Подсветка с прямым освещением: в светодиодном экране с прямым освещением светодиоды находятся прямо за экраном и светят через ряд отверстий или отверстий в экране. Теперь не обязательно покупать дорогую модель телевизора со встроенной фоновой подсветкой, достаточно приобрести устройство DreamScreen и быть обладателем ТВ-панели с портом HDMI. У современного OLED-телевизора 55″ Philips 55OLED807/12 четырехсторонняя подсветка Ambilight с динамической сменой цвета светодиодов под изображение на экране или ритм музыки. Дополнительная подсветка телевизора и монитора: нужна ли она?
От органики до лазеров: разбираемся в технологиях современных телевизоров
Дополнительная подсветка телевизора и монитора: нужна ли она? Запчасти для электронных устройств. Подсветка для ТВ. Подсветка работает от USB разъёма телевизора, включается/выключается вместе с телевизором и яркость можно регулировать.
QLED в телевизоре: все, что нужно знать
LED подсветка в современных телевизорах с экранами на жидких кристаллах на сегодня имеет несколько технологических решений. В своих ЖК телевизорах и мониторах со светодиодной подсветкой каждая компания использует вариации выше указанных технологий. Чтобы модернизировать LCD-телевизоры начали использовать подсветку с помощью светоимитирующего диода – Light-Emitting Diode (сокращено LED). Светодиодная подсветка телевизора. 900 ₽. Канал о Смарт технике, роутерах, тв боксах, гаджетах, носимой электронике и не только.
Светодиодные подсветки для телевизоров
QLED телевизоры отличаются типом подсветки и конечный результат в качестве изображения зависит именно от неё. Другими словами, такая подсветка подсвечивает матрицу напропалую, а QD прослойка затемняет отдельный зоны, однако, очень часто она не справляется со своей задачей и подсветка все равно образует засветы на тёмных участках изображения. Телевизоры с Direct LED подсветкой являются одними из самых бюджетных телевизоров и идут после обычных телевизоров, в которые также установлена либо Direct LED подсветка, либо ещё более старая Edge подсветка, которая подсвечивает матрицу только по контуру, за счёт чего сильно страдает яркость, контрастность и другие характеристики изображения. Так, приобрести самую актуальную 55 диагональ можно в пределах 35-50 тысяч рублей. Автор: sharfest. Такая подсветка представлена большим количеством светодиодов, которые также расположены за матрицей телевизора, однако, за счёт их большой плотности они делятся на зоны, которые в свою очередь могут отключаться и не подсвечивать изображения в тёмных его участках. В купе с QD прослойкой такие телевизоры имеют высокую яркость и отличную контрастность, однако, не лишены ореолов вокруг ярких участков изображения и объектов, которые находятся на тёмном или чёрном фоне. Таким образом, чем больше зон Mini-LED подсветки имеет телевизор тем более контрастной будет картинка, однако, избавиться от ореолов в полный мере к сожалению практически невозможно. За счёт этого картинка может иметь максимальную яркость, а также бесконечную контрастность за счёт того, что каждый светодиод может включаться и отключаться самостоятельно.
Минусы: нельзя сделать сверхтонкий корпус. FALD Аббревиатура от full-array local dimming, что означает полноматричная прямая подсветка.
Это та же Direct LED что это такое, рассмотрели выше , но в новом, выгодном для производителей телевизоров и маркетологов свете. Единственная особенность технологии — возможность отключения подсвечивания зонами, на которые разбиты светодиоды. Этим достигается отображение глубокого чёрного цвета. Количество локальных зон может составлять от нескольких десятков до 320 штук и более. В некоторых флагманских моделях поддерживается отключение отдельных светоизлучающих элементов для максимального улучшения качества картинки. Используется только в дорогих ТВ-приёмниках с 4K разрешением. Какая подсветка в телевизорах лучше зависит от предпочтений и толщин кошелька потребителя.
