Российский премьер-министр Михаил Мишустин подписал постановление правительства о выходе России из европейской научно-технической программы «Эврика». я нашел) - согласно преданию, восклицание Архимеда при открытии им основного закона гидростатики.
Эврика - определение термина
Минпромторгу поручили уведомить председателя и руководителя секретариата ассоциации «Эврика» о выходе РФ из данной научно-технической программы. Значения слов. Все слова в русском есть исконно русские! Подробнее на сайте: Я призываю всех, кому не безразличен наш язык и кто хорошо р. Столько времени назад была основана в СССР серия научно-популярных книг под броским названием «Эврика!».
Что представляет собой эвристическое обучение
Историю этого выражения рассказал знаменитый римский… … Словарь крылатых слов и выражений Эврика! Цель этой программы налаживание кооперации,… … Юридическая энциклопедия ЭВРИКА — европейское агентство по координации научных исследований, осуществляющее совместно программу научных исследований и разработок, в которой участвует большинство западноевропейских стран. Восклицание, выражающее радость, удовлетворение по поводу пришедшей в голову удачной мысли, какого нибудь открытия и т. Драма Режиссер Синдзи Аояма один из заметных деятелей новой волны японского кино.
Оно привело ученого в неописуемый восторг, и он закричал: «Эврика»! После этого Архимед в голом виде помчался по улице из купальни домой, чтобы как можно быстрее проверить возникшее у него предположение. Призвав в свидетели царя, он взял два предмета: одним из них была корона, а вторым — золотой слиток, имевший такой же вес. Поочередно он опустил их в воду. При этом корона вытеснила большее количество воды, чем слиток.
А из этого следовало, что определенная часть золота и вправду была заменена серебром. Оно имеет меньший вес и больший объем. Так, по преданию, был открыт закон Архимеда, который гласит, что на тело, которое погружено в газ или в жидкость, действует сила — подъемная или выталкивающая, которая равняется весу объема газа или жидкости, вытесненного телом.
Ещё одно важное направление под названием «социальный конструктивизм» разработал советский психолог Лев Выготский. Он считал, что обучение происходит в первую очередь при взаимодействии ученика с сообществом и культурой. Важный след в развитии конструктивизма оставили и такие учёные, как Джон Дьюи и Эрнст фон Глазерсфельд, а в разработке эвристических методов в педагогике — Дьёрдь Пойа и Ювеналий Кулюткин. По сути, Альтшуллер разработал инструменты — эвристики, — помогающие инженерам и изобретателям находить эффективные решения задач, у которых нет готовых ответов. И хотя изначально ТРИЗ создавалась именно с этой целью, сейчас её рассматривают более широко и применяют в разных сферах деятельности. Так появилась ТРИЗ-педагогика , призванная развивать у учеников творческое и самостоятельное мышление, делающая акцент на экспериментах, исследованиях и работе над проектами. На принципах эвристики построены такие современные подходы, как обучение на основе феноменов и проблемно-ориентированное обучение , которое особенно популярно при проектировании курсов для взрослых. Эвристическое обучение в работах советских и российских педагогов Развитие творческого мышления находилось в центре научных интересов советского и российского педагога Валентина Андреева. Эвристике он посвятил несколько монографий, в том числе одну из своих последних работ под названием «Педагогическая эвристика для творческого саморазвития многомерного мышления и мудрости». Творческим саморазвитием педагог называл «особый, сложный, многомерный вид творческой деятельности», в которую входят самоактуализация, самопознание, самоопределение, самоуправление, самосовершенствование и творческая самореализация личности. Читайте также: Исследование: эмпатии можно научить! И заодно развить креативность Чтобы активизировать творческое саморазвитие, Андреев предлагал применять эвристические предписания — системы взаимодополняющих рекомендаций, приёмов и правил, которые повышают эффективность решения определённых задач и проблем. Вопросами эвристики занимается также Андрей Хуторской. Как и Пётр Каптерев, Хуторской рассматривает эвристику как способ организации обучения. Ученику предлагается выстраивать траекторию своего образования в каждом из изучаемых предметов, создавая не только знания, но и личностные цели занятий, программы своего обучения, способы освоения изучаемых тем, формы представления и оценки образовательных результатов. Личностный опыт ученика в этом подходе становится компонентом его образования, а содержание образования создаётся в процессе ученической деятельности».
