Генетика. вопросы 10-11 класс. Новые задачи по молекулярной биологии. Генетика к ЕГЭ по биологии с решениями 2023 год. Главная» Новости» Решу егэ биология 2024. Большая практика по НОВЫМ типам задач на ЕГЭ по биологии! Пару дней назад я обещал разобрать задачи 28 линии на голандрический тип наследования.
Решаю все типы заданий по теме: «Генетика» | Биология ЕГЭ – Ксения Напольская
Расщеплений по фенотипам нет. Расщепление генов во втором поколении происходит потому, что гетерозиготные Аа потомки первого поколения F1 образуют по два типа гамет, которые при оплодотворении соединяются случайно. У первого поколение F1 формируется по одному типу гамет расщепление по генотипам нет Аа расщепление по фенотипам нет А Вывод к задачам, в которых действует закон расщепления при моногибридном скрещивании: Расщепление по генотипам определяется генотипом родителей.
Генетика задачи ЕГЭ биология. Задачи по генетике 10 класс.
Как оформлять генетические задачи. Как оформляется задача по биологии. ЕГЭ биология книжки Кириленко. Кирилленко биология ЕГЭ.
Решение задач на генетику ЕГЭ биология. Решение задач по генетике. Решение задач по биологии. Решение задач по генетике ЕГЭ биология 2022.
Генетика задачи как решать. Как решать генетические задачи по биологии. Как решать задачи по биологии по генетике. Решение генетических задач по биологии 10.
Задачи по генетике 10 класс биология. Задачи по генетике 10 класс биология с решением. Генетические задачи по биологии 9 класс с решением. Задачи по генетике с f2.
Алгоритм решения задач по биологии генетика. Алгоритм решения задач по генетике биология ЕГЭ. Решение задач по генетике ЕГЭ. Алгоритм решения 4 задачи ЕГЭ биология.
Генетические задачи ЕГЭ биология. Биология ЕГЭ решение генетических задач 28. Типы задач по биологии генетика ЕГЭ. Задачи по генетике ЕГЭ биология 2023.
Новые задачи по генетике ЕГЭ. Типы задач по генетике. Шпаргалка для решения задачи на генетику ЕГЭ. Задачи по генетике ЕГЭ 2023 по биологии.
Алгоритм решения задач по генетике. Алгоритм решения задач по медицинской генетике. Алгоритм решения задач по генетике 10 класс. Задачи по биологии ЕГЭ.
Генетические задачи ЕГЭ. Оформление генетических задач на ЕГЭ по биологии. Задачи по генетике ЕГЭ биология 2022. Задачи по биологии по генетике.
Биология задачи по генетике. Оформление задачи генетика ЕГЭ. Биология задачи генетические задачи 9 класс с решением. Задачи по биологии 9 класс генетика с решением.
Простые задачи по генетике 9 класс биология. Решение задач на генетику 9 класс на моногибридное скрещивание. Задачи на кровь генетика с резус фактором. Задания ЕГЭ по биологии генетика.
Задания по генетике на ЕГЭ по биологии. Задачи по генетике 9 класс биология с решением. Решение генетических задач по биологии 9. Решение генетических задач 10 класс биология.
Учебно-методическое пособие» есть в наличии в интернет-магазине «Читай-город» по привлекательной цене. Учебно-методическое пособие» и выбрать удобный способ его получения: самовывоз, доставка курьером или отправка почтой. Чтобы покупать книги вам было ещё приятнее, мы регулярно проводим акции и конкурсы. Книжный интернет-магазин «Читай-город» «Читай-город» — сеть книжных магазинов, успешно работающих в Москве и других регионах России.
