Суперсимметрия доминировала над физикой частиц десятилетиями, и исключила почти все альтернативные физические теории, выходившие за рамки СМ. Это удар по суперсимметрии, который, однако, не сбрасывает теорию со счетов.
Физики в Копенгагене подвели итоги 15-летнего пари о теории суперсимметрии
Теория суперсимметрии предполагает, что физические законы должны оставаться неизменными при перестановке бозонных и фермионных частиц. К примеру, ученым очень хотелось, но не удалось найти подтверждения суперсимметрии — теории о том, что у каждой элементарной частицы есть гораздо более тяжелый «суперпартнер». Теория суперсимметрии предполагает, что физические законы должны оставаться неизменными при перестановке бозонных и фермионных частиц.
«В настоящее время мы не можем описать Вселенную»
Так что каждый поиск, каждый анализ — это кропотливая работа десятков и сотен исследователей в течение месяцев или даже лет. Более подробный рассказ о том, как изучают частицы на коллайдере, читайте в статье Анатомия одной новости. Сейчас, в преддверии нового запуска LHC, экспериментальные группы «подчищают хвосты» — доделывают трудоемкие анализы на основе данных, набранных во время первых трех лет работы коллайдера. Регулярно появляются и статьи о тех или иных поисках суперсимметрии, но все они пока приводят к отрицательным результатам. Однако за последний месяц обе крупнейшие коллаборации, работающие на LHC, сообщили о наблюдении любопытных отклонений в похожих — но не идентичных! В обеих работах физики изучали события следующего типа: наблюдаются как минимум две адронные струи, лептонная пара электрон-позитрон или мюон-антимюон и потерянный поперечный импульс. На рис.
Конечно, существуют и обычные фоновые процессы, которые дают такой же сигнал. Например, в столкновении протонов может просто родиться Z-бозон, который распадется на лептонную пару, а уж адроны всегда рождаются в избытке. Если детектор неправильно сосчитает энергию адронных струй, вполне может появиться дисбаланс поперечного импульса. Однако в этом случае дисбаланс будет небольшим, порядка десятков ГэВ. Есть и другие источники фона, но все их физики аккуратно учли. Два примера событий с рождением и распадом суперсимметричных частиц.
Частицы Стандартной модели показаны темным цветом, гипотетические суперсимметричные частицы — красным. В обоих вариантах легчайшая суперсимметричная частица считается стабильной. Она улетает, не оставляя след в детекторе, и приводит к дисбалансу поперечного импульса, который детектор измеряет. Два типа процесса отличаются тем, как рождаются лептоны, — независимо вверху или резонансно внизу. В детекторе они будут сильно отличаться по распределению инвариантной массы лептонной пары Два типа сигналов, показанные на рис. На верхней картинке показано нерезонансное рождение лептонов, в котором они излучаются независимо друг от друга.
В этом случае энергии двух лептонов не связаны друг с другом, а значит, инвариантная масса этой пары mll может быть самой разной, и большой, и маленькой. На нее имеется лишь ограничение сверху, поскольку эти лептоны получаются из распадов тяжелых частиц. С точки зрения эксперимента, характерный сигнал таких событий выглядит так: имеется широкое распределение по mll, которое вдруг обрывается выше некоторого значения. Именно этот «обрыв распределения» и искали физики. На нижней картинке на рис. Здесь лептоны рождаются не сами по себе, а получаются в результате распада Z-бозона.
Поэтому их энергии скоррелированы, а инвариантная масса пары близка к массе Z-бозона 91 ГэВ. Поэтому в поисках такого типа событий можно сфокусироваться на области от 81 до 101 ГэВ, а участок распределения вне ее, наоборот, использовать для оценки фона.
Однако необходимых подтверждений мы не получили". Сформулированная в 1973 году, теория Суперсимметрии предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками. Данная теория позволяла ответить на вопрос, почему наша Вселенная имеет значительно большую массу, нежели ее дает сложение всех наблюдаемых в ней космических объектов.
Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Теория струн остается одним из ведущих кандидатов на «теорию всего», которая объединит всю физику. Тем не менее проверить ее экспериментально чрезвычайно трудно. Тем не менее открытие суперсимметрии по крайней мере даст апологетам теории струн знать, что они идут в правильном направлении. Как разлетаются бозоны Физики думают, что мы найдем доказательства суперсимметрии? Несмотря на десятилетия поисков, никто не нашел никаких доказательств суперсимметрии. Впрочем, великие теории открывались не за два-три года. К примеру, почти полвека понадобилось на то, чтобы открыть бозон Хиггса с момента теоретического предположения его существования. Потому, хотя мы и не видим доказательств суперсимметрии, эта теория остается очень мощной. Тем не менее Вселенной абсолютно все равно, насколько идеальными наши теории ни казались бы, говорит Линкольн. Многие физики говорят, что мы должны были найти доказательства суперсимметричных частиц уже в первый запуск БАК, поэтому теория вполне может быть не ахти. Но только потому, что мы не видели каких-либо суперсимметричных частиц, еще не означает, что их нет. Может быть, есть что-то в том, как суперсимметрия проявляется, чего мы пока не понимаем. Может, нужен более мощный коллайдер, чтобы частицы-суперпартнеры проявили себя. Мы не узнаем этого, пока БАК не заработает. Если суперсимметрия была вне досягаемости по уровню энергии во время последнего запуска, данные этого года могут быть совершенно неописуемыми.
B104 3 , p. Левин Б. Westbrook, D. Gidley, R. Conti, and A. Precision measurement of the orthopositronium vacuum rate using the gas technique. A40 10 , p. Nico, D. Gidley, and A. Rich, P. Vallery, P. Zitzewitz, and D. Resolution of the Orthopositronium-Lifetime Puzzle. Котов, Б. Левин, В.
Экзамены суперсимметричной модели вселенной 1978
Он пишет, что пришло время «начинать думать и разрабатывать новые идеи». Но материала для работы маловато. Пока что никаких намёков на «новую физику» за пределами Стандартной модели — принятого набора уравнений, описывающих известные элементарные частицы — не возникло ни в экспериментах на БАК, ни где-либо ещё. Открытый не так давно бозон Хиггса был предсказан Стандартной моделью. Последние тесты по сталкиванию протонов в Киото, Япония, исключили ещё один большой класс суперсимметричных моделей, и другие теории «новой физики», поскольку не нашли ничего необычного в распадавшихся частицах. В отсутствие намёков на направление движения в экспериментальных данных, как можно догадаться о чём-нибудь, происходящем в природе?
Более молодые физики, изучающие частицы, встали перед трудным выбором: следовать путём, проторённым за десятилетия их учителями, и изобретать ещё более изощрённые версии суперсимметрии, или пойти своим путём, без всякого направления со стороны каких бы то ни было данных. В блогпосте о японских испытаниях Фальковский шутит, что пора уже искать работу в неврологии. Я просто не могу придумать ничего лучше». Суперсимметрия доминировала над физикой частиц десятилетиями, и исключила почти все альтернативные физические теории, выходившие за рамки СМ. Теория привлекательна по трём причинам.
Она предсказывает существование частиц, из которых может состоять «тёмная материя», невидимая субстанция, пронизывающая окраины галактик. Она объединяет три фундаментальных взаимодействия при высоких энергиях.
Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее. Вот все пробелы в физике, которые может исправить суперсимметрия.
Суперсимметрия может объяснить, почему бозон Хиггса такой легкий Несмотря на то, что Стандартная модель предсказала существование бозона Хиггса, его обнаружение проделало еще одну трещину в теории. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми. Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц.
Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель.
Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей. Примерно такое описание физики ждут от частиц темной материи.
Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми. Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили.
Значит, гравитацию можно будет включить в объединенную структуру. После этого волнительного открытия физики-теоретики приложили много усилий, чтобы осознать его последствия. Но, как это часто случается с научными исследованиями, история теории струн полна взлетов и падений. Сперва люди были озадачены тем, что она предсказывала существование частицы, которая движется быстрее света, так называемый «тахион». Это предсказание вошло в противоречие со всеми экспериментальными наблюдениями и бросило серьезную тень на теорию струн.
Она предсказывает, что у каждой частицы есть свой суперпартнер и, по необычному совпадению, то же самое условие фактически устраняет тахион. Другая необычная особенность в том, что теория струн требует существования десяти пространственно-временных измерений. В настоящее время нам известно лишь четыре: глубина, высота, ширина и время. Хотя это похоже на серьезное препятствие, предлагалось уже несколько решений, и в настоящее время это все видится скорее необычной особенностью, нежели проблемой. Например, мы могли бы существовать в четырехмерном мире без какого-либо доступа к дополнительным измерениям. Однако различные компактификации привели бы к иным значениям физических констант и иным законам физики. М-теория Оставалась еще одна проблема, которая не давала покоя теоретикам струн того времени.