Или вот, скажем, умение человеческого мозга оценивать перерабатываемую информацию с точки зрения ее значимости для решения задачи. При поиске решения человек сосредоточивает внимание исключительно на важной информации. Но как он определяет, какие именно сведения будут работать на пользу дела? Ясно, что здесь тоже не обходится без эвристических приемов, только каких? Наконец, бывает так. У человека уже выработана программа действий для определенных обстоятельств, но несколько изменились сами обстоятельства. Как быть? Вырабатывать новую программу? Вряд ли целесообразно. Гораздо быстрее найти то звено, из-за которого оказалась неудачной вся система действий, и заменить его. Однако самое трудное как раз отыскать требующее переделки звено. А наш мозг успешно справляется и с этой трудностью. И опять ему помогают специальные алгоритмы. Вот бы разгадать их. Вооруженные всеми этими дополнительными приемами, машины будут быстрее находить наилучшие решения самых разных сложных проблем. Но этого, по мнению ученых, еще недостаточно. Человек не только владеет тысячью секретов находить пути к быстрейшему решению самых разных проблем, он еще накапливает опыт. И при решении любой следующей задачи оказывается вооруженным опытом разгадывания всех предыдущих, что очень помогает ему и делает его все сильнее в процессе самой творческой деятельности. Недаром же мы говорим «зрелый мастер» или «квалифицированный исследователь» о писателе, художнике, ученом, достигшем большого совершенства в результате длительной и плодотворной работы в своей области. Так вот, зрелые исследователи задались такой фантастической целью, как создание машины, которая тоже могла бы накапливать опыт и благодаря этому совершенствовать свои навыки и умения. Московские психологи уже сделали попытку создать самообучающуюся машину. В основу ее программы они положили факты, неоднократно наблюдавшиеся в опытах с людьми и, как это ни парадоксально звучит, с некоторыми животными. Оказалось, что алгоритмы, благодаря которым запоминает полезную информацию голубь, входят как составная часть в довольно сложную мыслительную работу человека, например, при изучении им высшей математики. Если вы хоть раз участвовали в каком-нибудь конкурсе, то хорошо помните, что его проводят всегда в несколько туров. Ни первый, ни второй туры еще не обеспечивают первенства победителям, они лишь отсеивают слабых участников. Наш мозг при обучении действует примерно так же. Он не сразу и не всю информацию запоминает, а много раз отсеивает менее важную. И только после нескольких туров отборочного конкурса откладывает нужные сведения в памяти. Придирчивыми «экзаменаторами» служат промежуточные сигналы, промежуточные раздражители, возникающие в процессе анализа обстановки. Они сортируют информацию по значению. Предварительные сведения посылают в кратковременную память, на временное хранение. И только тщательно проверив, насколько они важны, решают: забыть их или направить в долговременную память, на постоянное местожительство. Часть таких алгоритмов удалось разгадать и даже воплотить их в программе для машины. Но дело это довольно кропотливое, трудное и требует еще многих и многих исследований прежде всего того, как мы сами учимся. Вот почему одновременно с работой над программированным обучением появилась мысль обойтись без программы. А что, если действовать так, как учили раньше мастера своих подмастерьев? По принципу: «Я тебе объяснять не буду, ты смотри и учись». Нельзя ли так же поступить и с машиной? Это особенно важно в тех случаях, когда человек при всем желании не может объяснить, как именно он действует. Вот, скажем, мы отличаем буквы одну от другой или узнаем знакомых в толпе. Рассказать, как мы это делаем, человек не может, потому что совершает все опознавательные действия интуитивно. И тем более мы не можем написать машине подробную инструкцию, как отличить букву «А» от «Б». Но учитель в школе тоже в этом случае ничего не объясняет первоклассникам. Он просто показывает им разные буквы и называет их. И они уже как-то сами учатся различать «А» от «Б». Одновременно в нескольких странах машины без всякой программы усвоили основы азбуки. Успешный опыт натолкнул на еще более дерзкую мысль: заставить машину учиться вовсе без учителя, поставив