Цены постепенно становятся более реалистичными — в немалой степени благодаря компании LG, единственному на данный момент производителю OLED-панелей для телевизоров, продающему их другим брендам ТВ таким как Sony и Panasonic , повышая объем производства и конкуренцию на рынке — однако OLED-телевизоры по-прежнему остаются значительно более дорогими, чем модели на базе других технологий. Кроме того, на данный момент в продаже нет OLED-телевизоров с диагональю меньше 55 дюймов. И, наконец, OLED-телевизоры пока не могут сравниться пиковой яркостью с лучшими моделями с подсветкой. Читать также: Все, что вам необходимо знать об OLED-ТВ Что лучше выбрать Direct led или edge led — что лучше выбрать зависит от различных параметров, которые включают индивидуальные пожелания покупателя и условия размещения и эксплуатации. Можно дать некоторые советы по выбору телевизора: тонкий корпус с edge led лучше устанавливать на ровные стены; если экран будет располагаться в подвесном или наклонном состоянии, лучше покупать директ лед, чтобы избежать деформации рассеивателя света; edge лед обладают более высокой яркостью, чем приборы с ковровым типом. При покупке телевизора edge led проверку качества изображения требуется проводить прямо в магазине. Засвеченные части будут видны на синем экране. Насущный вопрос: чему же отдать предпочтение? Для тех, кому важен внешний вид бытовой техники, и, для кого качество не играет большой роли, лучше всего взять телевизор с EdgeLED-подсветкой. Такая вещь будет радовать глаз и приносить удовольствие, долго служить, но будут присутствовать некоторые искажения изображения.
Стартап Nanoleaf, известный своими световыми панелями, выпустил новый комплект из специальной камеры и светодиодных лент для телевизоров. Nanoleaf 4D Screen Mirroring Lightstrip Kit обеспечивает подсветку телевизора или монитора в соответствии с содержимым на экране. Комплект состоит из светодиодной ленты Nanoleaf Lightstrip, которая крепится к задней части телевизора, а камера должна быть направлена на экран для определения цветов.
Светодиодные подстветки Direct LED и Edge LED: что это такое и что лучше
Принципы работы LED-телевизора и светодиодной подсветки | USB cветодиодная LED лента подсветка для телевизора и монитора 1 м, IP65, 5050 Зеленая. |
Подсветка Edge LED или Direct LED: что это такое в телевизоре, какой тип выбрать | В живую телевизоры с встроенной подсветкой не пробовал, поэтому сравнить заводской амбилайт и амбилайт с амазона могут обладатели телевизоров Phillips в комментариях. |
Фоновая подсветка телевизора своими руками | Подсветка работает от USB разъёма телевизора, включается/выключается вместе с телевизором и яркость можно регулировать. |
webOS Forums - форум пользователей телевизоров LG на webOS
Продажа светодиодных LED подсветок с доставкой. Отличные цены на светодиодную LED подсветку. USB светодиодная лента 5 В SMD 2835 светодиодная фоновая подсветка для телевизора 1 м 2 м 3 м 4 м 5 м теплый белый гибкий светодиодный светильник Рождественская лампа для домашнего декора. Вместо умной лампочки можно купить светодиодную ленту — с ней подсветка будет равномернее по периметру экрана.
Динамическая подсветка для ЛЮБОГО телевизора своими руками
Этот свет от диодов проецируется на стену за техникой, будто убирает рамку и расширяет экран телевизора. Например, если на экране появятся кадры с морем, то стена окрасится в лазурный цвет с разными переливами. Так у зрителя появится ощущение нахождения в кинотеатре. Плюс в темном помещении при работе подсветки Ambilight глаза человека меньше напрягаются, и просмотр становится более комфортным. Система Ambilight из-за своих мощных процессоров ежесекундно обрабатывает изображение на экране в прямом эфире, отправляет полученную информацию на светодиоды и создает свечение нужного цвета. Существует несколько поколений технологии Ambilight: Ambilight 2 — двусторонняя подсветка. Ambilight Surround — трехсторонняя подсветка с лампами сверху корпуса. Ambilight Full Surround — подсветка, установленная со всех сторон. Ambilight Spectra — последнее поколение Ambilight с усовершенствованными алгоритмами обработки изображения и улучшенными светодиодами.
