На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз.
Академик В.П. Смирнов: термояд — голубая мечта человечества
Мне прямо говорили, что машина никогда не будет работать. Благодарен нашему научному и административному руководству того времени, согласовавшему начало работы. Сейчас нас призывают превосходить мировой уровень. Не исключено, хотя и время другое. Она заработала и дала результаты мирового уровня. Установки, о которых мы говорим и которые видим сейчас, помимо исследовательских, фундаментальных и прикладных направлений имеют еще одно направление, именуемое «спецтематикой». Это не оружие, но это работы ради знаний в оборонной физике, поэтому они поддерживались. Именно поэтому наш институт оказался закрытым и я перестал ездить за рубеж на конференции.
А потом, уже в конце 1980-х гг. Оказалось, что наши результаты по выходному продукту в сотни раз лучше, чем американские. Как всегда в таких случаях, требуется примерно два года, чтобы нас услышали. Поначалу был определенный уровень недоверия, но потом решили проверить результаты в совместном эксперименте на «Ангаре-5-1». В 1993 г. Сначала в 1992 г. Они просили приехать в следующем году со своей диагностикой и проверить наши результаты.
Министерство разрешило нам провести совместный эксперимент. Оказалось, что результаты, которые они получили, даже лучше, чем то, что намерили мы. Но в основном все совпало. Повторилась ситуация, которую мы имели в конце 1960-х гг. Академик Л. Арцимович, руководитель программы УТС того времени, пригласил английских физиков приехать в Курчатовский институт с новой диагностикой и сопоставить измеренные параметры с нашими измерениями. Все подтвердилось, и даже больше.
После этого практически все лаборатории мира, связанные с работами по магнитному удержанию плазмы, стали делать токамаки. Сейчас с нашим участием строится первый экспериментальный реактор ITER, в котором мощность термоядерной реакции должна в 10 раз превзойти мощность, затрачиваемую на поддержание реакции. ITER — это тоже токамак. Работы по физике высоких плотностей энергии продолжаются, лидером этого направления у нас был В. Фортов, с которым мы здесь тоже работали. Сегодня мы переживаем новый этап в области термоядерных исследований благодаря новой федеральной программе. Она очень сложна.
Существуют проблемы создания такого реактора. Одна из важнейших — взаимодействие плазмы со стенкой, то есть эрозия стенки. Было предложено несколько способов ее защиты. Кстати, самые активные исследования этой проблемы проводятся здесь на токамаке Т-11М под руководством С. Энергетический термоядерный реактор предполагает, что мощность, выделяемая в процессе интенсивной термоядерной реакции, должна превосходить затрачиваемую на поддержание плазмы не менее чем в десять раз. И тогда на стенку камеры идет очень высокий поток частиц, который ее разрушает. Проблема первой стенки — одна из важнейших для энергетического реактора.
Если вы снизите требования к интенсивности реакции, то эти потоки уменьшаются и проблема защиты стенки перестает быть такой острой. Но возникает вопрос: а где мы можем применять эти нейтроны? Оказывается, мы можем их использовать в целях создания топлива для обычных атомных реакторов. Это так называемые гибридные системы «синтез — деление», и они сейчас здесь очень активно обсуждаются и развиваются. Практическая реализация таких систем важна. Но чего сейчас здесь удалось достичь? Каков сегодня мировой рекорд ее удержания, где он достигнут?
Первый токамак со сверхпроводящими магнитными системами был построен в Курчатовском институте.
Для поддержания термоядерной реакции 5 декабря 2022 года 192 гигантских лазера в Национальном комплексе лазерных термоядерных реакций National Ignition Facility, NIF разогрели цилиндрик размером с ластик, в котором в алмазной оболочке содержалось небольшое количество водорода. Одновременно разогрев цилиндр сверху и снизу, лазерные лучи испарили его. Порождённые этим процессом рентгеновские лучи пронизали шарик топлива, состоящего из дейтерия и трития. За время меньшее 100 триллионных долей секунды шарик принял на себя 2,05 МДж энергии и выдал поток нейтронов, порождённых синтезом, унесших с собой 3 МДж энергии — в полтора раза больше, чем было потрачено.
