Перевод числа из восьмеричной системы счисления в другую систему (например, в десятичную или шестнадцатеричную) возможен с помощью соответствующих алгоритмов, которые работают на основе позиционной системы счисления. Для перевода используется алгоритм, аналогичный переводу из десятичной в ер, требуется перевести десятичное число 450 в шестнадцатеричное. В соответствии с приведенным алгоритмом получим.
О восьмеричной системе
- 3.3. Правила перевода чисел из одной системы счисления в другую
- Содержание
- Публикации
- Перевод чисел из шестнадцатеричной в восьмеричную систему
- Онлайн перевод числа из восьмеричной в шестнадцатиричную систему счисления (8->16)
- Перевод систем счисления
Информатика
Перевод 0001000000000001001001000001 из восьмеричной в шестнадцатиричную систему счисления. Статья о переводе чисел из восьмеричной системы в другие системы счисления (десятичная, двоичная, шестнадцатеричная) и обратно. Перевод двоичного числа в восьмеричную и шестнадцатеричную системы осуществляется также просто: двоичное число разбивается вправо и влево от точки. Чтобы перевести из восьмеричной в шестнадцатеричное, обычно делают так: переводят восьмеричное число в двоичное, а затем уже в шестнадцатеричное. Для перевода десятичного числа в восьмеричную систему его необходимо последовательно делить на 8 до тех пор, пока частное не станет равным нулю. это онлайн-инструмент, который преобразует шестнадцатеричные числа в восьмеричный формат.
Онлайн калькулятор перевода чисел между системами счисления
Перевести. Перевод чисел в различные системы счисления. Перевод из двоичной системы счисления в восьмеричную осуществляется представлением каждой триады битов своей восьмеричной цифрой. Введите восьмеричное число в форму и увидите как оно пишется других системах счисления. Перевод числа из восьмеричной системы счисления в другую систему (например, в десятичную или шестнадцатеричную) возможен с помощью соответствующих алгоритмов, которые работают на основе позиционной системы счисления. Для того чтобы перевести число из шестнадцатеричной в восьмеричную систему. Для того чтобы перевести число из шестнадцатеричной в восьмеричную систему.
Перевод числа из восьмеричной системы счисления в шестнадцатеричную и наоборот
Как из восьмеричной системы перевести в шестнадцатеричную - правила перевода | Для перевода чисел из восьмеричной системы в шестнадцатеричную, воспользуемся соответствующим алгоритмом. |
Как переводить числа между двоичной, восьмеричной и шестнадцатеричной системами счисления | Изучим стандартные способы перевода чисел в различные системы счисления в Excel: двоичную, восьмеричную, десятичную и шестнадцатеричную. |
Перевод систем счисления онлайн | 6. Переведите числа из восьмеричной системы счисления в шестнадцатеричную. |
Конвертер величин
Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Здесь рассматривается перевод чисел из системы 10 в системы 8 и 16, а затем их перевод обратно. Примеры перевода из восьмеричной системы в шестнадцатеричную. Обычно при переводе чисел из шестнадцатеричной в восьмеричную систему счисления вначале шестнадцатеричное число переводят в двоичное, затем разбивают его на триады, начиная с младшего бита. Аналогично вы можете перевести число из восьмеричной системы счисления в шестнадцатеричную, используя промежуточную двоичную и составленные таблицы соответствия.
Как перевести из восьмеричной в шестнадцатеричную
При переводе чисел из восьмеричной и шестнадцатеричной систем счисления в двоичную достаточно заменить каждую цифру этих чисел соответственно двоичной триадой или тетрадой. При этом незначащие нули отбрасываются. Перевести. Восьмеричная 123 во всех системах счисления. Преобразование чисел в разные системы счисления online. Двоичная, восьмеричная, десятичная и шестнадцатеричная.