Суперсимметрия решает проблему иерархии, предполагая наличие суперпартнёра-близнеца для каждой элементарной частицы. Согласно теории, у фермионов, из которых состоит материя, есть суперпартнёры-бозоны, переносящие взаимодействия, а у существующих бозонов есть суперпартнёры-фермионы. Поскольку типы частиц и их суперпартнёров противоположны, вклады их энергии в хиггсовское поле обладают противоположными знаками — один его увеличивает, второй уменьшает. Вклады пар взаимоуничтожаются, и никаких катастроф не происходит. А в качестве бонуса один из неоткрытых суперпартнёров может быть составной частью тёмной материи. Со временем, поскольку суперпартнёры не появились, суперсимметрия стала менее красивой. По популярным моделям, чтобы избежать обнаружения, частицам-суперпартнёрам приходиться быть сильно тяжелее своих двойников, и вместо симметрии появляется какое-то кривое зеркало.
Физики выдвинули огромное количество идей о том, как симметрия может быть сломана, и породили тысячи версий суперсимметрии. Но нарушение суперсимметрии — это новая проблема. Большинство специалистов по физике частиц в 1980-х считали, что суперпартнёры будут лишь немного тяжелее известных частиц. Но на Теватроне, ускорителе в Fermilab, ныне отстранённом от работы, ничего подобного не нашли. И в то время, как БАК тестирует всё более высокие энергии, не находя и следа суперсимметричных частиц, некоторые физики утверждают, что теория мертва. В настоящее время большинство рабочих версий суперсимметрии предсказывают настолько тяжёлых суперпартнёров, что они бы пересилили эффекты от своих лёгких близнецов, если бы не точно настроенные взаимоуничтожения воздействий между различными суперпартнёрами.
«Обнаруженные частицы Хиггса подтверждают теорию суперсимметрии»
«В настоящее время мы не можем описать Вселенную» | Физики со всего мира на встрече в Копенгагене подвели итоги пари, касающегося теории суперсимметрии, пишет научно-популярное издание Quanta. |
Новые методы в классической и квантовой теории поля с расширенной суперсимметрией | Для завершения обоснования суперсимметрии природы инфраструктурной динамикой -позитрония в «условиях резонанса» остаётся напомнить о возможности представления. |
Эксперимент на Большом адронном коллайдере опроверг современную теорию мироздания
🔸 Доказательство суперсимметрии полностью изменит наше понимание Вселенной🔸 | | Теория струн, пожалуй, самая спорная большая идея во всей сегодняшней науке – Самые лучшие и интересные новости по теме: Атом, бозон Хиггса, квантовая физика на. |
Данные, полученные на БАК, поставили под сомнение теорию суперсимметрии - | Новости | Теория суперсимметрии обобщает часто встречающееся в природе явление симметрии на уровень элементарных частиц и утверждает, что существует некоторое преобразование. |
Ответы : Что такое суперсиметрия и какая разница между супер и обычной симетрией? | Жесткие требования суперсимметрии при отборе жизнеспособных теорий должны замениться на какой-то руководящий принцип, который, не будучи суперсимметрией, действует по. |
Теория суперструн популярным языком для чайников | Суперсимметрия дает способ объединить электрослабое и сильные взаимодействия и в конечном счете создать единую теорию поля. |
Адронный коллайдер подтвердил теорию суперсимметрии | Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной. |
Данные, полученные на БАК, поставили под сомнение теорию суперсимметрии
Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими. Супервремя — понятие, возникшее как «игрушечная модель» в суперсимметричной теории поля — одномерный слепок суперпространства. Лектор рассказывает о теории суперструн, голографических чёрных дырах, столкновениях параллельных вселенных и о других интересных явлениях. С момента ввода в обиход теории суперсимметрии и до настоящего времени эта теория являлась лишь только неподтвержденной физической гипотезой.