Интенсивная среда, создаваемая направленными внутрь ударными волнами, создала самоподдерживающуюся реакцию ядерного синтеза. Однако за год ученые так и не смогли повторить эксперимент. В четырех аналогичных опытах удалось получить только примерно половину от энергии, полученной в первоначальном успешном эксперименте. Физики будут продолжать свои эксперименты, чтобы снова воссоздать самоподдерживающийся термоядерный синтез.
Преддипломную практику я проходил на токамаке «Глобус-М» в Физико-техническом институте им. Иоффе в группе лазерной диагностики плазмы. Экспериментальная работа на термоядерной установке настолько меня увлекла, что после окончания института я решил связать свою жизнь с наукой! Впереди еще много планов! Хочу, чтобы первый термоядерный реактор запустили именно в России! И российская наука продолжала двигаться вперёд!
Искусственное солнце: как первый в мире термоядерный реактор изменит мир
Российские физики рассказали о приручении термоядерного синтеза | Слишком часто разработчики термоядерных реакторов сталкивались с непредсказуемостью, завышенными оценками, новыми неприятными фактами из области физики плазмы. |
Российский ученый раскрыл секреты искусственного солнца, которое зажгли в Китае | Советские физики, в частности, еще в 40-е годы прорабатывали теорию газодинамического термоядерного синтеза — то есть термоядерной реакции под действием направленного. |
FT: американцы добились прироста чистой энергии в термоядерном синтезе и совершили прорыв
познакомьтесь с новейшими разработками, впечатляющими функциями и глубоким анализом ядерной физики. Физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии, чем потребил. Ученые развивали идею термоядерного синтеза с инерционным удержанием в лаборатории в течение почти 60 лет, пока впервые достигли успеха.
Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца
Китайский термоядерный реактор поставил рекорд в ядерной энергетике. 83-летний физик Питер Хиггс, еще в 60-х предсказавший существование поля, которое отвечает за массу всех элементарных частиц, расплакался. На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз. — Валентин Пантелеймонович, понятно, что получение термоядерной плазмы — предел мечтаний физиков-ядерщиков. Физики из Университета Осаки продемонстрировали реакцию холодного ядерного синтеза, сообщает ресурс New Energy Times.
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER
О настоящем и будущем термоядерной энергетики | Зачем на самом деле строится самый большой термоядерный реактор. |
Ученые в США провели третий успешный эксперимент с ядерным синтезом | Впервые термоядерная реакция произвела больше энергии, чем было затрачено на её поддержание. |
Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца | Когда говорят о термоядерных исследованиях и пытаются объяснить назначение сложнейших систем того же ИТЭР, приводят для сравнения процессы внутри Солнца и других звезд. |
Международный экспериментальный термоядерный реактор — Википедия | На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз. |
и | К 1990-м стало ясно, что без принципиально новых технологий и углубления теоретических знаний по ядерной физике термоядерное пламя приручить не удастся. |
Ракетчики начали строить термоядерный двигатель
Шведские физики изобрели новый вариант осуществления управляемого термоядерного синтеза. Европейский токамак обновил рекорд по количеству полученной в ходе термоядерной реакции энергии. Физик объяснил важность создания прототипа российского термоядерного реактора.
Мегаджоули управляемого термоядерного синтеза
Сун Юньтао, директор ASIPP, сказал, что главное значение этого прорыва заключается в режиме высокого уровня удержания. По его словам, температура и плотность частиц значительно увеличились во время работы с плазмой с высоким уровнем удержания, что заложит прочную основу для повышения эффективности выработки электроэнергии будущих термоядерных электростанций и снижения затрат. В Китае уже утвержден проект постройки нового испытательного реактора следующего поколения Fusion Engineering. Воспроизвести процессы, идущие в сердцах звезд, — непростая задача.
Рекордные выстрелы Наблюдение за результатами лазерного выстрела велось с помощью целого арсенала инструментов — применялось свыше 50 различных диагностических методик! Это позволило проследить за всеми аспектами схлопывания капсулы и восстановить физические условия в этом процессе. Для рекордных выстрелов были получены следующие данные. Температура доходит до 60 млн градусов, а это уже достаточно для запуска термоядерной реакции синтеза.