Правила перевода из одной системы счисления в любую другую
Единичная система счисления Число в этой системе счисления представляет собой строку из черточек палочек , количество которых равно значению данного числа. Таким образом, урожай из 100 фиников будет равен числу, состоящему из 100 черточек. Но эта система обладает явными неудобствами — чем больше число — тем длиннее строка из палочек. Помимо этого, можно легко ошибиться при записи числа, добавив случайно лишнюю палочку или, наоборот, не дописав.
Для удобства, люди стали группировать палочки по 3, 5, 10 штук. При этом, каждой группе соответствовал определенный знак или предмет. Изначально для подсчета использовались пальцы рук, поэтому первые знаки появились для групп из 5 и 10 штук единиц.
Все это позволило создать более удобные системы записи чисел. Древнеегипетская десятичная система В Древнем Египте использовались специальные символы цифры для обозначения чисел 1, 10, 102, 103, 104, 105, 106, 107. Вот некоторые из них: Почему она называется десятичной?
Как писалось выше — люди стали группировать символы. В данном случае, число 10 называется основанием десятичной системы счисления, а каждый символ — представление числа 10 в какой-то степени. Числа в древнеегипетской системе счисления записывались, как комбинация этих символов, каждый из которых повторялся не более девяти раз.
Итоговое значение равнялось сумме элементов числа. Стоит отметить, что такой способ получения значения свойственен каждой непозиционной системе счисления. Чтобы определить значение числа необходимо изображение числа разбить на разряды справа налево.
Новый разряд начинается с появления прямого клина после лежачего. Поэтому вавилонская система счисления получила название шестидесятеричной. Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а большие значения — в позиционной с основанием 60.
Число 92: Запись числа была неоднозначной, поскольку не существовало цифры обозначающей ноль. Для определения абсолютного значения числа был введен специальный символ для обозначения пропущенного шестидесятеричного разряда, что соответствует появлению цифры 0 в записи десятичного числа: Теперь число 3632 следует записывать, как: Шестидесятеричная вавилонская система — первая система счисления, частично основанная на позиционном принципе. Данная система счисления используется и сегодня, например, при определении времени — час состоит из 60 минут, а минута из 60 секунд.
Римская система Римская система не сильно отличается от египетской. Число в римской системе счисления — это набор стоящих подряд цифр. Методы определения значения числа: Значение числа равно сумме значений его цифр.
Значение равно сумме значений групп и цифр, не подходящих под 1 и 2 пункты.
Каждой цифре соответствует число из трех цифр в двоичной системе счисления: 000 — 0 001 — 1 010 — 2 011 — 3 100 — 4 101 — 5 110 — 6 111 — 7 Для преобразования двоичного числа в восьмеричное надо разбить его на тройки цифр и заменить каждую тройку соответствующей ей одной цифрой из восьмеричной системы счисления. Разбивать двоичное число на тройки следует с конца, а вместо недостающих цифр в начале можно записать нули. Только здесь на место восьмеричных цифр подставляются двоичные числа, состоящие из трех цифр.
В восьмеричной системе счисления используется восемь знаков-цифр от 0 до 7. Каждой цифре соответствует число из трех цифр в двоичной системе счисления: 000 — 0 001 — 1 010 — 2 011 — 3 100 — 4 101 — 5 110 — 6 111 — 7 Для преобразования двоичного числа в восьмеричное надо разбить его на тройки цифр и заменить каждую тройку соответствующей ей одной цифрой из восьмеричной системы счисления. Разбивать двоичное число на тройки следует с конца, а вместо недостающих цифр в начале можно записать нули.
Действуем аналогично. Вторую цифру тетрады 53178 нужно разделить на 4: получаем частное L и остаток M. Третью цифру тетрады 53178 нужно разделить на 2: получаем частное N и остаток K. Аналогично - см. Числа L, M, N, K вновь потребуются нам в следующем шаге.