ее на место не школьника, а этакого Маугли, который сам, абсолютно без всякой помощи со стороны, научился бы, разглядывая буквы, понимать, что они чем-то отличаются друг от друга. Он, может, и не сумел бы назвать буквы так, как называем их мы, но зато придумал бы им свои имена. Как, по каким признакам он классифицировал бы разные буквы? Наверное, что-нибудь вроде этого: «А» — уголок и горизонтальная палочка посредине, «Е» — три горизонтальные палочки и одна вертикальная, «О» — кружок, «Л» — уголок, обращенный острием вверх, и т. Когда в одном из наших технических институтов инженеры взялись за эту невероятную затею, психологи только посмеивались: пробовать пробуйте, а что у вас выйдет? Вышло же вот что. Вычислительная машина оказалась весьма способным «Маугли». Она довольно быстро определила, из каких «деталей» состоят разные буквы и что между ними общего. Машина сама установила разницу между «уголками», «кружочками» и «вертикальными черточками». Но тогда, выходит, у нее выработались простейшие понятия? Именно так и расценивают результаты своих опытов инженеры из Института автоматики и телемеханики. Вот и встал опять «проклятый» вопрос о пределе возможности машин. Если машины не просто тупицы, быстро выполняющие вычисления, а им доступны мыслительные действия в таком широком диапазоне — от образования понятий до творчества, то, видимо, скоро настанет эра настоящих думающих автоматов? Инженеры всегда были в этом вопросе большими оптимистами. Как только появились вычислительные машины, они заявили, что в принципе возможно автоматизировать любую умственную деятельность, если будут известны правила, по которым она происходит. Достаточно лишь разложить эти правила на элементарные машинные операции. Было бы только чем заполнять машинную память». Но когда они увидели, с какими бесконечными подробностями приходится объяснять машине самые простейшие правила мышления даже весьма еще несовершенные программы перевода с одного языка на другой состоят из 10—20 тысяч машинных инструкций , оптимизм их несколько поубавился. А ведь многие мыслительные действия вообще не удалось представить в виде системы правил. Взять хоть то же распознавание знакомого лица или знакомой ситуации. Правила, по которым совершается эта важнейшая мыслительная операция, запрятаны где-то в глубинах подсознания и до них не так-то просто докопаться. Но, видимо, они достаточно сложны. Потому что все попытки составить аналогичную программу для машины привели пока только к тому, что машина смогла узнать лишь некоторые буквы, простейшие геометрические фигуры да цифры. Как же «приблизить» машину к различным видам умственной деятельности, чтобы максимально разгрузить человека, оставив ему самые высшие, самые интересные, самые новаторские взлеты творчества? Тогда-то и появилась мысль решить задачу моделирования умственных операций обходным путем. Снабдить машину не подробной программой действия, а лишь способностью учиться. Тогда в машину надо будет ввести небольшую исходную информацию. Все остальные сведения, необходимые для моделирования мыслительного процесса, она раздобудет сама в процессе учебы. Вместо подробного расписания работы машине дают основную рабочую программу, в которой описан только принцип действия. И «обучающую» программу, которая по ходу дела вносит исправления в первую. Однако способные к обучению и самосовершенствованию машины не разрешили всех проблем, связанных с моделированием мышления. Центр тяжести просто переместился. Стало проще составлять программу, зато дольше и сложнее учить машину. Учить машину думать ничуть не проще, чем человека. А результаты пока довольно средние. Так что ни о каком преимуществе машины не может быть и речи. Во всяком случае, пока исходные позиции электронного ньютона и школьника Петьки неравны информация, закладываемая в начинающую учиться машину, намного меньше той, которой располагает первоклассник , человек может не бояться ее соперничества. Очевидно, мало наделить машину способностью учиться. Надо еще начинить ее теми алгоритмами, теми эвристическими приемами, что составляют механизмы нашего ума. Тогда ее работа станет больше похожа на мышление человека. В справедливости этого мы с вами имели возможность убедиться на многочисленных примерах творчества