Изображения центральной горячей зоны в сеансе работы 27 сентября 2013 года. Изображения a, b — это вид сбоку и сверху в мягких рентгеновских лучах, цвет здесь передает относительную яркость свечения. Изображение c — реконструированный трехмерный профиль области горячей зоны, в которой видны небольшие деформации. Изображение d — нейтронный «снимок» центральной области; красная область отвечает нейтронам с энергией 13—17 МэВ и непосредственно показывает область реакции, голубой цвет — нейтроны с энергией от 6 до 12 МэВ. Изображение из обсуждаемой статьи в Nature Энергетический баланс реакции подводился с помощью рентгеновских и нейтронных наблюдений рис. Они показали, что самая горячая центральная область оставалась более-менее сферической вплоть до максимального сжатия — это доказывает, что физикам до какой-то степени удалось побороть неустойчивость при сжатии. Размеры горячей области и длительность ее свечения позволили найти, сколько энергии было поглощено топливом примерно 9 кДж в выстреле 19 ноября.
А зная нейтронный поток, можно было сосчитать энергетический выход реакции — около 17 кДж. Таким образом, в рекордном выстреле в ходе термоядерной реакции было произведено примерно вдвое больше энергии, чем было вложено в топливо. Второй важный результат, полученный в рекордных выстрелах, тоже можно увидеть на рис. Опять же, благодаря совокупности наблюдений удалось выяснить, какая часть нейтронного потока была вызвана простым нагревом из-за сжатия, а какая возникла за счет дополнительного разогрева альфа-частицами. Выяснилось, что в рекордных выстрелах дополнительный разогрев увеличивал поток примерно вдвое, и это намного превышало предыдущие значения. Таким образом, этот процесс впервые эффективно заработал в NIF, а значит, еще немного — и будет достигнута вторая цель NIF, полноценное самоподдерживающееся термоядерное горение всего топлива в капсуле. Измерения показали, что во время рекордных выстрелов выгорело лишь несколько процентов от всего объема дейтериево-тритиевого топлива.
Если реакцию удастся запустить, энергетический выход возрастет еще как минимум на порядок. Что нужно сделать исследователям, чтобы достичь этой цели? Общая идея ясна: надо постараться повысить плотность или размер центральной области хотя бы раза в два. Этого можно достичь, еще больше увеличив скорость сжатия капсулы за счет повышения энергии вспышки. Технически это сделать можно, проблема только в том, что чем больше энергия, тем более неустойчивым будет сжатие. Впрочем, авторы статьи пишут, что у них есть еще идеи, как с этой неустойчивостью можно бороться. Во-первых, они хотят поэкспериментировать с формой камеры.
Когда камера испаряется под действием лазерного импульса, возникающее облачко плазмы в какой-то мере помнит форму камеры, а значит, от нее зависит и равномерность облучения капсулы. Во-вторых, можно попробовать и другие материалы для оболочки капсулы — это может сказаться на том, какие ударные волны запускаются внутрь топлива при нагреве и расширении этой оболочки. А вот что касается третьей, самой главной цели NIF — достижения энергетического выхода, превышающего всю затраченную на выстрел энергию, — то тут работа предстоит еще очень долгая. Пока что энергетический баланс в рекордном выстреле таков. Полная энергия световой вспышки составляет примерно 2 МДж. Она тратится на испарение и нагрев камеры, и лишь небольшая ее доля примерно 150 кДж поглощается капсулой. Но даже эта энергия тратится в основном на нагрев и расширение пластиковой оболочки, так что непосредственно топливу передается всего около 10 кДж.
Выделившаяся энергия в 17 кДж, конечно, превышает энергию, поглощенную топливом, но по сравнению со всей энергией вспышки это сущий пустяк. Энерговыделение надо увеличить раз в сто — вот тогда главная цель будет считаться достигнутой.
