не утрачивая свойства прорастать в вегетативную форму, что имеет значение в эпидемиологии ряда заболеваний.
Это является основой эволюционных преобразований и появления новых видов бактерий.
Изучены три способа образования рекомбинантов: трансформация, трансдукция и конъюгация. Рисунок 4. Схема конъюгации бактерий Роль бактерий в природе Бактерии распространены повсеместно: в воздухе, в воде, в почве, в живых организмах.
Бактерии были обнаружены даже на дне океана на глубине нескольких километров, в термальных источниках, температура воды которых достигает 90 градусов, в нефтеносных пластах, то есть они способны существовать в таких условиях, где другие живые организмы не встречаются вообще. В 1 грамме чернозема содержится около 10 миллиардов бактерий. Они разлагают органические вещества, оставшиеся от мертвых животных и растений, которые поступают в грунт.
Благодаря этому, образуются неорганические вещества, которые позднее могут употреблять другие организмы, в том числе растения, а также выделяется углекислый газ, необходимый растениям для фотосинтеза. Большое количество перегноя образуется бактериями при удобрении почвы навозом, при культивировании многолетних и однолетних травянистых растений, у которых отмирают многочисленные корни. При наличии кислорода в почве бактерии за короткий период времени подвергают превращению перегноя в минеральные вещества для питания растений , в том числе культурных.
С целью обеспечить лучшие условия для жизнедеятельности полезных почвенных бактерий в сельском хозяйстве проводят обработку и удобрение почвы. Благодаря рыхлению верхнего слоя почвы, сохраняется влага, и происходит обогащение почвы воздухом, что необходимо как для жизни культурных растений, так и для почвенных бактерий. Также и внесение навоза питает не только культурные растения, но и бактерии.
Цианобактерии и некоторые бактерии почвы способны усваивать азот воздуха и преобразовывать его в доступную для употребления растениями форму. Клубеньковые бактерии являются одной из таких групп бактерий. Они поселяются на корнях бобовых и некоторых других растений облепихи, шелковицы.
Клубеньковые бактерии способны усваивать азот из воздуха и продуцировать органические азотсодержащие вещества, обогащая ими почву. Рисунок 5. Клубеньковые бактерии Усваивая органические вещества, бактерии обеспечивают очищение водоемов.
Цианобактерии, зеленые и пурпурные серные бактерии вместе с растениями формируют запасы органических веществ в природе, образуя их из неорганических соединений. А цианобактерии еще и выделяют в атмосферу свободный кислород, которым дышат все живые существа. Образование залежей природного газа и нефти также происходило с участием определенных видов бактерий.
Жизнь на Земле невозможна без жизнедеятельности бактерий, так как они участвуют в круговороте веществ в природе, осуществляя химические превращения, не доступные ни животным, ни растениям. Роль бактерий в жизни человека Одной из сред жизни бактерий являются другие живые организмы, в том числе человек. Отношения, которые возникают при этом могут быть разными.
Есть бактерии, которые приносят пользу.
Ученые говорят, что все живое произошло от бактерий. Как это можно объяснить?
Форма клеток бактерий может быть. Для эволюции бактерий характерен ярко выраженный физиолого-биохимический уклон: при относительной бедности жизненных форм и примитивном строении, они освоили практически все известные сейчас биохимические процессы. Клетка археи, поглотившая бактерию и ставшая затем эукариотной клеткой, получила много преимуществ с точки зрения эффективности метаболизма, устойчивости, выживаемости. объясните,почему,корнем уравнения 2(x-7)=2x-14 является хоть какое число.