машин. Но мы также знаем, что и сам-то механизм человеческого мышления далеко еще не раскрыт. И надо прямо добавить: чем глубже исследовательская мысль человека обращается к познанию самого себя, тем более сложными предстаем мы с вами перед микроскопом науки и тем больше нового и неожиданного открывается в наших мыслительных способностях. Мы с вами подошли сейчас к интереснейшей области. Вспомните: когда производили опыты над человеком, чтобы вырвать некоторые секреты его мышления и передать их машине, испытуемого приводили в состояние, близкое, если можно так выразиться, к машинному, — его ограждали от всех эмоций, насколько это возможно, от всех внешних впечатлений, помещая в специально изолированную камеру. Ведь машина бесчувственна. И ей требовалось дать «очищенную от посторонних примесей», бесчувственную человеческую мысль. Нужно сказать, что бесчувственность счетнорешающих устройств, эта самая их машинная суть, рассматривалась с первых шагов кибернетики и рассматривается и сейчас как огромное их преимущество в решении целого ряда практических задач. Не поддающиеся гневу, не расстраивающиеся от мелких огорчений, не подверженные человеческим эмоциям, комбинации электронных ламп и сопротивлений, пусть с машинной тупостью, но и с хладнокровием механизма, бесстрастно выясняют все «за» и «против» и дают точный математический ответ. Такое преимущество управляющих машин остается за ними, пока их привлекают к роли диспетчера или другой подобной работе, выполняемой по твердому, заранее разработанному графику. Но поскольку ученые и конструкторы задались целью использовать машины и в таких областях, где даже от человека требуется вдохновение, встал вопрос об истинных механизмах этого вдохновения. Так ли уж не важны и не нужны эмоции человеку в его умственной деятельности? Мы повседневно наблюдаем, как человек, который страстно стремится к цели, достигает несравненно большего, чем тот, кто работает с прохладцей, чем тот, кого данное дело не волнует. Нет ли тут связи между эмоциональной зараженностью человека и эффективностью его мышления? И если уж взялись обучать машину самым продуктивным способам человеческого мышления, тогда выходит… В общем сейчас всерьез заговорили о создании не только думающих, но и чувствующих машин. Как выяснилось, эмоции им действительно нужны… чтобы лучше думать. В самом деле. Любое наше мыслительное действие не является самоцелью. Оно совершается, так сказать, не из любви к искусству, а всегда бывает вызвано какими-то потребностями и мотивами, зависящими от чувств и настроений, которые мы в этот момент испытываем. И часто именно эмоции играют решающую роль в оценке различных ситуаций и даже отдельных мыслительных действий. Мозг как бы решает для себя, к хорошему или плохому результату приводит тот или иной этап переработки информации. Киевский кибернетик Николай Михайлович Амосов предположил даже, что в мозгу существуют две самостоятельные программы — интеллектуальная набор разнообразных эвристических приемов мышления и эмоциональная те самые потребности и мотивы, что определяют наше отношение к происходящему. Когда мы думаем, действуют обе эти программы, причем выбор алгоритма зависит от оценки, которую он получит по эмоциональной шкале. Мало того, эмоциональная программа нередко даже изменяет интеллектуальную, так что образуется уже какой-то «сплав» из чувств и мыслей. Он-то и лежит в основе нашего мышления. И может быть, принадлежность людей к художественному и мыслительному типу определяется тем, какая из двух программ играет у них первенствующую роль. Так или иначе, а многие кибернетики считают, что самые существенные недостатки эвристических программ можно будет устранить, если снабдить машины чем-то? Первую электронную модель эмоций киевляне уже создали. Их детище сможет испытывать печаль, тревогу, любопытство, негодование, горе, обиду, жалость — всего около пятидесяти разных чувств, настроений и даже страстей. Действия ее заключаются в ответах на вопросы. Машина анализирует не просто смысл того, о чем ее спрашивают, но учитывает и эмоциональную окраску вопроса. Потом она начинает думать, как ответить. И ответы ее зависят от «настроений» и «чувств», вызванных предыдущими вопросами и общим эмоциональным состоянием, которое задается