У них родился голубоглазый левша. Определите генотип матери карие глаза и праворукость доминируют. Черная окраска шерсти А доминирует над белой а , а мохнатая шерсть В над гладкой в. Какого расщепления по фенотипу следует ожидать от скрещивания двух гетерозиготных по двум признакам кроликов? При скрещивании томата с пурпурным стеблем А и красными плодами В и томата с зеленым стеблем и красными плодами получили 722 растения с пурпурным стеблем и красными плодами и 231 растение с пурпурным стеблем и желтыми плодами. У человека темный цвет волос А доминирует над светлым цветом а , карий цвет глаз В — над голубым b. Мужская особь: aabb один тип гамет ab. Черный хохлатый петух скрещен с такой же курицей. От них получены 20 цыплят: 10 черных хохлатых, 5 бурых хохлатых, 3 черных без хохла и 2 бурых без хохла. Рассмотрите рисунок. Одна из форм анемии заболевание крови наследуется, как аутосомный доминантный признак. У гомозигот это заболевание приводит к смерти, у гетерозигот проявляется в легкой форме. Голубоглазый мужчина, оба родителя которого кареглазые, женился на кареглазой женщине, мать которой голубоглазая, а отец — кареглазый. От брака родился голубоглазый сын. Составить родословную и указать генотипы всех родственников. А по схеме выяснится их гомозиготность или гетерозиготность На схеме — стрелочкой обозначен пробанд — мужчина, от которого начинали строить родослов- ную. Генотип мужчины — аа; его жены — Аа. Сын — аа. Родители мужчины: Аа и мать и отец, т. Определите генотипы родителей и потомства. Как определяются доминантные признаки в данном случае? Гены, опре- деляющие гладкие семена и наличие усиков А, В , локализованы в одной хромосоме и наследуются сцеплено, так как при 2-м скрещивании произошло расщепление по двум парам признаков в соотноше- нии 1:1 31. Гладкая форма семян кукурузы доминирует над морщинистой, фиолетовый цвет семян — над жёлтым. Составьте схему скрещивания. АаВв х аавв G. АаВв — гладкие фиолетовые аавв — морщинистые желтые Аавв — гладкие желтые ааВв — морщинистые фиолетовые 3. Сцепленное наследование генов. Какой закон наследственности проявляется в F2? Доминантные признаки — гладкие и окрашенные семена, т. В потомстве получается больше особей с гено- типами родителей и небольшая часть со смешанными признаками, что говорит о том, что идет кроссинговер. У супругов Анны и Павла, имеющих нормальное зрение, родились два сына и две дочери. Первый сын Анны и Павла — дальтоник. Две его дочери и два сына видят нормально. Каковы генотипы всех указанных родственников? Задача на анализ родословной по рецессивному сцепленному с Х — хромосомой признаку. У человека нос с горбинкой А — доминантный признак, а прямой нос — рецессивный. Полные губы В — доминантный признак, а тонкие губы — признак рецессивный. Гены обоих признаков находятся в разных хромосомах. Определите генотипы родителей и возможные генотипы и фенотипы потомков. Генотип отца — Аавв, матери — аавв. Генотипы и фенотипы потомков: Аавв — нос с горбинкой, тонкие губы, аавв — прямой нос, тонкие губы. Вероятность рождения полногубых детей равна нулю. Расщепление произошло в соответствии с законом независимого наследования Составьте схему решения задачи. Определите генотипы и фенотипы первого и второго поколений, 35. Объясните причины появления четырёх групп животных. Генотипы F1: АаВв ; фенотипы: коричневые, с волнистой шерстью. Гаметы: АВ, Ав, аВ, ав. Проявляется закон независимого наследования признаков 36. Аллели IА и IВ доминантны по отношению к аллелю i0. У отца третья группа крови и положительный резус дигетерозигота , у матери вторая группа и положительный резус дигомозигота. Определите генотипы родителей. Какую группу крови и резус- фактор могут иметь дети в этой семье, каковы их возможные генотипы и соотношение фенотипов? Со- ставьте схему решения задачи. Какой закон наследственности проявляется в данном случае? При скрещивании растений кукурузы с гладкими окрашенными зёрнами с растением, дающим морщинистые неокрашенные зёрна, в первом поколении все растения давали гладкие окрашенные зёрна. При анализирующем скрещивании гибридов из F1 в потомстве было четыре фенотипические группы: 1200 гладких окрашенных, 1215 морщинистых неокрашенных, 309 гладких неокрашенных, 315 морщинистых окрашенных. Определите генотипы родителей и потомства в двух скрещиваниях. Объясните формирование четырёх фенотипических групп во втором скрещивании. Четыре фенотипические группы объясняются неполным сцеплением генов А и В, сцепление нарушено, т. Составьте схемы двух скрещиваний. Согласно правилу единообразия Менделя получаем, что плоский венчик — доминантный признак; воронковидный — рецессивный. Согласно