Крах теории суперсимметрии: большой адронный коллайдер ничего не нашел
В физике такая величина называется моментом импульса. Классический пример: сядьте на крутящееся офисное кресло и возьмите в руки две гантели или книжки потяжелее. Раскрутитесь, вытяните руки в стороны, а затем, наоборот, согните их. Заметили разницу? Скорость вашего движения изменится — это происходит именно потому, что вы изменяете собственный момент импульса, распределяя массу по-другому. Когда речь идет об элементарных частицах, появляется величина, формально схожая с моментом импульса. Она называется спином, и характеризует некоторый внутренний, присущий каждой частице момент импульса. Но эта величина, в отличие от стандартного определения, не связана с распределением масс или скоростью вращения, а является чисто квантовым эффектом. Спин может принимать любые положительные значения с шагом 0. Итак, мы приходим к главному различию между фермионами и бозонами: первые обладают полуцелым спином 0. Не садись со мной Самое важное отличие квантовой механики от классической состоит в том, что все величины в квантовой механике могут изменяться только скачкообразно, на очень маленькую величину.
Физики говорят, что они «квантуются», подразумевая под «квантом» какое-то конкретное число. Величина этого «скачка» очень мала, и определяется так называемой постоянной Планка, примерно равной 10-34. В нашем обычном мире мы просто не замечаем столь малого изменения, например, температуры. Но в микроскопическом мире это становится принципиально важно. Все характеристики частиц в квантовой механике измеряются в количестве постоянных Планка, и для простоты обозначаются числом. Например, спин 1 означает «одна постоянная Планка». Договорившись, в каком порядке обозначать физические величины, состояние любой частицы можно описать набором квантовых чисел — это будет ее квантовое состояние.
Она предсказывает, что у каждой частицы есть свой суперпартнер и, по необычному совпадению, то же самое условие фактически устраняет тахион. Другая необычная особенность в том, что теория струн требует существования десяти пространственно-временных измерений. В настоящее время нам известно лишь четыре: глубина, высота, ширина и время.
Хотя это похоже на серьезное препятствие, предлагалось уже несколько решений, и в настоящее время это все видится скорее необычной особенностью, нежели проблемой. Например, мы могли бы существовать в четырехмерном мире без какого-либо доступа к дополнительным измерениям. Однако различные компактификации привели бы к иным значениям физических констант и иным законам физики. М-теория Оставалась еще одна проблема, которая не давала покоя теоретикам струн того времени. Тщательная классификация показала существование пяти различных последовательных теорий струн, и было непонятно, почему природа должна выбирать одну из пяти. И здесь в игру вступает М-теория. Во время второй революции струн в 1995 году физики предположили, что пять последовательных теорий струн на деле являются разными лицами уникальной теории, которая существует в одиннадцати пространственно-временных измерениях и называется М-теорией. Она включает каждую струнную теорию различных физических контекстов, при этом оставаясь рабочей для всех. Эта невероятно увлекательная картина привела большинство теоретических физиков к идее, что М-теория станет теорией всего — и она также математически более последовательна, чем все остальные предлагаемые теории.
Но в некоторых прогнозах, перед тем, как гигантская машина начала свою работу в марте 2010 предполагалось, что сигналы SUSY окажутся быстрее. Существует много споров об этой теории, но суперсимметрия является одним из наиболее привлекательно возможных расширений Стандартной модели и ведущим претендентом в новых принципах природы, которые можно открыть только при большой энергии коллайдеров. Поэтому суперсимметричные частицы скорее всего можно будет заметить в начале 2015 года, когда мощность коллайдера, а следовательно столкновение частиц будет в два раза сильнее.
Прости, Альберт. Прошлым летом в научном журнале Quanta вышла статья под названием «Законов физики не существует». Ее автор — Робберт Дийкграаф, директор Института перспективных исследований, в котором Эйнштейн провел 22 года жизни. Доктор Дийкграаф пишет о пугающе разветвленном лабиринте возможностей — почти бесконечной сети со слабыми взаимосвязями, состоящей из альтернативных версий реальности. Существуют отдельные вселенные для каждого кошмара, который вы видели во сне, и в каждой из них действует свой свод фундаментальных законов физики. Этот ландшафт альтернативных возможностей, известный как мультивселенная , активно используется в теории струн, которая явно перешагнула Эйнштейна по уровню научной фантазии. Теория струн объединяет в себе представления о гравитации, которая опоясывает космос, с квантовой механикой, которая описывает существующий в нем хаос. В теории струн фундаментальные компоненты всего существующего представлены в виде крошечных струн энергии квантовых струн , испускающих колебания в 11 измерениях. XX век был совершенно не готов к появлению теории струн, XXI век позволил ей получить значительный толчок в развитии. Но чтобы теория струн показала свою полную мощь, понадобятся умы математиков XXII столетия. Какая-то из этих них — наша, но это не точно. Такие дела. Доктор Дийкграаф пишет: «Если наш мир — лишь один из многих, что нам делать с остальными? Взгляд современной физики на Вселенную — это полная противоположность представлениям Эйнштейна о едином космосе». Дийкграаф, кстати, сказал, что название своей статье придумывал не он, и считает его излишне громогласным.