заранее. Причем «темперамент» машины можно менять, усиливая одни чувства, ослабляя другие. Работа эта только начата и важна не конечными результатами, а поворотом исследований мыслительной деятельности в сторону чувств. Легко понять, что, когда машина научится не только думать, но и чувствовать, она станет еще более сильным помощником человека. Есть еще одна возможность усилить интеллект машины. Не обязательно ей начинать с «каменного топора» и самостоятельно проходить весь сложный путь становления ума. Можно сразу сделать ее умнее, снабдив всем тем опытом мышления, который накопило человечество — не каждый из нас, а именно все мы за тысячелетия сознательной жизни. Снабженная таким коллективным опытом и творческими навыками, да при ее удивительном быстродействии, машина, по мнению современных кибернетиков, сможет превзойти своего создателя в поединке интеллектов. Но кто даст нам в таком случае гарантию, что, «работая над собой», машина не создаст совершенно новые эвристические приемы, неизвестные нашему мозгу? И не окажемся ли мы когда-нибудь перед необходимостью изучать творчество машины, подобно тому как мы изучаем сейчас творчество людей? Естественно, что сейчас, с появлением на границе кибернетики и психологии новой науки — эвристики, у многих возникло желание признать за ней право на первенство. Англичанин Саймон, первым создавший для машины эвристическую программу, заявил недавно: «Я думаю, мы можем согласиться, что XX век — это век эвристики». Конечно, он по-своему прав, но где гарантия, что через пару лет не будут совершены еще более грандиозные открытия, скажем, в биологии, и тогда станут столь же справедливо связывать нашу эпоху с новым триумфом в науке? Между тем во всех этих определениях XX века есть одна общая черта. В химии ли, в физике или в кибернетике — всегда речь шла о большом количестве открытий, поставивших ту или иную науку впереди других. Невероятное обилие научных открытий — вот характерная особенность нашей эпохи. По данным ЮНЕСКО, девять десятых ученых всех времен и народов, совершивших важные открытия, — жители двадцатого столетия, наши современники. А предшествующие тысячелетия, вся многовековая история человечества — от Аристотеля до Сеченова — дала лишь одну десятую великих первооткрывателей.
Эврика, или Кто это придумал?
Глава 7 Эврика и эвристика | "Эврика" – европейское агентство по координации научных исследований, осуществляющее совместно программу научных исследований и разработок, в которой участвует большинство западноевропейских стран. |
На что нам ЭВРИКА? | Что такое СПЭВМ «МОНОЛИТ» — это серия специализированных ПЭВМ, предназначенных для эксплуатации в сложных условиях воздействия внешних факторов (вибрация, удары, повышенная и пониженная температура окружающей среды, повышенная влажность и т.п.). |
Архимедова сила: что это такое и как действует | Столько времени назад была основана в СССР серия научно-популярных книг под броским названием «Эврика!». |
Значение слова «эврика» | Реализация программы «Эврика» была начата в 1985 году — ее целью стала ликвидация отставания западноевропейских стран от США и Японии в научно-технической сфере. |
Словарь экономических терминов
- Левое меню
- Эврика — Викицитатник
- В центре «Эврика» будут читать лекции и проводить мастер-классы (ВИДЕО)
- Версия для слабовидящих
- Значение слова эврика. Что такое эврика?
- Значение слова «эврика»
Еще термины по предмету «Культурология»
- Глава 7 Эврика и эвристика . "Ага!" и его секреты
- Сила Архимеда: формула и суть закона силы Архимеда в жидкостях и газах, как действует сила Архимеда
- Европейская научно-техническая программа «Эврика» (стр. 1 ) | Контент-платформа
- Найдено научных статей по теме — 2
- Значение эврика (что это такое, понятие и определение) - Expresiones 2024
- Каково происхождение и значение слова "эврика"?
Значение слова эврика: что это такое?
Название Аврика кажется ошибкой, так как все привыкли говорить Эврика. Что такое дидактика и как она развивается. «Эврика» имеет 41 полноправного члена, включая Европейский союз, представленный Европейской комиссией. Новости науки: 27 апреля 2024 | ФОТО Pixabay. это междометие греческого происхождения «heúreka», что означает «открывать».
Каково происхождение и значение слова "эврика"?