правилу единообразия Менделя получаем, что белый венчик — доминантный при- знак; кремовый — рецессивный. От скрещивания двух сортов земляники, один из которых имеет усы и красные ягоды, а второй не имеет усов и образует белые ягоды, в первом поколении все растения имели усы и розовые ягоды. От скрещивания растений без усов с розовыми ягодами с растениями без усов с красными ягодами получены две фенотипические группы растений: без усов розовые и без усов красные. Согласно правилу единообразия Менделя получаем, что усы — доминантный признак; от- сутствие усов — рецессивный. Розовая окраска — промежуточный признак: BB — красная окраска; Bb — розовая; bb — белая. У птиц гомогаметный XX пол мужской, а гетерогаметный XY женский. По условию: наличие хохолка — доминантный аутосомный признак А ; отсутствие хохолка — рецессивный аутосомный признак а ; зелёная окраска оперения — сцепленный с полом ген ХВ коричневая — Хb. Генотип самки известен, чтобы найти генотип самца обратим внимание на птенцов с фенотипом — без хохолка коричневые — данный птенец получил гамету aХb от отца. При этом не имеет значе- ния его пол, если это самка, то aaХbY, если самец aaХbХb. При определении генотипа самца — анализирующее скрещивание. У человека ген нормального слуха В доминирует над геном глухоты и находится в аутосоме; ген цветовой слепоты дальтонизма — d рецессивный и сцеплен с Х—хромосомой. При определении ге- нотипа матери и дочери — анализирующее скрещивание. Гены находятся в разных парах аутосом. Один из супругов страдает глаукомой и не имел в роду предков с синдромом Марфана, а второй дигетерозиготен по данным признакам. По условию: А — нет глаукомы а — глаукома В — синдром Марфана b — нормальное развитие соединительной ткани. Составьте схемы скрещиваний. Со- гласно правилу единообразия Менделя получаем, что с гладкие плоды — доминантный признак; ребри- стые — рецессивный. Согласно правилу единообразия гибридов Менделя получаем, что нормаль- ная высота стебля — доминантный признак; низкорослые — рецессивный. Существует два вида наследственной слепоты, каждый из которых определяется рецессивными аллелями генов а или b. Оба аллеля находятся в различных парах гомологичных хромосом. У канареек наличие хохолка — доминантный аутосомный признак А ; сцепленный с полом ген ХB определяет зелёную окраску оперения, а Хb — коричневую. У птиц гомогаметный пол мужской, а гетерогаметный женский. Скрестили хохлатую зелёную самку с самцом без хохолка и зелёным оперением гетерозигота. В потомстве оказались птенцы хохлатые зелёные, без хохолка зелёные, хохлатые коричневые и без хохолка коричневые. Какие законы наследственности проявляются в данном случае? При этом его пол, если это самка, то aaХbY. При определении генотипа самки— анализирующее скрещивание. Тыкву, имеющую жёлтые плоды дисковидной формы, скрестили с тыквой, у которой были белые шаровидные плоды. Все гибриды от этого скрещивания имели белую окраску и дисковидную форму плодов. Какие признаки доминируют? Каковы генотипы родителей и потомства? Растение с каким генотипом надо выбрать, чтобы поставить анализирующее скрещивание? Какое при этом будет расщепление по генотипу и фенотипу в F2? В потомстве получится 1:1 АаВЬ белая окраска и дисковидная форма : aabb жёлтые шаровидные плоды.
Задания по генетике для ЕГЭ по биологии
Давайте посмотрим на задачу с единорогами: длинный рог — доминантный признак А, короткий — рецессивный а. И у нас есть пара мелких единорожков, у одного из которых рог длинный, а у другого — короткий. Какие гены у их родителей? У единорожка с коротким рогом не может быть гена с длинным, так как он бы проявился, значит, его генотип — аа. Следовательно, у мамы-единорога с длинным рогом должен быть ген короткого рога иначе такого детеныша просто не было бы! Генотип мамы — Аа. Генотип короткорогого папы — как и у его короткорогого детеныша, потому что любой доминантный признак бы проявился. Следовательно, генотип папы — аа.
Мама — черная, с длинным рогом. Папа — белый, с длинным рогом. И родилось у них восемь единорожков — три с длинным рогом и черной гривой в маму, три с длинным рогом с белой гривой в папу и по одному с коротким рогом — черный и белый.
Укажите два процесса, в которых клетки этих животных используют мономеры органических соединений питательных веществ. Ответ: 1 широкий лентец всасывает питательные вещества через покровы поверхность тела ; 2 бабочка павлиноглазка использует питательные вещества, накопленные ее личинкой; 3 личинки рыб используют питательные вещества, запасенные в икринке в желточном мешке, в желтке ; 4 синтез собственных полимерных веществ; 5 получение энергии. Свернуть 27.