Перевод чисел из восьмеричной системы счисления в шестнадцатеричную через двоичную
Алфавит восьмеричной системы составляют восемь цифр от 0 до 7, соответственно основание равно 8. Числовой ряд восьмеричных чисел: 1, 2, 3, 4, 5, 6, 7,10, 11, 12, 13, 14, 15, 16, 17, 20. Следует обратить внимание, что после 7 в числовом ряду идет 10, а после 17 число 20. Число 8 имеет символический смысл, является первым кубом двойки и отождествляется с трехмерным измерением. Для многих древних народов восьмёрка сакральное число. Внешне выглядит как символ бесконечности. В информатике один байт равен 8 битам. Символ бесконечности.
Перевод 8 — 2 Перенос восьмеричного числа в двоичный формат — это самый простой способ перевода чисел. Каждой восьмеричной цифре ставится в соответствие группа двоичных цифр в количестве трех.
Немного справочной информации о системах счислений Система счисления — символический метод записи чисел, представление чисел с помощью письменных знаков. Различия систем счисления. Есть позиционные, когда значение каждой цифры числа определяется ее позицией в записи числа, такими являются десятичная, двоичная, восьмеричная, шестнадцатеричная и другие. Есть и непозиционные, когда значение цифры в числе не зависит от ее места в записи числа, такой является римская система счислений. Основание системы счисления — это количество цифр, которые используются в данной системе счисления для записи чисел.
Устройства памяти с произвольным доступом позволяют получить доступ к произвольному блоку данных примерно за одно и то же время доступа.
Выделяют следующие основные типы устройств памяти с произвольным доступом: 1. Накопители на жёстких магнитных дисках винчестеры, НЖМД - несъемные жесткие магнитные диски. Ёмкость современных винчестеров от сотен мегабайт до нескольких сотен гигабайт. На современных компьютерах это основной вид внешней памяти. Накопители на гибких магнитных дисках флоппи-дисководы, НГМД — устройства для записи и считывания информации с небольших съемных магнитных дисков дискет , упакованные в пластиковый конверт гибкий - у 5,25 дюймовых дискет и жесткий у 3,5 дюймовых. Максимальная ёмкость 5,25 дюймовой дискеты - 1,2Мбайт; 3,5 дюймовой дискеты - 1,44Мбайт. В настоящее время 5,25 дюймовые дискеты морально устарели и не используются. CD-ROM диски получили распространение вслед за аудио-компакт дисками.
Это пластиковые диски с напылением тонкого слоя светоотражающего материала, на поверхности которых информация записана с помощью лазерного луча. Лазерные диски являются наиболее популярными съемными носителями информации. При размерах 12 см в диаметре их ёмкость достигает 700 Мб. В настоящее время все более популярным становится формат компакт-дисков DVD-ROM, позволяющий при тех же размерах носителя разместить информацию объемом 4,3 Гб. Кроме того, доступными массовому покупателю стали устройства записи на компакт диски. Устройства памяти с последовательным доступом позволяют осуществлять доступ к данным последовательно, то есть для того, чтобы считать нужный блок памяти, необходимо считать все предшествующие блоки. Среди устройств памяти с последовательным доступом выделяют: 1. Накопители на магнитных лентах НМЛ — устройства считывания данных с магнитной ленты.
Такие накопители достаточно медленные, хотя и большой ёмкости. Современные устройства для работы с магнитными лентами — стримеры — имеют увеличенную скорость записи 4 - 5Мбайт в сек. Существуют также, устройства позволяющие записывать цифровую информацию на видеокассеты, что позволяет хранить на 1 кассете 2 Гбайта информации. Магнитные ленты обычно используются для создания архивов данных для долговременного хранения информации. Перфокарты — карточки из плотной бумаги и перфоленты — катушки с бумажной лентой, на которых информация кодируется путем пробивания перфорирования отверстий. Для считывания данных применяются устройства последовательного доступа. В настоящее время данные устройства морально устарели и не применяются. Различные виды памяти имеют свои достоинства и недостатки.
