Новости почему поверхностное натяжение зависит от рода жидкости

Поверхностное натяжение жидкости определяется силами межмолекулярного взаимодействия, поэтому оно зависит. Проанализировав зависимость поверхностного натяжения жидкости от ее температуры, приходим к выводу, что поверхностное натяжение уменьшается с ростом температуры (с увеличением скорости движения молекул).

Почему поверхностное натяжение зависит от рода жидкости кратко

Поверхностное натяжение Поверхностное натяжение зависит от рода жидкости из-за различной структуры и взаимодействия молекул вещества.
Вода с низким поверхностным натяжением Поверхностное натяжение и температура Поверхностное натяжение жидкости зависит от различных факторов, включая род жидкости и температуру.
ПОЧЕМУ ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ ЗАВИСИТ ОТ РОДА ЖИДКОСТИ Поскольку поверхностное натяжение определяется на молекулярном уровне, любое изменение компонентов жидкости, поверхностно-активных веществ, топлива или соединений в жидкости может привести к изменению поверхностного натяжения.

Остались вопросы?

Силовое механическое определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости. Как поверхностное натяжение зависит от температуры? Нестрого говоря, поверхностное натяжение показывает, насколько сложно пройти поверхность жидкости. Чем выше температура, тем больше колебания молекул поверхностного слоя жидкости, и тем слабее молекулы связаны друг с другом. Почему возникает поверхностное натяжение воды? На поверхности воды возникает поверхностное натяжение. Оно обусловлено силами притяжения между молекулами. Внутри воды силы притяжения между молекулами взаимно компенсируются, а на молекулы, находящиеся вблизи поверхности, действует нескомпенсированная результирующая сила, направленная внутрь от её поверхности. Почему возникает поверхностное энергия?

Внутри воды силы притяжения между молекулами взаимно компенсируются, а на молекулы, находящиеся вблизи поверхности, действует нескомпенсированная результирующая сила, направленная внутрь... Как направлены силы поверхностного натяжения на границе жидкости и твердого тела? На границе жидкость-воздух газ 1. Как направлены силы поверхностного натяжения в месте отрыва капли? По окружности этой перетяжки действуют силы поверхностного натяжения, препятствующие отрыву капли. Эти силы направлены по касательной к поверхности жидкости и перпендикулярно границе перетяжки, т.