Педагоги смогли не только активно поучаствовать в образовательном событии, но и понаблюдать с помощью специальных экспертных листов за тем, как развивается учебная деятельность детей, какие дефициты обнаруживаются в их способности учиться самостоятельно. Итогом проведенных событий стал заметный рост интереса соотечественников, проживающих за рубежом, представителей школ, внедряющих российские технологии или ведущих обучение детей русскому языку или на русском языке , к эффективным технологиям в образовании, разработанным российскими учеными и практиками. АНО «Институт проблем образовательной политики «Эврика» провел серию детско-взрослых образовательных событий с целью распространения эффективных российских образовательных технологий в странах БРИКС при участии детей дошкольного и школьного возраста, их родителей и педагогов 10 июля 2017 года в г. Рио-де-Жанейро и 12 июля 2017 года в г. Сан-Паулу Бразилия , 16 и 19 августа в г.
Россия присоединилась к «Эврике» в 1993 году. С июля 2015-го сроком на один год председателем в Программе является Швеция, в июле 2016 года ее сменила Испания. Программа направлена на создание условий для эффективного финансирования международного инновационного сотрудничества с целью повышения производительности и конкурентоспособности государств-участников.
Просто слегка искаженное под греческий лад. Вот и получается, что сквозь времена, возвращаясь к источникам, правильно говорить все-таки «Аврика». От автора. Все-таки насколько велик и могуч гугл-транслейт! При вводе слова «аврика» на иврите,через букву «алеф», выходит следующее значение — «все в порядке» Хотя ни один иврита-говорящий человек о нем не знает! Следуем дальше. Если написать avrika — то в переводе на греческий получается выражение «Я понял».
Вот и получается, что идею сайта Аvrika.
Это привело его к решению проблемы и определению, что корона была из чистого золота, и его радость вывела его из ванны голым и кричала «Эврика! Под названием «Принцип Архимеда» стало известно об открытии, сделанном ранее греческим Архимедом. С другой стороны, выражение eureka - это название американского телесериала, созданного Эндрю Косби и Хайме Палья, которое происходит в городе под названием эврика, где живут ученые и гении.
Сообщить об опечатке
- Сообщить об опечатке
- Значение слова эврика. Что такое эврика?
- Эврика, или Кто это придумал? - Липецкая областная детская библиотека
- Сообщить об опечатке
Россия выходит из европейской научно-технической программы "Эврика"
Что на самом деле означает слово «Эврика»: при чем тут Архимед, ванная и мошенники | Смотрите еще толкования, синонимы, значения слова и что такое ЭВРИКА в русском языке в словарях, энциклопедиях и справочниках: ЭВРИКА в Словаре экономических терминов: европейское агентство по координации научных исследований, осуществляющее совместную. |
что такое эврика определение | А еще «Эврика» — это название нашей любимой школьной команды эрудитов. |
Центр образования «Эврика» представил итоги работы инновационного проекта | я нашел) согласно преданию, восклицание Архимеда при открытии им основного закона гидростатики. |
ЭВРИКА Разработка и создание комплексных информационных систем | Город Эврика, Калифорния, основанный в 1850 году, использует герб штата Калифорния в качестве официальной печати. |
Эврика - определение термина
нашел) (книж.). Восклицание, выражающее радость, удовлетворение по поводу пришедшей в голову удачной мысли, какого-нибудь открытия и т.п. «- Баа. Возглас "Эврика!" означает в переводе на русский язык "Нашёл!". Гау до оц «Эврика». нашел) (книж.). Восклицание, выражающее радость, удовлетворение по поводу пришедшей в голову удачной мысли, какого-нибудь открытия и т.п. «- Баа.
Россия вышла из научно-технической программы «Эврика»
Снова ученые обращаются к человеку, чтобы, во-первых, расшифровать многочисленные эвристические приемы, которыми он владеет, а во-вторых, попытаться воспроизвести их в думающей машине. Разумеется, дело не сводится лишь к отгадке готовых приемов и способов мышления, как уже об этом говорилось раньше. Важно не просто выявить результат решения, а раскрыть процесс мышления в его динамике. Психологи Московского университета пытаются, например, воплотить в, виде программы ту особенность мышления, которую можно назвать «чувством близости решения». Машина, даже очень умная, часто проходит буквально в двух шагах от нужного решения и продолжает поиски совершенно в других концах лабиринта.