У современных телевизоров с Ambilight есть следующие дополнительные режимы: Музыкальный режим. Технология анализирует музыкальный контент и напрямую реагирует на ритм и динамику музыки.
Или придется спаивать дополнительные соединения. Далее приступим к программному обеспечению. Дальше нам потребуется перенести libraries в папку FastLED. Запускаем программу, дальше нам она не потребуется, закроем ее.
В «Документах» автоматически появится «Arduino», но нам потребуется создать в ней для дальнейших операций папку Adalight. Скопируем скетч Adalight. Подключаем микрокомпьютер Arduino через USB. Установка программы произойдет автоматически. Изменим светодиоды до нужной нам цифры. Укажем следующий путь: «Инструменты» — «Плата» — «Arduino nano».
Дальше потребуется отключение Arduino от порта. Установим программу AmbiBox. Далее используем «Показать зоны захвата», «Мастер настройки зон». Выберем ленту. Применим и сохраним изменения. Настройки окончены.
Нажмем на профиль AmbiBox. Если возникнут проблемы, то можно будет удалить программное обеспечение и повторить загрузку через «Установку и удаление программ». Какой бы способ подсветки ни был выбран, каждый из них имеет свои плюсы и минусы, главное — подобрать наиболее удобный для вас вариант.
С обратной стороны — двусторонний скотч. На двух метрах разместилось 120 светодиодов. Начал с примерки Эти самые 120 диодов распределил так: верх — 60 штук, право и лево — по 30. Так как загнуть ленту нормально и красиво под 90 градусов на углах ТВ ну никак не получится, я разрезал ее на эти самые 3 части. Благо места, где можно резать указаны см. Наклеил ленту на выбранные и предварительно обезжиренные места.
Затем с соблюдением мер предосторожности, спаял эти части Осталось только подключить конструкцию в штатный USB порт телевизора И — вот оно, чего и хотелось, вид сзади А теперь — спереди Ну и немного сверху, так, на всякий случай Как и было задумано — подсветка включается при включении телевизора и выключается вместе с ним же. Никаких лишних телодвижений.
Каждая волна будет иметь условную яркость в 1 единицу.
Посмотрите на график, и увидите, какая у него чувствительность к этим длинам волн. Как он будет действовать? Яркость волны длиной 450 нм, равную 1 он умножит на 0,1 Яркость волны длиной 500 нм, равную 1, он умножит на 0,4 Яркость волны длиной 550 нм, равную 1, он умножит на 1,2 Яркость волны длиной 600 нм, равную 1, он умножит на 0,4 А потом всё это сложит.
Получится 2,1. И он отправит значение 2,1 в зрительный нерв на самом деле не сразу, в сетчатке есть своя мини-нервная система, выполняющая предварительную обработку информации, но это не важно. Пример двух спектров, которые на химическом и физическом уровне абсолютно разные, но для сенсора — то же самое Теперь убираем все эти четыре длины волны, и, вместо этого, светим одной в 525 нм и яркостью 2,1.
Сенсор снова сделает это умножение-сложение, и у него снова получится 2,1. То же самое. Поэтому, с информационной точки зрения, для сенсора два этих воздействия — абсолютно одно и то же.
Сенсор выдаёт только интенсивность, просто циферку — и мозг, как-бы, будет видеть одно и то же. Только вот сенсор живой и электрохимический. Он требует обслуживания, заботы и управления, надо подкачивать разные нужные вещества и калибровать всякие биологические штуки.
Кислород с витаминками, и всё такое. Не одно и то же всё время, а по ситуации: от воздействия света разной интенсивности и длины волны в палочках и колбочках возникают разные фотохимические реакции, и баланс веществ в них постоянно меняется. Чтобы грамотно рассчитать калибровку нервных окончаний и дозу веществ и витаминок в нужный момент времени, организм должен понять, какое на этот сенсор идет воздействие со стороны внешней среды, и на основе этого сделать нужные организменные штуки с этим сенсором.