Так, внутренняя память имеет хорошее быстродействие, но ограниченный объем. Внешняя память, наоборот, имеет низкое быстродействие, но неограниченный объем. Производителям и пользователям компьютеров приходится искать компромисс между объемом памяти, скоростью доступа и ценой компьютера, так комбинируя разные виды памяти, чтобы компьютер работал оптимально. В любом случае, объем оперативной памяти является основной характеристикой ЭВМ и определяет производительность компьютера. Кратко рассмотрим принцип работы оперативной памяти. Минимальный элемент памяти - бит или разряд способен хранить минимально возможный объем информации - одну двоичную цифру. Бит очень маленькая информационная единица, поэтому биты в памяти объединяются в байты - восьмерки битов, являющиеся ячейками памяти. Все ячейки памяти пронумерованы.
Номер ячейки называют ее адресом. Зная адрес ячейки можно совершать две основные операции: 1 прочитать информацию из ячейки с определенным адресом; 2 записать информацию в байт с определенным адресом. Чтобы выполнить одну из этих операций необходимо, чтобы от процессора к памяти поступил адрес ячейки, и чтобы байт информации был передан от процессора к памяти при записи, или от памяти к процессору при чтении. Все сигналы должны передаваться по проводникам, которые объединены в шины. По шине адреса передается адрес ячейки памяти, по шине данных — передаваемая информация. Как правило, эти процессы проходят одновременно. Для работы ОЗУ используются еще 3 сигнала и соответственно 3 проводника. Первый сигнал называется запрос чтения, его получение означает указание памяти прочесть байт.
Второй сигнал называется запрос записи, его получение означает указание памяти записать байт. Передача сразу обоих сигналов запрещена. Третий сигнал — сигнал готовности, используемый для того, чтобы память могла сообщить процессору, что она выполнила запрос и готова к приему следующего запроса. Устройства ввода-вывода Компьютер обменивается информацией с внешним миром с помощью периферийных устройств. Только благодаря периферийным устройствам человек может взаимодействовать с компьютером, а также со всеми подключенными к нему устройствами. Любое подключенное периферийное устройство в каждый момент времени может быть или занято выполнением порученной ему работы или пребывать в ожидании нового задания. Влияние скорости работы периферийных устройств на эффективность работы с компьютером не меньше, чем скорость работы его центрального процессора. Скорость работы внешних устройств от быстродействия процессора не зависит.
Наиболее распространенные периферийные устройства приведены на рисунке: Периферийные устройства делятся на устройства ввода и устройства вывода. Устройства ввода преобразуют информацию в форму понятную машине, после чего компьютер может ее обрабатывать и запоминать. Устройства вывода переводят информацию из машинного представления в образы, понятные человеку. Ниже приведена классификация устройств ввода: Самым известным устройством ввода информации является клавиатура keyboard — это стандартное устройство, предназначенное для ручного ввода информации. Работой клавиатуры управляет контроллер клавиатуры, расположенный на материнской плате и подключаемый к ней через разъем на задней панели компьютера. При нажатии пользователем клавиши на клавиатуре, контроллер клавиатуры преобразует код нажатой клавиши в соответствующую последовательность битов и передает их компьютеру. Отображение символов, набранных на клавиатуре, на экране компьютера называется эхом. Обычная современная клавиатура имеет, как правило, 101-104 клавиши, среди которых выделяют алфавитно-цифровые клавиши, необходимые для ввода текста, клавиши управления курсором и ряд специальных и управляющих клавиш.
Существуют беспроводные модели клавиатуры, в них связь клавиатуры с компьютером осуществляется посредством инфракрасных лучей. Наиболее важными характеристиками клавиатуры являются чувствительность ее клавиш к нажатию, мягкость хода клавиш и расстояние между клавишами. На долговечность клавиатуры определяется количеством нажатий, которые она рассчитана выдержать. Клавиатура проектируется таким образом, чтобы каждая клавиша выдерживала 30-50 миллионов нажатий. К манипуляторам относят устройства, преобразующие движения руки пользователя в управляющую информацию для компьютера. Среди манипуляторов выделяют мыши, трекболы, джойстики. Мышь предназначена для выбора и перемещения графических объектов экрана монитора компьютера.