Комментарии
- Вы точно человек?
- СУПЕРСИММЕТРИЯ. Достучаться до небес [Научный взгляд на устройство Вселенной]
- Теория суперструн для начинающих
- "Теория проигрывает эксперименту": новый кризис в физике высоких энергий?
- Где же эти частицы-суперпартнёры?
- Суперсимметрия
Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи
Адронный коллайдер подтвердил теорию суперсимметрии | Лектор рассказывает о теории суперструн, голографических чёрных дырах, столкновениях параллельных вселенных и о других интересных явлениях. |
Физики в Копенгагене подвели итоги 15-летнего пари о теории суперсимметрии – Новости науки | Одна из задач, которую ученые пытаются решить с помощью БАК, – это получение экспериментального подтверждения теории Суперсимметрии. |
Супер ассиметричная модель вселенной попович | Жесткие требования суперсимметрии при отборе жизнеспособных теорий должны замениться на какой-то руководящий принцип, который, не будучи суперсимметрией, действует по. |
Супер ассиметричная модель вселенной попович
Левин Б.М. Реализация суперсимметрии в атоме дальнодействия и конфайнмент, барионная асимметрия, тёмная материя/тёмная энергия. В чем заключается «кризис суперсимметрии», как «поделить» физику высоких энергий и для чего нужно строить у себя установки класса megascience, в интервью. Жесткие требования суперсимметрии при отборе жизнеспособных теорий должны замениться на какой-то руководящий принцип, который, не будучи суперсимметрией, действует по. активно развивающейся области теоретической физики, которая вполне может оказаться в центре будущего развития физики. Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта в зависимости от прошедшего с момента создания частицы.
Поиски суперсимметрии на коллайдере принесли новую интригу
Теория суперсимметрии возникла в 1970-х годах как способ исправить существенные недостатки Стандартной модели физики высоких энергий. Ключевое значение в теории суперсимметрии играет открытый "на бумаге" бозон Хиггса, отвечающий за возникновение массы у элементарных частиц. Но его предсказанная масса сама подвержена большим флуктуациям, вызванным квантовыми эффектами от других элементарных частиц. Эти колебания могут увеличить его массу до такого значения, после которого другие элементарные частицы станут более массивными, чем они есть на самом деле, что фактически противоречит Стандартной модели. В ее рамках теоретики могут исключить влияние колебаний в своих уравнениях, но только если будут иметь точно установленную массу бозона Хиггса. Чуть больше или меньше — и теория рушится. Многих физиков не устраивает Стандартная модель, требующая такой тонкой настройки. Теория суперсимметрии предлагает альтернативное решение проблемы.
Но и это ещё не всё. Виртуальные частицы вакуума - электроны и позитроны, на которые тот должен постоянно распадаться и схлопываться назад, должны были бы вносить изменения в форму зарядов исследуемых электронов. Но этого не обнаружено, как и самих виртуальных частиц вакуума. А на этой гипотезе тоже уже успели понастроить различных теорий и предположений. Весь этот мусор, наконец, пойдёт в корзину истории и я рад этому, потому что давно пишу об ошибочности этих теорий. Но у официальной физики нет им альтернативы. Вернее, альтернативных теорий довольно много, но они не признавались и не проверялись, так как противоречили общепризнанным и сколько теперь понадобится времени на отсев, проверку, а главное объединение других теорий сказать сложно. По моей теории квантового пространства за пол года так и не прислали ответа не из РАН, не из Физико-технологического института, не из Китайской Академии. А жаль... Хотя они может ещё про неё и вспомнят. Почему "однобокая", да потому что "привязана" только к восприятию исключительно "нашего" мира, который определяется "на ощуп".