Жидкая краска на окрашиваемых поверхностях с этим связан ряд вопросов в технике живописи. Мыльная вода при стирке грязной одежды. Вода на стеклах очков здесь нет узких промежутков, но при небольшом краевом угле конденсирующаяся на стекле вода создает плоскую пленку, а не туман из капелек. Блинное тесто на сковороде. Вода на полу в ванной. Вода на стеклах очков мелкие капли быстрее испаряются. Важную роль капиллярность играет в садоводстве. Вода проникает в тонкие промежутки между частицами почвы. Разрыхление и вскапывание изменяет размеры этих промежутков и затрудняет доступ воды из глубины почвы к поверхности, предотвращая тем самым ее испарение. Кирпичи пористы. Кирпичные дома на высоте 30 см или более от поверхности земли должны иметь изоляцию от влаги из непористого материала. Объяснение капиллярности с молекулярной точки зрения По всей трубке вверх поднимается очень тонкий слой жидкости, возможно, толщиной в одну молекулу, а за ним ползет основная масса жидкости, образуя искривленный мениск. Силы F1 и F2 для случаев малого и большого краевого угла схематически изображены на фиг. Молекулярные силы, краевой угол и капиллярность. Поверхность жидкости располагается перпендикулярно равнодействующей R сил притяжения, действующих на ее молекулы. Это является результатом короткодействующих сил, которые проявляются при столкновениях с другими молекулами. Когда краевой угол равен нулю, стеклянная стенка, вероятно, на всем протяжении покрыта тонким слоем жидкости толщиной в несколько молекул. Мениск всползает по этому слою жидкости. Рисунки весьма упрощены, так как на них не учтена сила тяжести. Вещества, облегчающие смачивание: мыла и моющие средства Очень часто, когда нужен малый краевой угол, природа дает нам большой. Овечья шерсть, например, не смачивается водой; это мешает обработке отары растворами при дезинсекции. С обеденной посуды вода скатывается, как со спины утки, и даже на чайных стаканах порой остаются несмачиваемые отпечатки пальцев. А новые посудные полотенца, поступающие со склада с ужасной восковой отделкой! Нам необходимы молекулы-посредники, которые образовывали бы промежуточный слой и уменьшали бы краевой угол между водой и жирными тарелками, покрытыми воском волокнами одежды и т. Сейчас эту роль выполняют моющие средства, предшественником которых было мыло. Мыло действует на жир с помощью поверхностного натяжения, помогая воде заползать под жир и отрывать его частички, которые смываются в виде эмульсии скопление мелких частиц жира, взвешенных в воде. Один конец молекулы мыла имеет сродство к воде вследствие химического или электрического притяжения[76], а другой конец инертен к воде, но легко присоединяется к жиру. В то время как «жирные» концы образуют облако вокруг частиц жира, «водяные» концы выступают наружу и притягивают воду. Современные синтетические мыла или стиральные порошки обычно облегчают смачивание. Их молекулы действуют как посредники и уменьшают краевой угол. Они проникают в любую щель между жиром и тарелкой, облегчая попадание туда воды. Вообразим себя в роли физиков-судомоек, которые приходят к группе химиков и говорят: «Пожалуйста, разработайте и пустите в производство вещество, которое было бы пригодно в качестве моющего средства. Производство этого средства должно быть недорогим». Современные химики-органики ответят: «Это легко сделать». Чтобы прицепиться к воску или к жиру, молекулы должны иметь длинную углеводородную цепь, подобную следующей[77]»: но не слишком длинную, иначе она не будет растворяться в воде. Воски и жиры имеют аналогичную цепную структуру, и они должны притягивать такие цепи. Затем это вещество на одном из концов должно иметь нечто обладающее сродством к воде, например атом натрия. Такого рода молекулы были сконструированы и изготовлены, и сейчас мы покупаем их в больших количествах в хозяйственных магазинах. Ниже приведены примеры обычного мыла и синтетического стирального порошка подобной структуры[78]. К числу таких веществ относится также применяемый в фотографии и исследовательской работе аэрозоль. На покрытое воском стекло наносят каплю чистой воды фиг. Концом спички добавляют раствор моющего средства и следят за изменением краевого угла. Действие смачивающего агента. Длинные молекулы показаны линией с точкой, которая обозначает группу, имеющую сродство к воде. Молекулы смачивающего агента аэрозоля показаны не в масштабе, а увеличены во много раз. Опыт 14. Новое посудное полотенце с воскообразной поверхностью разрезают на два куска и растягивают на наклонном столе. На один кусок выливают крепкий раствор красителя. Краситель впитывается с трудом, большая его часть стекает. Затем на другой кусок выливают остаток красителя, к которому добавлено небольшое количество моющего средства. Действие мыла и моющих средств. Когда раствор моющего средства попадает на покрытую воском поверхность, его молекулы скапливаются вокруг воска, причем их «жирные» концы направлены в сторону воска, а «водяные» — наружу. Эти внешние концы создают оболочку, которая притягивает воду, и этим облегчают смачивание. Аэрозоль, молекула которого имеет удвоенную длину, прикрепляется к воску, жиру или целлюлозе обоими концами и поднимает имеющую сродство к воде середину, подобно выгнувшей спину гусенице; выпяченные «спины» создают притягивающую воду оболочку. Мытье посуды. Молекулы большинства моющих средств и мыла имеют на одном конце группу, обладающую сродством к воде. Действие этих веществ при мытье посуды схематически изображено на фиг. Действие моющего вещества натурального или синтетического. Мыльные пузыри на вид достаточно прочны; если их ударить, они подскакивают и, если испарения нет, сохраняются довольно долго. Происходит это по следующим причинам: 1 Молекулы мыла собираются с обеих сторон пленки, причем их концы, имеющие сродство к воде, направлены внутрь, а инертные — наружу, создавая нейтральную поверхностную оболочку[79] которая ни к чему не прилипает. В то же время чистая жидкость редко образует устойчивые пузырьки или пену, поэтому остерегайтесь пить воду из прудов, на поверхности которых бывает пена. Чтобы плащ не пропускал воду, поверхностное натяжение не должно позволять воде проникать в поры. Для этого поры не закрывают, а покрывают волокна воском, чтобы создать большой краевой угол при контакте с водой. Тогда, если поры малы, вода в них не проникает, а задерживается выпяченной поверхностной пленкой. Опыт 15. Схему можно показать через проекционный фонарь; тот же эффект можно продемонстрировать на небольшом решете с металлической сеткой. Если проволочки решета покрыть парафином, чтобы они сделались несмачиваемыми, решето будет удерживать осторожно налитую на него воду. Но стоит снизу к решету прикоснуться влажным пальцем, как оболочка воды разрушится и начнется дождь. Таким же образом палатка начинает протекать, если кто-нибудь из любопытства прикоснется изнутри к полотнищу мокрой