Зачем нужна двоичная система Двоичная система выглядит очень непривычно и числа, записанные в ней, получаются огромными. Зачем она вообще нужна? Разве компьютеры не могут работать с привычной нам десятичной системой? Оказывается, когда-то они именно так и работали. Самый первый компьютер ENIAC, разработанный в 1945 году, хранил числа в десятичной системе счисления. Для хранения одной цифры применялась схема, которая называется кольцевым регистром, она состояла из десяти радиоламп. Чтобы записать все числа до миллиона — от 0 до 999 999 — надо шесть цифр, значит, для хранения таких чисел нужно целых 60 ламп. Инженеры заметили, что если бы они кодировали числа в двоичной системе, то для хранения таких же больших чисел им бы потребовалось всего двадцать радиоламп — в три раза меньше! Первое преимущество двоичных чисел — простота схем. Второе, и не менее важное — быстродействие. Сложение чисел, хранящихся в кольцевом регистре, требует до десяти тактов процессора на каждую операцию. Сложение двоичных чисел можно выполнить за один такт — то есть в десять раз быстрее. Группа инженеров, создавших первый компьютер, в 1946 году опубликовала статью, где обосновала преимущество двоичной системы для представления чисел в компьютерах. Первой среди авторов была указана фамилия американского математика Джона фон Неймана. Поэтому сейчас принципы проектирования компьютеров называются архитектурой фон Неймана, хотя это не совсем справедливо по отношению к другим изобретателям компьютера. При разработке программы с двоичной записью столкнуться довольно сложно: компьютер в подавляющем большинстве случаев сам переводит двоичные числа в десятичные и обратно. Можно долго писать код, даже не подозревая, что внутри компьютера данные хранятся каким-то особым образом. Зачем изучать двоичную систему, если компьютер делает всю работу за нас?
Перевод чисел из двоичной системы счисления в восьмеричную, шестнадцатеричную и обратно
Для перевода числа 545. Формула перевода дробного числа в десятичную систему, очень похожа на формулу перевода целого, однако немного отличается. Полученное число 357.
Какие бывают системы счисления Наиболее часто используемыми системами счисления являются: двоичная 2 — все числа записываются лишь посредством двух символов: 0 и 1.
Используется в дискретной математике, информатике и программировании. Используется в цифровой электронике.
Перевод чисел из десятичной системы счисления в другую систему счисления Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа. Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т. Пример 4.
Переведем число 159 из десятичной СС в двоичную СС: 159.
Каждая система счисления имеет свой основание или базу, которая определяет количество уникальных цифр, используемых в системе. Например, десятичная система имеет основание 10, включая цифры от 0 до 9. Пример перевода: число 15 в десятичной системе равно F в шестнадцатеричной системе. Системы счисления простым языком Системы счисления - это способы записи чисел, которые мы используем в повседневной жизни. Подумайте о них как о разных языках для цифр. Как и в языках, где у нас есть разные слова для обозначения одного и того же предмета, в разных системах счисления одно и то же число может выглядеть по-разному.
Каждая система счисления имеет своё «основание», которое определяет количество используемых символов. Например, в десятичной системе, которой мы пользуемся каждый день, основание равно 10, потому что у нас есть 10 разных цифр от 0 до 9. Системы счисления нужны нам для разных задач: от счета денег и измерения времени до программирования компьютеров и шифрования информации. Кроме десятичной, существуют и другие системы, например, двоичная, которую любят компьютеры, восьмеричная и шестнадцатеричная, часто используемые в программировании. Различные системы счисления позволяют нам более эффективно решать определенные задачи, такие как обработка данных в компьютере или представление больших чисел более компактно. Десятичная система Base 10 Это система, которую мы используем каждый день. Она основана на 10 цифрах от 0 до 9.
Каждая позиция в числе имеет значение, увеличивающееся в 10 раз с каждым шагом влево. Например, в числе 345, 5 - это единицы, 4 - десятки, а 3 - сотни. Двоичная или бинарная система Base 2 Двоичная система использует только две цифры: 0 и 1. Каждая позиция в числе увеличивает своё значение в 2 раза с каждым шагом влево. Эта система широко используется в компьютерных технологиях. Восьмеричная система Base 8 Восьмеричная система использует цифры от 0 до 7. Каждая позиция в числе увеличивается в 8 раз с каждым шагом влево.