Эти физики очень рассчитывали получить с помощью Большого адронного коллайдера первое экспериментальное подтверждение этой теории. Однако новое наблюдение, о котором было доложено на конференции по физике адронного коллайдера в Киото, противоречит многим моделям в рамках теории суперсимметрии. Теория суперсимметрии Гипотеза суперсимметрии была впервые сформулирована в 1973 году австрийским физиком Юлиусом Вессом и итальянским физиком Бруно Зумино и постулирует существование определенного рода симметрии между двумя основными классами частиц — бозонами и фермионами. Фактически, гипотеза суперсимметрии позволяет при помощи преобразований связать воедино вещество и излучение. На сегодня эта гипотеза не была подтверждена экспериментально. Для того чтобы фактически проверить ее, существует несколько возможностей. Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение «недостатка» энергии при определенных типах столкновений.
Сформулированная в 1973 году, теория Суперсимметрии предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками. Данная теория позволяла ответить на вопрос, почему наша Вселенная имеет значительно большую массу, нежели ее дает сложение всех наблюдаемых в ней космических объектов. Сейчас ученые ЦЕРН сообщили, что не смогли обнаружить признаков этих тяжелых двойников.
Эксперимент на Большом адронном коллайдере опроверг современную теорию мироздания
Взгляд современной физики на Вселенную — это полная противоположность представлениям Эйнштейна о едином космосе». Дийкграаф, кстати, сказал, что название своей статье придумывал не он, и считает его излишне громогласным. Возможно, за теорией струн всё же есть некий единый фундаментальный принцип. Однако никто, в том числе и создатели теории, даже предположить не могут, каким может быть этот принцип. Что привело ученых к теории струн? Открытие загадочной силы, «темной энергии» , которая ускоряет расширение Вселенной, отдаляя галактики друг от друга всё с большей скоростью. Темная энергия имеет все признаки космологической постоянной , которую Эйнштейн вводил в свои уравнения теории относительности столетней давности, но потом от нее отказался.
Это явление даже получило название «проблемы космологической постоянной». Пока что физики дают единственное объяснение этой проблеме: возможно, во всех альтернативных вселенных эта постоянная принимает случайное значение. Это значит, что мы живем в одной из тех вселенных, где количество темной энергии позволяет сформироваться звездам и галактикам — там, где это в принципе возможно. Другие физики считают ландшафт теории струн логическим продолжением коперниканской революции : если Земля может не быть центром Солнечной системы и единственной планетой, наша вселенная тоже может быть не единственной. Существует и группа ученых, которые считают идею мультивселенной эпистемологическим абсурдом, тупиковой ветвью познания, основанного на бездоказательных спекуляциях. Долгожданное открытие бозона Хиггса в 2012 году стало последним кирпичиком в фундаменте амбициозной теоретической конструкции в физике элементарных частиц , известной как Стандартная модель элементарных частиц.
Стандартная модель объясняет все формы материи и энергии, кроме темной материи и энергии. Физики всего мира искали отклонения в Стандартной модели с помощью Большого адронного коллайдера, сталкивая триллионы протонов.
Rich, P. Vallery, P. Zitzewitz, and D. Resolution of the Orthopositronium-Lifetime Puzzle. Котов, Б. Левин, В. Ортопозитроний: «О возможной связи между тяготением и электричеством».
Препринт 1784 ФТИ им. Kotov, B. Levin, V. Orthopositronium: «On the possible relation of gravity to electricity». Левин Борис. Глинер Э. Алгебраические свойства тензора энергии-импульса и вакуумоподобные состояния вещества. ЖЭТФ, т.
Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером. Это касается даже знакомых нам частиц вроде электронов.
Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее. Вот все пробелы в физике, которые может исправить суперсимметрия. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми. Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц. Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная.
Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей.