головой. Водонепроницаемость и смачивание. В сильно увеличенном виде показаны в разрезе волокна ткани для зонтов или брезента для палаток с налитой на них водой. Поры не закрыты, но когда на волокна нанесено покрытие, создающее большой краевой угол между водой и покрытием , вода выпячивается между волокнами и удерживается поверхностным натяжением. Химия поверхностных явлений и чудеса в горном деле Химия веществ, изменяющих краевой угол, творит поистине чудеса в технике и в быту. Моющие средства помогают прачкам, протирщикам окон и мойщикам овец. Ничтожные добавки к каплям от насморка позволят им проникнуть в носу пациента сквозь барьер, созданный волосками слизистой. Водоотталкивающие вещества делают непромокаемыми плащи и промышленные фильтры. Наконец, избирательные смачивающие вещества отделяют ценные минералы от бесполезной породы. Для этого породу, содержащую металлическую руду, размалывают, а затем полученную пыль размешивают в чане с водой. В воду добавляют соответствующее вещество, которое покрывает частички руды, делает их несмачиваемыми и позволяет им легко «плавать»[80], тогда как бесполезный песок намокает и опускается на дно в виде грязи, которую затем удаляют. Поверхность соприкосновения воды с открытым воздухом слишком мала, чтобы на ней могли собраться все несмачиваемые водой частицы руды, поэтому через взвесь продувают пузырьки воздуха, которые создают пену и поднимают руду кверху, где ее и собирают. Такая схема «пенной флотации» отнюдь не бесполезная игрушка. Этот процесс успешно применяется в горной промышленности, и с его помощью разделяют миллионы тонн руды в день. Подбор веществ, которые будут охватывать руду защитной оболочкой и не будут защищать песок, требует от химиков большого искусства. Более того, некоторые вещества даже отделяют в смешанных рудах один металл от другого; для этого требуется еще более тонкая химия. Сейчас пенная флотация находит много новых применений, например отделение грибка спорыньи от спелого зерна, сортировка гороха для консервирования, улавливание потерянных частичек каучука, но основное ее применение — это разделение свинца, цинка, серебра и т. Амебы и поверхностное натяжение Каким образом мелкие простейшие организмы, живущие в воде, передвигаются и находят пищу? Некоторое представление об этом можно получить с помощью грубых химических моделей, вроде движущейся зигзагами «лодки» из камфары или искусственной ртутной «амебы» фиг. На небольшую лужицу ртути на часовом стекле в блюдце наливают разбавленную азотную кислоту. Около ртути помещают кристалл бихромата калия. Ртуть начинает двигаться подобно амебе; ее перемещения вызваны изменениями поверхностного натяжения вследствие химических или электрических эффектов. Настоящая амеба тоже образует такие неправильные выступы и впадины, возможно также используя изменения поверхностного натяжения. Здесь приведены некоторые красивые опыты, демонстрирующие изменения поверхностного натяжения. Опыт 16. Швейную иглу или тонкий листочек металла можно заставить плавать в блюдце с водой. Если поверхностное натяжение уменьшить, предмет потонет. Попробуйте добавить к воде спирт или мыло. Опыт 17. Посыпьте поверхность чистой воды несмачиваемым порошком сажей, тальком или ликоподием. По движению порошка можно обнаружить ослабление поверхностного натяжения. Если на поверхность нанести капли спирта, порошок разбежится в стороны фиг. Капли спирта падают на воду, которая посыпана порошком. Обычное объяснение таково: спирт образует слабую оболочку, и порошок растаскивается в стороны прочной оболочкой чистой воды. Но иногда предпочитают говорить, что молекулы спирта, растекаясь, создают «поверхностное давление» и расталкивают порошок. Хотя эти взгляды различны, любой из них полезен для объяснения опытов. Опыт 18. На посыпанную порошком чистую поверхность воды нанесите оливковое масло. Его требуется так мало, что достаточно погрузить в масло спичку и затем вытереть ее насухо. Даже палец, потертый о волосы, соберет достаточное количество природного жира. В предыдущем опыте после действии спирта поверхность восстанавливается, но влияние жира остается, поэтому этот опыт требует очень чистых, свободных от жира приспособлений. Мыло и слюна действуют подобно спирту. Личинки москитов живут в прудах и просовывают наружу расположенные в хвосте дыхательные трубки. Масло, нанесенное на поверхность, проникает в эти трубки и убивает личинку. Прежнее объяснение, согласно которому масло настолько ослабляет поверхностную пленку, что личинки не могут висеть на ней и дышать, следует отбросить. Опыт 19. Небольшая капля масла, помещенная в большое блюдо со слегка припудренной чистой водой, очень быстро растекается в большое круглое пятно, которое потом сохраняет свои размеры. Так ведут себя растительные масла; они являются «жирными кислотами», и у них один конец, кислотный, имеет сродство к воде: Молекулы минерального масла, у которых инертны оба конца, видимому, располагаются по поверхности воды и движутся подобно двумерному газу, растекаясь случайным образом. Кажется, что пленка масла сверху «давит» на поверхность раздела. Такое объяснение представляется более правильным, чем «ослабление поверхностного натяжения воды». Сейчас это внешнее давление измеряют с помощью точных весов, которые взвешивают давление пленки масла на подвижную перекладину. Применение длинных молекул масла Смазывание. При смазывании высокоскоростных подшипников молекулы растительного масла присоединяются к металлу металл вытесняет водород из кислотного конца молекулы масла , и масло образует мономолекулярные бархатистые «ковры», инертные внешние слои которых удобно скользят друг по другу. К смазке добавляют также минеральные масла, чтобы между этими «коврами» получить инертные масляные «ролики». При крайне небрежном обращении с металла сдираются даже бархатистые монослои; тогда движущиеся металлические детали с большой силой прилипают друг к другу «схватываются» , и это чревато неприятными последствиями. Ланолиновый жир пристает к коже и проникает в нее, перенося с собой необходимые медикаменты, тогда как инертные минеральные масла беспорядочно распределяются на коже в виде жирных комков; поэтому избегайте мазей, изготовленных не на ланолине, а на минеральных маслах. К коже пристают и молекулы хорошей ваксы, а парафин разновидность минерального масла с более длинной цепью образует беспорядочные пятна[81]. Полировка обуви щеткой облегчает прилипание и распределяет молекулы по поверхности более равномерно. Укрощение штормов в море. Укрощение бурных морей с помощью масла — отнюдь не сказка. Достаточно вылить за борт совсем немного подходящего масла, чтобы оно распространилось по большой поверхности. Ветер пытается создать большие волны, раскачивая небольшую рябь, масло сдувается в лужи неправильной формы, и различие поверхностного натяжения помешает действию ветра, создав своего рода поверхностное трение.