Главная функция аппарата Гольджи — сортировка проходящих через него белков. Для чего далее используются белки, созревающие в аппарате Гольджи? Приведите три примера.
Ввести буквенные обозначения доминантного заглавной буквой и рецессивного прописной буквой признаков, если они не даны в условии задачи. Записать фенотипы и генотипы родительских форм. Записать фенотипы и генотипы потомков. Составить схему скрещивания, обязательно указать гаметы, которые образуют родительские формы.
Записать ответ. При решении задач на взаимодействие неаллельных генов необходимо: Сделать краткую запись задачи. Вести анализ каждого признака отдельно, сделав по каждому признаку соответствующую запись.
Строение и движение жгутиков и ресничек. Микротрубочки цитоплазмы. Оболочка ядра, хроматин, кариоплазма, ядрышки, их строение и функции. Ядерный белковый матрикс. Пространственное расположение хромосом в интерфазном ядре. Белки хроматина — гистоны. Клеточные включения.
Сравнительная характеристика клеток эукариот растительной, животной, грибной 2. Типы обмена веществ: автотрофный и гетеротрофный. Участие кислорода в обменных процессах. Энергетическое обеспечение клетки: превращение АТФ в обменных процессах. Ферментативный характер реакций клеточного метаболизма. Ферменты, их строение, свойства и механизм действия. Отличия ферментов от неорганических катализаторов. Белки-активаторы и белки-ингибиторы. Зависимость скорости ферментативных реакций от различных факторов. Первичный синтез органических веществ в клетке.
Роль хлоропластов в процессе фотосинтеза. Световая и темновая фазы. Продуктивность фотосинтеза. Влияние различных факторов на скорость фотосинтеза. Значение фотосинтеза. Разнообразие организмов-хемосинтетиков: нитрифицирующие бактерии, железобактерии, серобактерии, водородные бактерии. Значение хемосинтеза. Анаэробные организмы. Виды брожения. Продукты брожения и их использование человеком.
Анаэробные микроорганизмы как объекты биотехнологии и возбудители болезней. Аэробные организмы. Этапы энергетического обмена. Подготовительный этап. Гликолиз — бескислородное расщепление глюкозы. Биологическое окисление, или клеточное дыхание. Роль митохондрий в процессах биологического окисления. Циклические реакции. Окислительное фосфорилирование. Преимущества аэробного пути обмена веществ перед анаэробным.
Эффективность энергетического обмена. Принцип комплементарности в реакциях матричного синтеза. Реализация наследственной информации. Генетический код, его свойства. Транскрипция — матричный синтез РНК. Принципы транскрипции: комплементарность, антипараллельность, асимметричность. Трансляция и её этапы. Участие транспортных РНК в биосинтезе белка. Условия биосинтеза белка. Кодирование аминокислот.
Роль рибосом в биосинтезе белка. Организация генома у прокариот и эукариот. Регуляция активности генов у прокариот. Гипотеза оперона Ф. Жакоб, Ж. Регуляция обменных процессов в клетке. Клеточный гомеостаз. Вирусы — неклеточные формы жизни и облигатные паразиты. Строение простых и сложных вирусов, ретровирусов, бактериофагов. Вирусные заболевания человека, животных, растений.
Интерфаза и митоз. Особенности процессов, протекающих в интерфазе. Подготовка клетки к делению. Пресинтетический постмитотический , синтетический и постсинтетический премитотический периоды интерфазы. Матричный синтез ДНК — репликация. Принципы репликации ДНК: комплементарность, полуконсервативный синтез, антипараллельность. Механизм репликации ДНК. Строение хромосом. Теломеры и теломераза. Хромосомный набор клетки — кариотип.
Диплоидный и гаплоидный наборы хромосом. Гомологичные хромосомы. Половые хромосомы. Деление клетки — митоз. Стадии митоза и происходящие в них процессы. Типы митоза. Кариокинез и цитокинез. Биологическое значение митоза. Регуляция митотического цикла клетки. Программируемая клеточная гибель — апоптоз.
Функциональная геномика 3 Организм как биологическая система 3. Одноклеточные, колониальные, многоклеточные организмы. Взаимосвязь частей многоклеточного организма. Ткани, органы и системы органов. Организм как единое целое. Гомеостаз 3. Виды бесполого размножения: почкование, споруляция, фрагментация, клонирование. Половое размножение. Половые клетки, или гаметы. Стадии мейоза.