Адаптировать его к ситуации. А какое воздействие на глаз может быть со стороны внешней среды? Если не брать во внимание нештатные сценарии шлицевая отвёртка , то это могут быть только электромагнитные волны разной частоты длины волны.
Очень условный гипотетический! Организм начеку — как только эта длина волны появилась, надо усилить подкачку новых молекул этого витамина, чтобы концентрация не снижалась. Но сенсор даёт очень скудную информацию — лишь одно число, и по нему непонятно, что там происходит.
Вдруг там 458 нм, или 461 нм? Сенсор всё равно выдавал бы одно и то же. А может там вообще только 500 нм?
Тогда, если мы ложно испугаемся и ошибочно начнем пихать туда новые дополнительные витаминки, их там будет, наоборот, переизбыток — а это тоже нехорошо. То есть, на информационном уровне, сенсор детектирует зелёный цвет и всё, а на физиологическом уровне на него разные длины волн в спектре действуют по разному, просто он об этом доложить организму не может. Как же узнать, что витаминки действительно уничтожаются и их пора подкачивать?
Поставить спектрограф? Природа их делать не умеет. Датчик на каждое вещество и каждый чих в каждый сенсор — глаза будут размером с арбузы и очень мясные, придётся уменьшить мозг и качать шею.
Но можно сделать проще — ориентироваться на среднюю температуру по больнице. Природа любит так делать. Для того, чтобы полностью оценить это воздействие, и, в частности, узнать, как сильно светит волна 459 нм, нужно знать весь спектр, а не одну циферку с сенсора.
За неимением спектрографа, организм, руководствуясь генетическим опытом, выработанным в ходе эволюции нашего вида, выдумывает наиболее вероятный спектр, который бы воздействовал на сенсор так, чтобы получился как раз тот сигнал-циферка, которая с этого сенсора и поступает в данный момент. То есть он пытается выдумать такой спектр, при котором бы сенсоры выдавали то, что они выдают в данный момент. Поскольку он знает только естественный спектр и его формы, то выдумывает именно естественный спектр.
И, поскольку сенсор не один, а четыре, очень грубую картину спектра организм таки восстанавливает. Естественный для нашего организма спектр — это довольно плавная штука: Естественный спектр Плавный он по простой причине. Что видел глаз всю эволюцию?
Листики с травинками, камешки, небо с речками, волосня товарища по пальме, вот это всё. Большое разнообразие химических элементов, одним словом. И почти для каждой длины волны найдется какая-нибудь молекула, хорошо отражающая именно её.
И получается, что когда веществ много разных, то отражаются почти все волны, и спектр этих отражённых волн плавный. А что значит «плавный спектр»? График плавный.
Например, яркости 480 нм много — значит, скорее всего, и 479 нм, и 475 нм, и 485 нм тоже довольно много. Физиология глаза заточилась под эту вездесущую плавность — потому что это всегда срабатывало. Работает — не трогай.
Все, у кого глаз подстраивался неправильно, плохо видели и были заклёваны саблезубыми мамонтами, не дав потомства. Но потом появились искусственные источники света. Их спектр бывает очень разный.
В большинстве случаев, он очень сильно отличается от естественного спектра, под который эволюционно заточена автонастройка наших глаз. Спектры разных искусственных источников света Например, производители отчаянно воюют со светодиодами, которые очень любят длину волны в районе 430 нм и шпарят ей, как прожекторы, а в природе такого не бывает, там если 430 нм шпарит — то 420 нм и 440 нм тоже будут шпарить. И вот светодиод, у которого 430 нм светит ярко, а в окрестности нет, светит в глаз.
Организм думает, что раз синий датчик выдаёт что-то интенсивное, значит 420 нм, и 430 нм, и 440 нм много, и начинает на физиологическом уровне подстраиваться под этот спектр. Подкачивает не те вещества, не в той концентрации и невпопад, генерирует неверные стимулы всяких нейронов, неправильно калибрует чувствительность. В глазах нарушается баланс нужных веществ и электрохимических регулировок, и глаза начинают вполне справедливо докладывать о сбоях.