К примеру, мне вместе с Дейвом Таккер—Смитом, ученым из Колледжа Уильямса, удалось найти отличный от вышеописанного — но родственный — способ поиска скварка. Наш метод опирается на измерение только импульса и энергии получающихся кварков; в нем не нужно точно измерять недостающий импульс а это очень непросто и не дает надежных результатов. Метод вызвал среди ученых БАКа заметное оживление; экспериментаторы CMS сразу же приняли его и не только показали, что метод работает, но и в течение всего нескольких месяцев обобщили и улучшили его. Теперь это часть стандартной стратегии поиска суперсимметрии; метод, предложенный нами так недавно, был использован в первом же сеансе поиска суперсимметрии на CMS. Два скварка, одновременно возникшие в БАКе, распадутся на кварк и LSP каждый и оставят после себя сигнатуру в виде дефицита энергии Если суперсимметрия будет обнаружена, экспериментаторы на этом не остановятся. Они попытаются определить весь спектр суперсимметричных частиц, а теоретики будут работать над интерпретацией полученных результатов.
Под идеей суперсимметрии и частиц, способных вызывать ее спонтанное нарушение, скрывается интереснейшая теория. Мы знаем, какие суперсимметричные частицы должны существовать, если суперсимметрия существенна для проблемы иерархии, но мы пока не знаем ни их точных масс, ни того, как эти массы возникают. То, что увидит БАК, очень сильно зависит от спектра масс суперсимметричных частиц, который, вероятно, отличается от спектра масс обычных частиц. Мы знаем, что частицы могут распадаться только на более легкие. Цепочка распадов — последовательность возможных распадов суперсимметричных частиц — определяется их массами, тем, какие из них легче, а какие тяжелее. Скорости различных процессов также зависят от массы частиц. Более тяжелые частицы в среднем распадаются быстрее. Кроме того, их обычно сложнее получить, потому что они возникают только при высокоэнергетических столкновениях.
Все это дало бы нам важную информацию о том, что лежит в основе Стандартной модели и что ожидает нас на следующих энергетических масштабах. Естественно, это относится к анализу любых новых данных, которые нам удастся получить. Тем не менее следует помнить, что, несмотря на популярность теории суперсимметрии среди физиков, существует несколько поводов для беспокойства и оснований сомневаться в том, что эта теория действительно применима в реальном мире и решает проблему иерархии. Во—первых, и это, возможно, самое главное, мы пока не видели никаких экспериментальных свидетельств в пользу этой теории. Если суперсимметрия существует, то единственным оправданием для полного отсутствия доказательств может быть тот факт, что все суперпартнеры тяжелые. Но естественное решение проблемы иерархии требует, чтобы суперпартнеры были относительно легкими. Чем тяжелее суперпартнеры, тем менее адекватным средством решения проблемы иерархии представляется суперсимметрия. Потребуется подгонка, определяемая отношением массы бозона Хиггса к масштабу масс, при которых нарушается суперсимметрия.
Чем больше это отношение, тем сильнее придется «настраивать» теорию. В суперсимметричной модели есть единственный способ сделать Хиггса достаточно тяжелым, чтобы его не обнаружили до сих пор, а именно — включить в его массу значительные квантовомеханические поправки, для которых опять же необходимы тяжелые суперпартнеры. Их массы должны быть настолько большими, что естественное решение проблемы иерархии вновь невозможно, несмотря на суперсимметрию. Еще одна проблема с суперсимметрией — проблема поиска непротиворечивой модели, которая предусматривала бы нарушение суперсимметрии и была согласована со всеми полученными до сего дня экспериментальными данными. Суперсимметрия — очень специфическая симметрия, она устанавливает связи между многими взаимодействиями и запрещает некоторые из них, которые, вообще говоря, квантовая механика допускает. При нарушении суперсимметрии берет верх «принцип анархии» и все, что может случиться, случается. Большинство моделей предсказывают типы распадов, которые либо никогда не регистрировались в эксперименте, либо встречаются слишком редко по сравнению с прогнозом. В общем, стоит суперсимметрии нарушиться, и квантовая механика не упустит случая разворошить осиное гнездо.
Возможно, физики просто не замечают верных ответов. Мы, разумеется, не можем точно сказать, что хороших моделей не существует или что некоторой подгонки не потребуется. Конечно, если суперсимметрия — верное решение проблемы иерархии, то доказательства ее существования скоро будут получены на БАКе. Так что этот вариант, безусловно, стоит исследовать. Открытие суперсимметрии означало бы, что эта новая симметрия пространства—времени применима не только в теоретических изысканиях, но и в реальном мире. Однако пока суперсимметрия не доказана, имеет смысл рассмотреть и альтернативные варианты. И первой в очереди стоит модель, известная как техницвет.