Поведение хромосом в мейозе. Биологический смысл мейоза и полового процесса. Мейоз и его место в жизненном цикле организмов. Предзародышевое развитие. Гаметогенез у животных. Половые железы. Образование и развитие половых клеток. Сперматогенез и оогенез. Строение половых клеток. Оплодотворение и эмбриональное развитие животных.
Способы оплодотворения: наружное, внутреннее. Индивидуальное развитие организмов онтогенез. Стадии эмбриогенеза животных на примере лягушки. Типы дробления. Особенности дробления млекопитающих. Зародышевые листки гаструляция. Закладка органов и тканей из зародышевых листков. Взаимное влияние частей развивающегося зародыша эмбриональная индукция. Закладка плана строения животного как результат иерархических взаимодействий генов. Влияние на эмбриональное развитие различных факторов окружающей среды.
Рост и развитие животных. Постэмбриональный период. Прямое и непрямое развитие. Развитие с метаморфозом у беспозвоночных и позвоночных животных. Биологическое значение прямого и непрямого развития, их распространение в природе. Типы роста животных. Факторы регуляции роста животных и человека. Стадии постэмбрионального развития у животных и человека. Периоды онтогенеза человека. Размножение и развитие растений.
Гаметофит и спорофит. Мейоз в жизненном цикле растений. Образование спор в процессе мейоза. Гаметогенез у растений. Оплодотворение и развитие растительных организмов. Двойное оплодотворение у цветковых растений. Образование и развитие семени. Механизмы регуляции онтогенеза у растений и животных 3. Гомологичные хромосомы, аллельные гены, альтернативные признаки, доминантный и рецессивный признак, гомозигота, гетерозигота, чистая линия, гибриды, генотип, фенотип. Основные методы генетики: гибридологический, цитологический, молекулярно-генетический 3.
Первый закон Менделя — закон единообразия гибридов первого поколения. Правило доминирования. Второй закон Менделя — закон расщепления признаков. Цитологические основы моногибридного скрещивания. Гипотеза чистоты гамет. Анализирующее скрещивание. Промежуточный характер наследования. Расщепление признаков при неполном доминировании. Дигибридное скрещивание. Третий закон Менделя — закон независимого наследования признаков.
Цитологические основы дигибридного скрещивания. Сцепленное наследование признаков. Работы Т. Сцепленное наследование генов, нарушение сцепления между генами. Хромосомная теория наследственности. Генетика пола. Хромосомный механизм определения пола. Аутосомы и половые хромосомы. Гомогаметный и гетерогаметный пол. Генетическая структура половых хромосом.
Наследование признаков, сцепленных с полом. Генотип как целостная система. Плейотропия — множественное действие гена. Множественный аллелизм. Взаимодействие неаллельных генов. Полимерия 3. Изменчивость признаков. Качественные и количественные признаки. Виды изменчивости: ненаследственная и наследственная. Модификационная изменчивость.
Роль среды в формировании модификационной изменчивости. Норма реакции признака. Вариационный ряд и вариационная кривая В. Свойства модификационной изменчивости. Генотипическая изменчивость. Свойства генотипической изменчивости. Виды генотипической изменчивости: комбинативная, мутационная. Комбинативная изменчивость. Мейоз и половой процесс — основа комбинативной изменчивости.
Что изменится в ЕГЭ по биологии в 2023 году
Задания по генетике для ЕГЭ по биологии. Приступая к решению генетических задач, необходимо помнить, что в основе всех заданий лежит знание основных законов наследования признаков, а также понимание того, что все законы генетики носят статистический характер. Новые задачи по генетике на ЕГЭ по биологии. Задачи на картирование хромосом и морганиды на экзамене в 2024 году.
НОВЫЙ ТИП ЗАДАНИЙ ЕГЭ 2023. МИНИ-МОДЕЛЬ В ЛИНИЯХ 23-24. ОТРИЦАТЕЛЬНЫЙ КОНТРОЛЬ И НУЛЕВАЯ ГИПОТЕЗА.