Эти сбои наше сознание интерпретирует как неестественность картинки и усталость глаз. Словом, не для того у нас эти две штуки в голове выросли. Неестественный спектр создаёт ощущение неестественности цвета.
Сенсоры передают в мозг нужную информацию, на информационном уровне всё нормально — картинка как картинка, но авторегулировка физиологии глаза отрабатывает неадекватно ситуации, потому что неправильно рассчитывает предположение о том спектре, который светит в глаз. Если же спектр естественный — то представление организма о спектре и его реакции адекватны реальному воздействию на сетчатку — и цвета кажутся мягкими. Потому что с физиологией всё хорошо.
Спектр решает, будут цвета ощущаться мягкими и естественными, или нет. Давайте делать дисплей. Светоизлучающих элементов, способных выдавать любую видимую длину волны, пока не сделали.
А жаль. Поэтому делаем просто — под каждый сенсор в нашем глазу свой элемент на дисплее. Красному — 700 нм, зелёному — 550 нм, синему — 450 нм.
Будем этими элементами дисплея стимулировать сенсоры глаз так же, как это делают цвета, и обманем глаз, чтобы он думал, что видит цвет. В длинах волн и частотах видимого спектра стоит коварный капкан для мозга. Случайно или нет?
Длины волн видимого спектра - от 380 до 780 нм, а частоты - от 380 ТГц до 790 ТГц. Например, у оранжевого частота 500 ТГц, а у бирюзового - длина волны 500 нм. Частота и длина волны - это, как-бы, взаимно обратные величины, и вот такой вот нюанс с почти одинаковыми цифрами может сильно путать мозг Резюмируем.
У нас в дисплее три источника света: красный, зелёный и синий. Когда они будут светить одновременно — мы будем стимулировать сразу три сенсора в глазу — и будет белый. Вот только этот белый — какой у него будет спектр?
Если этот спектр будет неестественным, то от такого дисплея устанут глаза. А если наоборот, спектр получится более естественным — картинка будет выглядеть мягкой и глаза не будут уставать. И так не только с белым, а вообще со всеми цветами.
В этом вся соль. К слову, в ныне вымерших плазменных телевизорах, особенно последних моделей, дела со спектром обстояли очень и очень хорошо. Поэтому у многих из них картинка выглядит, местами естественнее, чем на OLED, если не брать в расчёт моральное устаревание и связанные с этим аспекты.
Свет от Солнца до Земли летит миллионы лет А как же отражённый свет? Да никак. Фотоны не бывают «отражённые» и «прямые».
Если хочется, можно даже сказать, что все фотоны вокруг нас — отраженные. Даже с Солнца. Почему же на лампочку и солнце смотреть больно, а на объекты, освещенные ими нет?
Ну ясно-понятно, это же прямой свет, а не отражённый. Не по этому. Когда солнце или лампочка проецируется на сетчатку глаза, то на сравнительно маленькой площади сетчатки появляется слишком много яркого света.
Источник света же точечный. Вот он в виде этой точки и проецируется. Если натянуть на лампочку большой трёхметровый светорассеиватель, то на него вполне комфортно будет смотреть.
И наоборот, если осветить комнату мощным военным прожектором и посмотреть на мебель в этом «безвредном» отражённом свете, то это может оказаться последним, что вы увидите. Потому что смысл в яркости, а не в том, откуда свет. Точнее, концентрации яркости на условном кусочке сетчатки глаза.
Лазеров это тоже касается — сами по себе, они не вредные. Просто у лазеров спектр очень-очень далёк от естественного, и лазером гораздо легче получить концентрированную яркость на маленьком участке сетчатки. Лазер мы встречаем в жизни чаще, чем сверхмощные военные прожекторы по крайней мере, пока что , поэтому проблема попадания лазера в глаз встречается чаще.