Напротив, жидкости с низким поверхностным натяжением имеют слабые силы притяжения между молекулами, что делает их более податливыми к изменению формы и менее устойчивыми к внешним воздействиям. Понимание поверхностного натяжения и его зависимости от рода жидкости имеет практическое значение в различных областях, таких как химия, физика, биология и технология. Знание о свойствах поверхностного натяжения позволяет управлять поведением жидкостей, контролировать процессы смачивания, пенивания и пенообразования, а также разрабатывать новые материалы и технологии. Таким образом, изучение поверхностного натяжения и его зависимости от рода жидкости является важной частью науки и промышленности. Влияние ионной природы на поверхностное натяжение Когда в растворе присутствуют ионы, они могут вступать в химические реакции с молекулами жидкости, изменяя их свойства. Взаимодействие ионов с молекулами на поверхности жидкости приводит к изменению их ориентации и межмолекулярных сил. В результате, поверхность жидкости становится менее упругой, что приводит к уменьшению ее поверхностного натяжения. Ионная природа раствора также влияет на величину поверхностного натяжения. Например, водные растворы могут содержать положительно и отрицательно заряженные ионы. Положительные ионы взаимодействуют с отрицательно заряженными группами на поверхности воды, что приводит к уменьшению поверхностного натяжения. Отрицательно заряженные ионы взаимодействуют с положительно заряженными группами на поверхности, также уменьшая поверхностное натяжение. Кроме того, ионная природа раствора может влиять на поверхностное натяжение путем изменения концентрации ионов. При увеличении концентрации ионов в растворе, взаимодействие ионов с поверхностью жидкости становится более интенсивным, что приводит к увеличению эффекта ионной природы на поверхностное натяжение. Таким образом, ионная природа раствора оказывает значительное влияние на поверхностное натяжение жидкости. Изменение концентрации ионов и их взаимодействие с молекулами на поверхности жидкости приводят к изменению свойств жидкости и ее поверхностного натяжения. Как натяжение связано с молекулярной структурой Основной фактор, определяющий поверхностное натяжение, является сила взаимодействия между молекулами внутри жидкости. Если эти силы сильны и молекулы тесно связаны друг с другом, поверхность жидкости будет более напряженной и сопротивлением к разрыву. Молекулярная структура жидкости также может влиять на ее поверхностное натяжение через влияние положительных и отрицательных зарядов на поверхностные слои. Эти заряды вызывают электростатические силы притяжения или отталкивания между молекулами, что ведет к изменению поверхностного натяжения. Межмолекулярные силы, такие как ван-дер-Ваальсовы силы, могут также влиять на поверхностное натяжение. Если эти силы слабы и молекулы свободно двигаются, поверхностное натяжение будет ниже.