Не повезло тем, чьи работы проверялись первыми, до внесения дополнительных вариантов ответов. Ну а дальше нужно было расписать, почему именно эта теория развеяла кошмар Дженкина. Читаем ключи: 1 представление о смешении растворимости признака в поколениях ИЛИ от родителя ребенку передается только половина значения признаков; 2 во времена Дарвина были не известны механизмы наследственности; 3 хромосомная теория наследственности ИЛИ синтетическая теория эволюции объединила генетику и эволюционную теорию ИЛИ мутационная теория; 4 за хранение и передачу наследственной информации отвечают гены; 5 гены дискретны неделимы, передаются целиком, не растворяясь ; 6 гены расположены в хромосомах. Я хочу, чтобы ты уловил основную мысль: это задание — не про кошмар Дженкина, а про дарвиновскую и хромосомную теорию. Если кажется, что задание о чём-то неизвестном, надо прочитать его ещё пару раз. Ну как, сложно? Непросто, соглашусь. Но можно развить навык логического мышления и научиться отвечать даже на такие каверзные задания — а для этого нужна тренировка! На курсе БиоКвест мы как раз этим и занимаемся. Кошмар Дженкина.
Определите генотипы родителей и потомков. Объясните результаты скрещивания. Допускается иная генетическая символика, не искажающая смысла задачи.
Ответ: Бесплатный интенсив Задача 14 У птиц самки гетерогаметны по полу. У канареек бывает оперение зелёной и коричневой окраски, также птицы между собой различаются наличием или отсутствием хохолка на голове.
По-прежнему главным является именно узнавание объекта.
Если объект определен неверно, то все остальные рассуждения не проверяются и не оцениваются. При подготовке к выполнению задания с рисунком советуем обратиться к учебникам, обращая внимание на иллюстрации, схемы, диаграммы и прочее. На что обратить внимание при подготовке Традиционно наибольшие затруднения вызывают задания 25 и 26, где необходимо продемонстрировать не только знание предмета, но и использование знаний в новой предложенной ситуации.
Задания 25 и 26 посвящены обобщению и применению знаний о человеке и общей биологии соответственно. Очень важно быть внимательным к приводимой в ответе дополнительной информации, так как если она содержит биологические ошибки, то максимальный балл не будет выставлен — за биологическую ошибку в дополнительной информации балл снижается. Также важна практика, тренировка — решать много заданий этих линий, представленных в сборниках типовых вариантов ЕГЭ или на различных интернет-ресурсах.
В 27 задании немного изменилась содержательная часть — помимо заданий по цитологии появились задачи по эволюционной генетике, которые до этого не встречались. Традиционно задание 27 включает в себя вопросы на определение числа хромосом и молекул ДНК в разных фазах мейоза, вопросы по биосинтезу белка, а теперь и расчетные задачи по эволюционной генетике. Для успешного выполнения заданий по теме «Мейоз» необходимо не только знать хромосомный набор клеток в разные фазы мейоза, но и уметь объяснять, в результате каких процессов такой набор сформировался.
При подготовке к выполнению заданий 27 на биосинтез белка следует обратить внимание на такие понятия как «открытая рамка считывания», «старт-кодон», «стоп-кодон», палиндром. Для решения задач по эволюционной генетике закон Харди — Вайнберга необходимо сначала определить, что именно дано: частота встречаемости аллеля или частота встречаемости фенотипа. Затем, воспользовавшись формулой квадрата суммы, определить необходимые значения.
Важно помнить, что при решении этих задач недостаточно просто привести расчеты, необходимо объяснить каждое действие. Последнее задание 28 традиционно представлено сложной задачей по генетике.
Ответ обоснуйте.
Определите генотипы родителей 1, 2 , генотипы детей в первом 3, 4, 5 и во втором поколениях 6, 7. Какова вероятность рождения ребёнка с признаком, выделенным на рисунке чёрным цветом, у мужчины 5, если будущая жена будет иметь данный признак? По изображенной на рисунке родословной установите характер наследования признака, выделенного черным цветом доминантный или рецессивный, сцеплен или не сцеплен с полом , и обоснуйте его.
Определите генотипы потомков 1, 3, 4, 5, 6, 7. Определите вероятность рождения у родителей 3, 4 следующего ребенка с признаком, выделенным на рисунке родословной черным цветом. Ответ поясните.
Наследственное заболевание сахарный диабет вызывается рецессивной мутацией характеризуется повышением концентрации сахара в крови вследствие отсутствия инсулина. Человек может передавать этот аллель своим потомкам. Какие методы изучения наследственности человека позволили выявить причины этой болезни и характер наследования признака?
Укажите, в чем заключается суть этих методов, и каким образом они использовались в описанном случае. Ответ 2 анализ химического состава внутренней среды организма; 3 позволил определить нарушение выработки инсулина и повышение концентрации глюкозы в крови; 4 генеалогический метод; 5 анализ родословных; 6 позволил определить тип наследования признака. У мальчиков с синдромом Кляйнфельтера набор половых хромосом - XXY.
