Новости незатухающие колебания примеры

Примерами систем, демонстрирующих незатухающие колебания, являются маятники, электрические контуры с индуктивностью и емкостью, а также атомы в молекулярных соединениях.

Явление резонанса

Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника. На рис. Рисунок 2. Функциональная схема автоколебательной системы Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом рис. Ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника закреплен анкер якорек с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменена пружиной, а маятник — балансиром — маховичком, скрепленным со спиральной пружиной.

При отсутствии трения упругая сила 1. Эту частоту называют собственной.

Таким образом, свободные колебания при отсутствии трения являются гармоническими, если при отклонении от положения равновесия возникает упругая сила 1. Собственная круговая частота является основной характеристикой свободных гармонических колебаний. Эта величина зависит только от свойств колебательной системы в рассматриваемом случае - от массы тела и жесткости пружины. Амплитуда свободных колебаний определяется свойствами колебательной системы m, k и энергией, сообщенной ей в начальный момент времени. При отсутствии трения свободные колебания, близкие к гармоническим, возникают также и в других системах: математический и физический маятники теория этих вопросов не рассматривается рис. Математический маятник - небольшое тело материальная точка , подвешенное на невесомой нити рис.

Более подробно об этих явлениях вы можете прочитать в нашей статье «Колебательный контур». Условие возникновения резонанса в электрической цепи можно выразить формулой где — индуктивность катушки, — ёмкость конденсатора. Различают резонанс токов при параллельном соединении катушки и конденсатора и резонанс напряжений при последовательном соединении элементов. На принципах электрического резонанса функционируют такие приборы, как электрические резонансные трансформаторы, катушка Теслы и многие современные электронные устройства.

Акустический резонанс С исследования именно этого вида резонанса всё и началось! Галилео Галилей в 1602 году исследовал маятники и струны различных музыкальных инструментов. Открытия, сделанные им, позволили сделать ряд выводов и создать новую отрасль физики — учение о звуковых колебаниях. Акустический резонанс — это явление, при котором акустическая система усиливает звуковые волны, частота которых совпадает с одной из ее собственных частот вибрации ее резонансными частотами. Благодаря акустическому резонансу музыкальные инструменты способны работать, воспроизводить звучание особенным образом. Большую роль в этом играет форма инструмента.

А в последующем система может вести себя по-разному: как сразу вернуться в состояние равновесия, так и совершать определенное количество колебательных движений. Описанные виды колебаний носят название вынужденных и свободных. Первые совершаются под влиянием внешней силы, а вторые — под влиянием внутренних сил. Под затуханием свободных колебаний принято понимать плавное снижение амплитуды колебаний с течением времени.

Главная причина состоит в потере энергии колебательной системой. Условия возникновения свободных колебаний Чтобы возникли свободные колебания, необходимо вывести систему из равновесия, обеспечить при отклонениях действие силы, стремящейся вернуть систему в исходное состояние. При этом потери в системе должны быть минимальны, поскольку только при соблюдении этого условия возвращающая систему в состояние равновесия энергия будет теряться медленно. Свободные колебания — это раскачивающийся маятник, часовой балансир, скачущий мяч, звенящая струна.

Незатухающие колебания. Автоколебания

Если в системе отсутствуют силы трения, колебания продолжаются бесконечно долго с постоянной амплитудой и называются собственными незатухающими колебаниями. Пружинный маятник - материальная точка массой m, подвешенная на абсолютно упругой невесомой пружине и совершающая колебания под действием упругой силы. Рассмотрим динамику собственных незатухающих колебаний пружинного маятника.

Амплитуда свободных колебаний определяется свойствами колебательной системы m, k и энергией, сообщенной ей в начальный момент времени. При отсутствии трения свободные колебания, близкие к гармоническим, возникают также и в других системах: математический и физический маятники теория этих вопросов не рассматривается рис. Математический маятник - небольшое тело материальная точка , подвешенное на невесомой нити рис. Математический маятник а , физический маятник б Физический маятник - твердое тело, совершающее колебания под действием силы тяжести вокруг неподвижной горизонтальной оси. На рисунке 1. Период колебаний физического маятника описывается формулой где J - момент инерции тела относительно оси, m - масса, h - расстояние между центром тяжести точка С и осью подвеса точка О.

Момент инерции - это величина, зависящая от массы тела, его размеров и положения относительно оси вращения. Вычисляется момент инерции по специальным формулам.

Зильберман А. По специальной договоренности с редколлегией и редакцией журнала "Квант" Такие генераторы применяются во многих устройствах — радиоприемниках, телевизорах, магнитофонах, компьютерах, электроорганах и т. Так, частоты генераторов могут лежать в диапазоне от нескольких десятков герц низкие ноты в электрооргане до сотен мегагерц телевидение и даже до нескольких гигагерц спутниковое телевидение, радиолокаторы, используемые сотрудниками ГАИ для определения скорости автомобиля. Мощность, которую может отдать генератор потребителю, составляет от нескольких микроватт генератор в наручных часах до десятков ватт генератор телевизионной развертки , а в некоторых специальных случаях мощность может быть такой, что и писать нет смысла — все равно вы не поверите. Форма колебаний возможна как самая простая — синусоидальная гетеродин радиоприемника или прямоугольная таймер компьютера , так и весьма сложная — «имитирующая» звучание музыкальных инструментов музыкальные синтезаторы.