Сенсоры сетчатки могут перегрузиться и сгореть, поэтому сигнализируют об этом, если успеют. Вот поэтому нам неприятно смотреть те штуки, которые перегружают их. Давайте посмотрим на фотоны поближе и изучим их повадки.
Не будем заострять внимание на том, что мир для них двумерный, времени не существует, и они вообще не «летят» — лучше обратим внимание на то, как они отражаются. Когда свет летит через плазму или газ — фотоны не летят через него. Вместо этого, атомы газа постоянно поглощают и переизлучают фотоны заново.
Как по цепочке. Долетают не «те самые» фотоны, а «новые» физики, держитесь. На постоянное поглощение-переизлучение уходит время, именно поэтому свет в веществе замедляется.
Точно также, когда фотоны «отражаются от поверхности» — на самом деле они поглощаются, и переизлучаются новые. Большая часть фотонов, прилетающих с Солнца на Землю, рождаются у него в сердце, и миллионы лет скитаются в толще его плазмы, переизлучаясь-отражаясь огромное число раз, прежде, чем вырваться на волю и долететь до нас за те самые 8 минут. А с книжкой то что?
А почему же книжку легче читать, чем дисплей? Да потому, что отражение есть переизлучение, а переизлучение немного меняет спектр. Одни частоты отражаются лучше, другие хуже.
И это, как правило, постепенно приближает спектр к естественному. Причём, если после изменения спектра соотношение между сигналами красной, зелёной и синей колбочки не поменяется - то визуально цвет остаётся таким же. Однако, спектр света, отражённого от книжки может стать спокойнее и ближе к естественному.
Причина приятности E-Ink состоит в естественном спектре и правильной яркости Книжка состоит из целлюлозы — того вещества, которое окружало нас миллионы лет эволюции, и под наблюдение которого эволюционно заточились сенсоры в наших глазах. Нашим глазам приятнее воспринимать те волны, которые целлюлоза отражает лучше, и менее приятно воспринимать те волны, которые целлюлоза отражает хуже. Поэтому для глаз эта спектральная книжковость естественна и приятна.
Большинство объектов вокруг нас тоже чуть-чуть выправляет спектр ближе к естественному. В том числе и полимеры, в том числе краска и пластик - часть волн гасят, часть высокочастотных волн размазывают, если имеет место люминесценция. Поэтому те самые e-ink дисплеи, которые не светятся вообще, а работают в отраженном свете, выглядят так естественно.
Если у самосветящегося дисплея спектр излучения и яркость близки к естественным, то он тоже выглядит естественно. Просто среди светящихся дисплеев мало тех, где производитель заморочился над спектром. На всякий случай, повторюсь: вышеизложенное является лишь моими домыслами, на текущий момент я не располагаю возможностями подтвердить или опровергнуть это.
Я лишь посчитал, что было бы полезно поделиться ими с сообществом и предложить к обсуждению и буду благодарен всем, кто смог бы дополнить, уточнить, подтвердить или опровергнуть эти идеи по существу — я думаю, что будет очень полезно собрать побольше информации о данном вопросе. Как не утонуть в терминах Никак : В современных телевизорах применяется много разных технологий, большая часть которых имеет какое-то название. Часто телевизоры так и называют по одной из технологий, из которых они сделаны.
То же самое с мониторами. К примеру, IGZO — это не тип монитора, а просто продвинутый вариант технологии управления пикселями. Сам экран там может быть какой угодно — светодиодный или ЖК, какой там сорт жидких кристаллов, какая подсветка — абсолютно непонятно.
Чаще всего, название ЖК телевизоров формируется из типа его подсветки, букву Q припаивают, если есть квантовые точки, а тип ЖК-кристаллов там вообще никого не волнует. В названии также может участвовать разрешение телевизора: FullHD-телевизор, 4К-телевизор, 8К-телевизор и т. Скрываться за этим может что угодно, т.
Раньше некоторая связь была — например, плазменные 4К-телевизоры не могут быть меньше 100 дюймов, просто потому что там пиксели не могут быть меньше определённого размера.