А человек, нередко еще не зная, как справиться с задачей, чувствует, что решение где-то совсем близко, и усиливает поиск именно в этом направлении. Разумеется, благодаря этому он докапывается до смысла гораздо быстрее. Или вот, скажем, умение человеческого мозга оценивать перерабатываемую информацию с точки зрения ее значимости для решения задачи. При поиске решения человек сосредоточивает внимание исключительно на важной информации.
Но как он определяет, какие именно сведения будут работать на пользу дела? Ясно, что здесь тоже не обходится без эвристических приемов, только каких? Наконец, бывает так. У человека уже выработана программа действий для определенных обстоятельств, но несколько изменились сами обстоятельства.
Как быть? Вырабатывать новую программу? Вряд ли целесообразно. Гораздо быстрее найти то звено, из-за которого оказалась неудачной вся система действий, и заменить его.
Однако самое трудное как раз отыскать требующее переделки звено. А наш мозг успешно справляется и с этой трудностью. И опять ему помогают специальные алгоритмы. Вот бы разгадать их.
Вооруженные всеми этими дополнительными приемами, машины будут быстрее находить наилучшие решения самых разных сложных проблем. Но этого, по мнению ученых, еще недостаточно. Человек не только владеет тысячью секретов находить пути к быстрейшему решению самых разных проблем, он еще накапливает опыт. И при решении любой следующей задачи оказывается вооруженным опытом разгадывания всех предыдущих, что очень помогает ему и делает его все сильнее в процессе самой творческой деятельности.
Недаром же мы говорим «зрелый мастер» или «квалифицированный исследователь» о писателе, художнике, ученом, достигшем большого совершенства в результате длительной и плодотворной работы в своей области. Так вот, зрелые исследователи задались такой фантастической целью, как создание машины, которая тоже могла бы накапливать опыт и благодаря этому совершенствовать свои навыки и умения. Московские психологи уже сделали попытку создать самообучающуюся машину. В основу ее программы они положили факты, неоднократно наблюдавшиеся в опытах с людьми и, как это ни парадоксально звучит, с некоторыми животными.
Оказалось, что алгоритмы, благодаря которым запоминает полезную информацию голубь, входят как составная часть в довольно сложную мыслительную работу человека, например, при изучении им высшей математики. Если вы хоть раз участвовали в каком-нибудь конкурсе, то хорошо помните, что его проводят всегда в несколько туров. Ни первый, ни второй туры еще не обеспечивают первенства победителям, они лишь отсеивают слабых участников. Наш мозг при обучении действует примерно так же.
Он не сразу и не всю информацию запоминает, а много раз отсеивает менее важную. И только после нескольких туров отборочного конкурса откладывает нужные сведения в памяти. Придирчивыми «экзаменаторами» служат промежуточные сигналы, промежуточные раздражители, возникающие в процессе анализа обстановки. Они сортируют информацию по значению.
Предварительные сведения посылают в кратковременную память, на временное хранение. И только тщательно проверив, насколько они важны, решают: забыть их или направить в долговременную память, на постоянное местожительство. Часть таких алгоритмов удалось разгадать и даже воплотить их в программе для машины. Но дело это довольно кропотливое, трудное и требует еще многих и многих исследований прежде всего того, как мы сами учимся.
Вот почему одновременно с работой над программированным обучением появилась мысль обойтись без программы. А что, если действовать так, как учили раньше мастера своих подмастерьев? По принципу: «Я тебе объяснять не буду, ты смотри и учись». Нельзя ли так же поступить и с машиной?
Это особенно важно в тех случаях, когда человек при всем желании не может объяснить, как именно он действует. Вот, скажем, мы отличаем буквы одну от другой или узнаем знакомых в толпе. Рассказать, как мы это делаем, человек не может, потому что совершает все опознавательные действия интуитивно. И тем более мы не можем написать машине подробную инструкцию, как отличить букву «А» от «Б».
Но учитель в школе тоже в этом случае ничего не объясняет первоклассникам. Он просто показывает им разные буквы и называет их. И они уже как-то сами учатся различать «А» от «Б». Одновременно в нескольких странах машины без всякой программы усвоили основы азбуки.