Но для сферических токамаков может найтись своя ниша, а их коммерческое применение может начаться гораздо раньше. Гибридные технологии Как выяснилось, мало нашим физикам-ядерщикам сферической модернизации термоядерного реактора. Сейчас, по словам Минаева, в нашей стране параллельно запускается процесс разработки и создания гибридной электростанции, основанной на термоядерной и ядерной технологиях. Это позволит эффективней удерживать плазму?
Мы хотим за счет термоядерных технологий решить проблему с «замыканием» ядерного топливного цикла. Представляете, мы сможем нарабатывать искусственное топливо для атомных реакторов, получать в реакторе энергию, а после дожигать отработанное топливо до безопасного состояния, чего раньше никогда не было. До сих пор мы просто захоранивали ядерные отходы, накапливая их. В целом новая гибридная атомная станция будет значительно безопасней и экологичней. Отсутствие большого количества опасных отходов также позволит повысить экспортный потенциал нашей атомной промышленности. Развивая эту технологию, мы оставим своим потомкам более чистую планету, без залежей ядерных отходов.
Мы будем использовать термоядерный реактор как мощный источник нейтронов для получения ядерного топлива. При этом параметры плазмы в таком термоядерном источнике нейтронов могут быть существенно ниже, чем в чисто термоядерном энергетическом реакторе, а размеры — существенно меньше, чем у того же ИТЕРа. Следовательно, такой реактор-источник будет значительно дешевле. Но самое главное: реализация гибридной концепции позволит существенно сократить время, требующееся для внедрения уже наработанных термоядерных технологий в коммерческий оборот. Существует еще и открытый тип реактора — зеркальные ловушки, или, образно говоря, «магнитные бутылки», имеющие на концах магнитные «пробки» или магнитные «зеркала». На концах такого реактора, возле «пробок», магнитное поле сильное, в центре — слабее.
Частицы плазмы привязаны к силовым линиям магнитного поля и движутся от одной «пробки» к другой, каждый раз отражаясь от них. Конструкция такого реактора получается более простой, а значит, дешевой и легкой в сборке. Такая зеркальная ловушка, модель будущего реактора открытого типа, есть в новосибирском Институте ядерной физики им. Она считается лучшей установкой такого типа в мире: среди них ей принадлежит рекорд по температуре -10 миллионов градусов. Но на этом новосибирцы останавливаться не намерены. В планах — скрестить открытую ловушку с ядерным реактором, сделать технологию гибридной о подобной технологии мы писали выше.
Еще одна очень интересная технология. Этот проект, который, если все пойдет по плану, может значительно улучшить имидж атомной энергетики, который несколько пострадал после аварии на Фукусиме. Никаких нейтронов, загрязняющих окружающую среду, при этом нет — только чистая энергия. Правда, протон и бор идут на сближение еще труднее, чем дейтерий с тритием, а потому платой за явные преимущества их «союза» является гораздо более высокая температура зажигания реакции — миллиард градусов Цельсия. Это горячее, чем на Солнце!
Управляемый термоядерный синтез УТС. В термоядерном синтезе используется обратный принцип: вместо расщепления тяжелых элементов соединяются синтезируются легкие — водород и гелий.
Точно такие же процессы протекают в центре звезд. Синтез сопровождается выделением огромного количества энергии, но чтобы он осуществился, требуются уникальные условия. Почему же ученые так упорно ищут подходы к УТС, когда у них уже есть атомная энергетика? Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность. Ключевая сложность — условия , которые требуется создать, чтобы атомы водорода соединились друг с другом. В ядре Солнца они подвергаются колоссальному давлению вкупе с огромной температурой. Создать такую гравитацию в лабораторных условиях невозможно, поэтому приходится разогревать среду еще сильнее.
Так, если в центре нашего светила температура составляет около 15 млн градусов Цельсия, то в термоядерном реакторе — около 150 млн. Разумеется, никакое вещество не способно выдержать подобного жара, поэтому основная задача, над которой сегодня бьются ученые — удержание плазмы как можно дальше от стенок реактора, чтобы они не расплавились. Насколько это опасно Эксперты Курчатовского института замечают , что термоядерный синтез не является цепной реакцией.