В жизни мы можем встретить поверхностное натяжение в самых простых ситуациях. Например, под действием силы поверхностного натяжения капли воды превращаются на стекле в полушарие; насекомое клоп-водомерка легко удерживается на поверхности воды. Дальше я решил узнать, зависит ли поверхностное натяжение жидкости от рода жидкости, и провел следующий опыт. Опыт 3. Поверхностное натяжение различных жидкостей. Взял лоток с водой, аккуратно на поверхность воды положил бумажную модель лодки. Во внутреннее отверстие капаем жидкое мыло с помощью пипетки. Жидкое мыло стремится вырваться наружу через узкий канал. А лодка при этом движется вперед. Повторил опыты, заменяя жидкое мыло средством для мытья посуды и маслом. Мы видим, чем больше скорость больше расстояние пройденное лодкой , тем больше способность раствора уменьшать поверхностное натяжение. Гипотеза подтверждается, поверхностное натяжение жидкости зависит от рода жидкости, т. Опыт 4. Ну и наконец, я проверил, зависит ли поверхностное натяжение жидкости от температуры. Так же взял лоток с водой, на поверхность воды положил бумажную модель лодки, во внутреннее отверстие капнул жидкое мыло с помощью пипетки. Жидкое мыло так же стремится вырваться наружу через узкий канал. Это связано с силой поверхностного натяжения жидкого мыла. А лодка при этом устремится вперед.