Эта система иногда используется в программировании. Шестнадцатеричная система Base 16 Шестнадцатеричная система использует 16 символов: цифры от 0 до 9 и буквы от A до F. Каждая позиция увеличивается в 16 раз с каждым шагом влево. Эта система часто применяется в информатике и программировании. История возникновения систем счисления История систем счисления уходит корнями в глубокую древность. Самые ранние системы счисления были созданы для удовлетворения базовых потребностей в счете и измерении. Например, древние люди использовали примитивные методы, такие как камешки или зарубки на палках, для подсчета предметов.
Одной из первых разработанных систем счисления считается вавилонская, возникшая около 2000 года до н. Она была позиционной и использовала основание 60, что до сих пор отражается в нашем измерении времени 60 секунд в минуте, 60 минут в часе. Древние египтяне разработали свою систему счисления примерно в 3000 году до н. Эта система была десятичной, но непозиционной, что означает использование отдельных иероглифов для обозначения единиц, десятков, сотен и так далее. Двоичная система, которая лежит в основе современных компьютерных технологий, была впервые полноценно описана в работах Готфрида Лейбница в 17-м веке, хотя подобные идеи возникали и ранее. Лейбниц понимал важность двоичной системы для развития математики и науки. Восьмеричная и шестнадцатеричная системы, хотя и использовались в различных культурах на протяжении истории, получили широкое распространение в эпоху развития компьютерных технологий, поскольку они представляют собой компактную форму двоичного кода, удобную для человеческого восприятия.
Таким образом, различные системы счисления развивались в разных культурах в ответ на практические потребности и математические исследования, формируя основу для наших современных числовых представлений и вычислительных технологий. Современное использование систем счисления и их значение Системы счисления остаются неотъемлемой частью нашей жизни и технологий. Они используются в самых разных областях, от информатики до повседневной жизни, и каждая система имеет свои уникальные применения и преимущества.
Перевод чисел в различные системы счисления с решением
Шестнадцатеричная система счисления. Наиболее распространена в современных компьютерах. При помощи неё, например, указывают цвет. FF0000 - красный цвет. Для записи числа используются цифры от 0 до 9 и буквы A,B,C,D,E,F, которые соответственно обозначают числа 10,11,12,13,14,15. Перевод в десятичную систему счисления Преобразовать число из любой системы счисления в десятичную можно следующим образом: каждый разряд числа необходимо умножить на Xn, где X - основание исходного числа, n - номер разряда. Затем суммировать полученные значения. Запишем полученные остатки в обратном порядке и получим искомое число.
Используется повсеместно. Cчёт дюжинами... Широко используется в программировании и информатике.
Исходное число 789, основание системы «8». Записываем остатки от деления на 8 в обратном порядке и получаем следующую последовательность: 1425. Полученный результат является восьмеричным представлением числа 789. Из десятичной в шестнадцатеричную. Исходное число 7000, основание системы «16». Записываем остатки от деления на 16 в обратном порядке. Если остаток от деления больше 9, то вместо числа записываем букву, соответствие чисел и букв представлено ниже в таблице.
Пусть требуется перевести шестнадцатеричное число F116 в двоичное число. Этот пример иллюстирует тот факт, что следует дополнять младшие разряды до 4 разряда в двоичном числе. Об этом речь пойдет позже, в IV главе нашего курса.
Перевод чисел в любую систему счисления
Статья о переводе чисел из восьмеричной системы в другие системы счисления (десятичная, двоичная, шестнадцатеричная) и обратно. Урок по теме Прямой перевод между двоичной, восьмеричной и шестнадцатеричной системами счисления. Чтобы перевести число из четвертичной, восьмеричной или шестнадцатеричной системы счисления в двоичную, нужно воспользоваться алгоритмом перевода.