Конечно, мы не будем рассматривать все это разнообразие, а ограничимся совсем простым примером — маломощным генератором синусоидального напряжения умеренной частоты сотни килогерц. Уравнение процесса легко получить, приравняв с учетом знаков напряжения на конденсаторе и на катушке — ведь они включены параллельно рис. Решение этого уравнения хорошо известно — это гармонические колебания. Пусть, для определенности, вся неидеальность контура связана с тем, что у катушки, точнее — у провода, из которого она намотана, есть активное омическое сопротивление r рис. На самом деле, конечно, потери энергии есть и у конденсатора хотя на не очень высоких частотах сделать очень хороший конденсатор можно без особого труда. Да и потребитель отнимает у контура энергию, что также способствует затуханию колебаний.

Любая колебательная система тратит часть своей энергии на преодоление силы сопротивления, силы трения. Энергия уменьшается, колебания на самом деле являются затухающими. В тех случаях, которые мы рассматриваем в 9 классе, этим затуханием можно пренебречь, но в реальной жизни это нужно учитывать. А каким же образом мы может заставить колебаться маятник гармонически?

Это можно сделать двумя способами. Вывести груз из положения равновесия и отпустить его. В этом случае график движения график x t будет иметь такой вид см. График движения x t Второй вариант: заставить тело совершать гармонические колебания с помощью импульса например, толкнуть его. Вспомните, например, как вы раскачиваете качели: либо толкнуть их, либо вывести их из положения равновесия и отпустить. Естественно, можно вывести их из положения равновесия и сообщить некий импульс. Превращения энергии при колебаниях. Затухающие колебания Свободные колебания могут совершаться за счет первоначального запаса энергии. Вернемся к предыдущим рассуждениям: в первом примере, который мы приводили, это была первоначальная энергия грузика, мы выводили его из положения равновесия, а потом отпускали. А во втором случае этот первоначальный запас энергии — это кинетическая энергия в случае, когда мы толкали грузик.

Согласно закону сохранения энергии в обоих случаях сумма кинетической и потенциальной энергий маятника должна оставаться неизменной с течением времени. То есть, какое бы промежуточное значение маятника мы бы ни рассмотрели, в любой из них эта сумма равна начальной энергии маятника см. Иллюстрация закона сохранения энергии Однако на самом деле мы понимаем, что маятников, которые могли бы совершать колебания довольно долго, не существует — это какая-то абстракция. Учтём, что система маятников незамкнутая, то есть в системе присутствует сила трения. В реальных условиях мы можем взять тяжелый груз, подвесить его на очень длинную и легкую нить или проволоку, закрепить один конец на опоре и получить систему, близкую по своим свойствам к математическому маятнику. Однако нельзя сказать, что механическая энергия такого маятника будет сохраняться — мы прекрасно знаем, что рано или поздно он остановится. В чем же наша недоработка? Ответ прост: в данной системе присутствуют различные виды трения, действие которых приводит к потере на каждом периоде колебаний маятника какой-то части его энергии см. В системе присутствуют различные виды трения Силы трения могут быть внутренними например, в подвесе маятника , а могут быть и внешними например, со стороны окружающего воздуха или другой среды, в которой может находиться маятник. Естественно, что силы трения зависят от свойств среды: в воде колебания будут затухать быстрее, чем в воздухе см.

Затухание в воздухе и воде В итоге амплитуда колебаний будет постепенно уменьшаться, и в конце маятник остановится. На рисунке представлены смещения груза маятника от времени: видно, что амплитуда постепенно уменьшается, стремясь к нулю, такие колебания называются затухающими см. Затухающие колебания — это колебания, которые происходят в незамкнутой системе, то есть колебания, которые происходят в том числе под действием силы трения. Амплитуда таких колебаний постепенно затухает. Большинство колебаний в мире — затухающие, так как в окружающем нас мире, постоянно существуют силы трения.

§ 30. Незатухающие колебания. Автоколебательные системы

Автоколебания — незатухающие колебания, которые существуют за счет поступления энергии в систему под ее же управлением. Главная» Новости» Незатухающие колебания примеры. Это такие колебания при которых они исчезают, поскольку энергия колебаний преобразуется в другие формы энергии. Колебания бывают незатухающими и затухающими. Автоколебания — незатухающие колебания, которые существуют за счет поступления энергии в систему под ее же управлением. Уравнение незатухающих колебаний Незатухающие колебания являются одним из видов колебаний, при которых отсутствует потеря энергии со временем.

Гармонические колебания и их характеристики.

Затухающие колебания — это колебания, амплитуда которых со временем уменьшается из-за внешней силы или трения, в то время как незатухающие колебания продолжаются неопределенно долго с постоянной амплитудой. Примерами незатухающих колебаний могут служить колебания маятника или звуковой волны, распространяющейся в открытом пространстве. Незатухающие колебания создаются такими устройствами, которые сами могут поддерживать свои колебания за счет некоторого постоянного источника энергии. Другим примером незатухающих колебаний является электромагнитные колебания, которые возникают в радиочастотных колебательных контурах. Уравнение незатухающих колебаний Незатухающие колебания являются одним из видов колебаний, при которых отсутствует потеря энергии со временем. Примеры применения: Электроника: Незатухающие колебания используются в радиоэлектронике для создания точных частотных генераторов.

Вынужденные колебания. Резонанс. Автоколебания

Распространенным примером незатухающих колебаний являются волны переменного тока или напряжения, качающийся маятник в вакууме и т.д. Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии. Незатухающие колебания создаются такими устройствами, которые сами могут поддерживать свои колебания за счет некоторого постоянного источника энергии. Однако незатухающие колебания возможны не только при периодическом внешнем воздействии, но и в некоторых других случаях — в так называемых автоколебательных и параметрических системах. Примером незатухающих колебаний может служить колебание маятника с нулевым затуханием. Примеры автоколебаний Незатухающие колебания маятника часов за счёт постоянного действия тяжести заводной гири; Колебания скрипичной струны под воздействием равномерно движущегося смычка.

Похожие новости:

Оцените статью
Добавить комментарий