Объясните, как могла возникнуть такая мутация. Какой метод позволяет её установить? В популяции растений ночной красавицы Mirabilis jalapa 96 растений имеют ярко-красную окраску венчика, а 54 — белую.
Рассчитайте частоты аллелей красной и белой окрасок в популяции. Какими были бы частоты генотипов всех генотипов, если бы популяция находилась в равновесии? Если представить, что все условия равновесной популяции начнут выполняться, то за сколько поколений популяция придёт в равновесие?
В популяции растений ночной красавицы Mirabilis jalapa из 150 особей 6 растений имеют ярко-красную окраску венчика. Рассчитайте частоты аллелей красной и белой окраски в популяции, а также частоты всех возможных генотипов, если известно, что популяция находится в равновесии Харди-Вайнберга. Рассмотрите кариограмму человека.
Все задачи по генетике | Задание №28 | ЕГЭ-2024 по биологии смотреть трансляцию бесплатно от 2 June
Такие задачи могут появиться в в Части 2 линии 29 на ЕГЭ в 2023 году, поскольку в 2022 году в тестовую Часть 1 уже входило задание на знание свойств идеальной популяции. Разбор заданий повышенной сложности ЕГЭ по биологии (генетика)*. Задачи по генетике в ЕГЭ, решающиеся с помощью генеалогического метода, — это та самая игра в «угадай болезнь». Генетика. вопросы 10-11 класс.
Правила наследования генов
- Будут ли на ЕГЭ в 2023 году задачи на закон Харди-Вайнберга
- Открытый вариант ЕГЭ по биологии 2023 |
- Курсы валюты:
- Решение задач по биологии на генетику для ЕГЭ 2022
- Правила наследования генов
- Тест: ЕГЭ по Биологии. Генетика - Биология 11 класс
Задачи по генетике ЕГЭ по биологии с ответами и решениями
На странице есть алгоритм выполнения данных заданий, а также подробный разбор задач по генетике с решениями, который поможет подготовиться вам к егэ по биологии (Ростов-на-Дону). Публикуем сборник задач по генетике, которые пригодятся при подготовке и сдаче ЕГЭ по биологии. Публикуем сборник задач по генетике, которые пригодятся при подготовке и сдаче ЕГЭ по биологии. Решение задачи по генетике. Задачи по генетике в ЕГЭ, решающиеся с помощью генеалогического метода, — это та самая игра в «угадай болезнь». Вариант с реального ЕГЭ 2023 по биологии основная волна, который прошёл у 11 класса 13 июня 2023 года, вариант заданий с ответами и решением для ознакомления и.
Реальный вариант с ЕГЭ 2023 по биологии задания и ответы
В ключах к задаче написано «написание сцепленных в Х-хромосоме генов верхним ИЛИ нижним индексом», а председатель челябинской комиссии понимает это как «верхним и нижним индексом», — но это же неверно, — рассуждает Мария. Я очень сильно расстроилась, 100 баллов по биологии — это была просто мечта, так и не сбывшаяся. Мария показала нам свое решение задачи, из-за которой возник спор Источник: читатель 74. RU — В Челябинской области нет ни одного стобалльника по биологии, потому что эксперт занялась самоуправством и использовала свои параметры, согласно которым, в генетической задаче сняли всем два первичных балла, а они в переводе в стобалльную систему составляют четыре балла, — утверждает мама выпускницы Татьяна. Ключ ФИПИ совпадает с тем, как оформляют работу наши дети. У дочери достойный балл, но возмущает несправедливость. Это ЕГЭ, а не просто контрольная.
Решается судьба детей.
На ранних стадиях зародыши всех позвоночных сходны между собой, и более развитые формы проходят этапы развития более примитивных форм. Закон необратимости эволюции Л. Организм популяция, вид не может вернуться к прежнему состоянию, уже осуществленному в ряду его предков. Закон эволюционного развития Ч. Естественный отбор на основе наследственной изменчивости является основной движущей силой эволюции органического мира. Законы наследования Г. Закон единообразия: при моногибридном скрещивании у гибридов первого поколения проявляются только доминантные признаки — оно фенотипически единообразно. Закон расщепления: при самоопылении гибридов первого поколения в потомстве происходит расщепление признаков в отношении 3:1, при этом образуются две фенотипическне группы — доминантная и рецессивная. Закон независимого наследования: при дигибридном скрещивании у гибридов каждая пара признаков наследуется независимо от других и дает с ними разные сочетания.