Глава 6 Поверхностное натяжение: капли и молекулы

Эти силы называются силами поверхностного натяжения. Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода жидкости). Поверхностное натяжение это физическая величина, равная отношению силы поверхностного натяжения F, приложенной к границе поверхностного слоя жидкости и направленной по касательной к поверхности, к длине L этой границы. Поверхностное натяжение жидкости: определение в физике. Как определить коэффициент поверхностного натяжения, формула, примеры решения. Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода воды).

почему поверхностное натяжение зависит от рода жидкости

Силы поверхностного натяжения Силы поверхностного натяжения работают вдоль поверхности жидкости перпендикулярно контуру. Сокращают ее площадь. Это похоже на пленку, которая стягивает объем. На сам объем силы не оказывают влияние. Вычислите коэффициент поверхностного натяжения. Решение Найдем массу одной капли и длину окружности.

Из механики также известно, что неизменным состояниям системы всегда соответствует минимальное значение ее внутренней энергии. Вследствие такого физического процесса жидкое тело часто принимает форму с минимальной поверхностью. Если на жидкость не влияют посторонние силы или их действие крайне мало, ее элементы к форме сферы в виде капли воды или мыльного пузыря. Аналогичным образом начинают вести себя вода находясь в невесомости. Жидкость движется так, как будто по касательной к ее основной поверхности действуют факторы, сокращающие данную среду.

Эти силы называются силами поверхностного натяжения. Следовательно, коэффициент поверхностного натяжения возможно также определить, как основной модуль силы поверхностного натяжения, который в общем действует на единицу длины начального контура, ограничивающего свободную среду жидкости. Наличие указанных параметров делает поверхность жидкого вещества похожей на растянутую упругую пленку, с единственной разницей, что неизменные силы в пленке непосредственно зависят от площади ее системы, а сами силы поверхностного натяжения способны самостоятельно работать. Если положить небольшую швейную иглу на поверхность воды, гладь прогнется и не даст ей утонуть.

Автор24 — интернет-биржа студенческих работ Жидкость, в отличие от твердых тел и газов, не способна заполнить весь объем сосуда, в который она была помещена. Между паром и жидким веществом формируется определенная граница раздела, которая действует в особых условиях по сравнению с другой массой жидкости.

Первый элемент окружен другими атомами жидкости равномерно, поэтому действующие на молекулу силы со стороны попадающих в сферу межмолекулярного взаимодействия частиц всегда скомпенсированы, или, иными словами, их равнодействующая мощность равна нулю. Таким образом, для того чтобы молекула из глубины жидкости оказалась в поверхностном слое, следует выполнить работу против нескомпенсированных сил. А это означает, что атомы приповерхностного уровня, по сравнению с частицами внутри жидкости, оснащены избыточной потенциальной энергией, которая носит название поверхностной энергии. Коэффициент поверхностного натяжения Рисунок 3. Поверхностное напряжение. Автор24 — интернет-биржа студенческих работ Определение 2 Коэффициент поверхностного натяжения — это физический показатель, характеризующий определенную жидкость и численно равный соотношению поверхностной энергии к общей площади свободной среды жидкости.

Указанная величина напрямую зависит от: природы жидкости у «летучих элементах таких, как спирт, эфир, бензин, коэффициент поверхностного натяжения значительно меньше, чем у «нелетучих — ртути, воды ; температуры жидкого вещества чем выше температура, тем меньше итоговое поверхностное натяжение ; свойств идеального газа, граничащий с данной жидкостью; наличия стабильных поверхностно-активных элементов таких, как стиральный порошок или мыло, которые способны уменьшить поверхностное натяжение.

Примерно через 100 колебаний молекулы перескакивают из одного положения в другое. В отсутствие внешних сил перескоки хаотические. Под действием внешней силы перескоки становятся направленными и жидкость течет в направлении действия силы. Эти свойства определяют поведение жидкости на границе раздела между жидкостью и газом, а также на границе раздела между жидкостью и твердым телом. Между жидкостью и газом или паром образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Молекулы в пограничном слое жидкости, в отличие от молекул в ее глубине, окружены другими молекулами той же жидкости не со всех сторон. Силы межмолекулярного взаимодействия, действующие на одну из молекул внутри жидкости со стороны соседних молекул, в среднем взаимно скомпенсированы. Любая молекула в пограничном слое притягивается молекулами, находящимися внутри жидкости силами, действующими на данную молекулу жидкости со стороны молекул газа или пара можно пренебречь.

В результате появляется некоторая равнодействующая сила, направленная вглубь жидкости. Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу. Коэффициент поверхностного натяжения равен работе, необходимой для увеличения площади поверхности жидкости при постоянной температуре на единицу:. Следовательно, молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами внутри жидкости потенциальной энергией. Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Значит жидкость должна самопроизвольно переходить в такое состояние, при котором площадь её свободной поверхности имеет наименьшую величину. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. Поскольку при одном и том же объеме наименьшая площадь поверхности у шара, то жидкость в состоянии невесомости принимает форму шара. По этой причине свободная капля жидкости принимает шарообразную форму.

Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие стягивающие эту поверхность. Эти силы называются силами поверхностного натяжения. Силы, действующие в горизонтальной плоскости и стягивающие поверхность жидкости, называют силами поверхностного натяжения. Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности то есть от того, как пленка деформирована , а силы поверхностного натяжения не зависят от площади поверхности жидкости. Некоторые жидкости, как, например, мыльная вода, обладают способностью образовывать тонкие пленки. Всем хорошо известные мыльные пузыри имеют правильную сферическую форму — в этом тоже проявляется действие сил поверхностного натяжения.

ПОЧЕМУ ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ ЗАВИСИТ ОТ РОДА ЖИДКОСТИ

Найди верный ответ на вопрос почему поверхностное натяжение зависит от рода жидкости по предмету Физика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов. Поверхностное натяжение жидкости зависит от нескольких факторов, которые определяют ее свойства и поведение на поверхности. Например, у воды поверхностное натяжение выше, чем у многих других жидкостей, из-за сильных водородных связей между молекулами. Как зависит поверхностное натяжение жидкости от полярности еѐ молекул? #ФизикаЖидкостиKhanAcademyВ этом видео мы поговорим о том, почему иголка может свободно плавать на поверхности воды, но тут же утонет, если на неё надавать.

Поверхностное натяжение

  • Поверхностное натяжение и его зависимость от температуры и рода жидкости
  • Зависимость от наличия примесей
  • Поверхностное натяжение жидкости
  • Сила поверхностного натяжения
  • Зависимость от наличия примесей

Сила поверхностного натяжения

6 ответов на вопрос “Почему поверхностное натяжение зависит от рода жидкости?”. Поверхностное натяжение с повышением температуры уменьшается, так как увеличиваются средние расстояния между молекулами жидкости. Род жидкости также оказывает влияние на зависимость поверхностного натяжения от температуры.

§ 8-1. Поверхностное натяжение

Гипотеза подтверждается, поверхностное натяжение жидкости зависит от рода жидкости, т. е. от сил притяжения между молекулами данной жидкости. Важно понимать, что поверхностное натяжение зависит от рода жидкости и может быть сильным или слабым в зависимости от типа взаимодействия между молекулами. Поверхностное натяжение жидкости зависит от её рода из-за молекулярных сил, действующих на поверхности жидкости.

Похожие новости:

Оцените статью
Добавить комментарий