Образуются четыре фенотипическне группы, характеризующиеся отношением 9:3:3:1. Гипотеза частоты, гамет: находящиеся в каждом организме пары альтернативных признаков не смешиваются и при образовании гамет по одному переходят в них в чистом виде. Закон гомологических рядов наследственной изменчивости Н. Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости. Закон генетического равновесия в популяциях Г. Харди, В. В неограниченно большой популяции при отсутствии факторов, изменяющих концентрацию генов при свободном скрещивании особей, отсутствии отбора и мутирования данных генов и отсутствии миграции численные соотношения генотипов АА, аа, Аа из поколения в поколение остаются постоянными. Закон сохранения энергии И. Манер, Д. Джоуль, Г.
Энергия не создается и не исчезает, а лишь переходит из одной формы в другую. При переходе материи из одной формы в другую изменение ее энергии строго соответствует возрастанию или убыванию энергии взаимодействующих с ней тел. Закон минимума Ю. Выносливость организма определяется самым слабым звеном в цепи его экологических потребностей, т. Правило взаимодействия факторов: организм способен заменить дефицитное вещество или другой действующий фактор иным функционально близким веществом или фактором. Закон биогенной миграции атомов В. Миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества биогенная миграция , или же протекает в среде, геохимические особенности которой обусловлены живым веществом, как тем, которое в настоящее время составляет биосферу, так и тем, которое существовало на Земле в течение всей геологической истории. Полярность — противоположность концов тела у животных — передний головной и задний хвостовой , у растений верхний гелиотропический и нижний геотропический. Метамерность — повторение однотипных участков тела или органа; у животных — членистое тело червей, личинок моллюсков и членистоногих, грудная клетка позвоночных, у растений — узлы и междоузлия стебля. Цикличность — повторение определенных периодов жизни; сезонная цикличность, суточная цикличность, жизненная цикличность период от рождения до смерти.
Цикличность в чередовании ядерных фаз — диплоидной и гаплоидной. Детерминированность — предопределенность, обусловленная генотипом; закономерность, в результате которой из каждой клетки образуется определенная ткань, определенный орган, что происходит под влиянием генотипа и факторов внешней среды, в том числе в соседних клетках индукция при формировании зародыша. Изменчивость — способность организмов изменять свои признаки и свойства; генотипическая изменчивость наследуется, фенотипическая — не наследуется. Наследственность — способность организмов передавать следующему поколению свои признаки и свойства, т. Приспособленность — относительная целесообразность строения и функций организма, явившаяся результатом естественного отбора, устраняющего неприспособленных к данным условиям существования. Закономерность географического распределения центров происхождения культурных растений Н. Вавилов — сосредото чение очагов формообразования культурных растений в тех районах земного шара, где наблюдается наибольшее их генетическое разнообразие. Зональность — закономерное расположение на земном шаре природных зон, отличающихся климатом, растительностью, почвами и животным миром. Зоны бывают широтные географические и вертикальные в горах.
Последний вопрос по теме «Генетическая информация в клетке» — жизненный цикл. Клетки не возникают сами по себе, а образуются в результате деления. Время от появления клетки до ее смерти или разделения называется жизненным циклом. Самый длинный его период — интерфаза 10-20 часов. Это время обычного функционирования. Состоит из 3 периодов: пресинтетический. Накапливаются белки и полезные вещества, идет подготовка к удвоению ДНК; синтетический. Происходит репликация ДНК, формула клетки — 2n4c; постсинтетический. Делятся центриоли, митохондрии и пластиды, ядрышко становится крупным и хорошо заметным. Различают 2 вида деления — митоз соматические клетки и мейоз половые. Подробное описание этих процессов для 3 задания по биологии не нужно, его рассматривают при комплексной подготовке на курсах. Составим таблицу с краткой характеристикой.
В моем платном сборнике задач по популяционной генетике в небольшом введении можно разобраться с теоретической базой всей подоплекой составления подобного рода заданий. Что дается? Что требуется найти? Как найти по уравнению Харди-Вайнберга. В этом сборнике дан подробный разбор различных типов заданий всего 30 заданий , которые, я уверен, окажутся полезными для решения любой другой задачи на применение закона Харди-Вайнберга и для понимания данной темы в целом. Эта статья была написана в феврале 2023 года. Сейчас сентябрь 2023 года и по данному вопросу нет больше никаких сомнений.