Успешный опыт натолкнул на еще более дерзкую мысль: заставить машину учиться вовсе без учителя, поставив ее на место не школьника, а этакого Маугли, который сам, абсолютно без всякой помощи со стороны, научился бы, разглядывая буквы, понимать, что они чем-то отличаются друг от друга. Он, может, и не сумел бы назвать буквы так, как называем их мы, но зато придумал бы им свои имена. Как, по каким признакам он классифицировал бы разные буквы? Наверное, что-нибудь вроде этого: «А» — уголок и горизонтальная палочка посредине, «Е» — три горизонтальные палочки и одна вертикальная, «О» — кружок, «Л» — уголок, обращенный острием вверх, и т.
Когда в одном из наших технических институтов инженеры взялись за эту невероятную затею, психологи только посмеивались: пробовать пробуйте, а что у вас выйдет? Вышло же вот что. Вычислительная машина оказалась весьма способным «Маугли». Она довольно быстро определила, из каких «деталей» состоят разные буквы и что между ними общего.
Машина сама установила разницу между «уголками», «кружочками» и «вертикальными черточками». Но тогда, выходит, у нее выработались простейшие понятия? Именно так и расценивают результаты своих опытов инженеры из Института автоматики и телемеханики. Вот и встал опять «проклятый» вопрос о пределе возможности машин.
Если машины не просто тупицы, быстро выполняющие вычисления, а им доступны мыслительные действия в таком широком диапазоне — от образования понятий до творчества, то, видимо, скоро настанет эра настоящих думающих автоматов? Инженеры всегда были в этом вопросе большими оптимистами. Как только появились вычислительные машины, они заявили, что в принципе возможно автоматизировать любую умственную деятельность, если будут известны правила, по которым она происходит. Достаточно лишь разложить эти правила на элементарные машинные операции.
Было бы только чем заполнять машинную память». Но когда они увидели, с какими бесконечными подробностями приходится объяснять машине самые простейшие правила мышления даже весьма еще несовершенные программы перевода с одного языка на другой состоят из 10—20 тысяч машинных инструкций , оптимизм их несколько поубавился. А ведь многие мыслительные действия вообще не удалось представить в виде системы правил. Взять хоть то же распознавание знакомого лица или знакомой ситуации.
Правила, по которым совершается эта важнейшая мыслительная операция, запрятаны где-то в глубинах подсознания и до них не так-то просто докопаться. Но, видимо, они достаточно сложны. Потому что все попытки составить аналогичную программу для машины привели пока только к тому, что машина смогла узнать лишь некоторые буквы, простейшие геометрические фигуры да цифры. Как же «приблизить» машину к различным видам умственной деятельности, чтобы максимально разгрузить человека, оставив ему самые высшие, самые интересные, самые новаторские взлеты творчества?
Тогда-то и появилась мысль решить задачу моделирования умственных операций обходным путем. Снабдить машину не подробной программой действия, а лишь способностью учиться. Тогда в машину надо будет ввести небольшую исходную информацию. Все остальные сведения, необходимые для моделирования мыслительного процесса, она раздобудет сама в процессе учебы.
Вместо подробного расписания работы машине дают основную рабочую программу, в которой описан только принцип действия. И «обучающую» программу, которая по ходу дела вносит исправления в первую. Однако способные к обучению и самосовершенствованию машины не разрешили всех проблем, связанных с моделированием мышления. Центр тяжести просто переместился.
Стало проще составлять программу, зато дольше и сложнее учить машину. Учить машину думать ничуть не проще, чем человека. А результаты пока довольно средние. Так что ни о каком преимуществе машины не может быть и речи.
Во всяком случае, пока исходные позиции электронного ньютона и школьника Петьки неравны информация, закладываемая в начинающую учиться машину, намного меньше той, которой располагает первоклассник , человек может не бояться ее соперничества. Очевидно, мало наделить машину способностью учиться. Надо еще начинить ее теми алгоритмами, теми эвристическими приемами, что составляют механизмы нашего ума. Тогда ее работа станет больше похожа на мышление человека.
В справедливости этого мы с вами имели возможность убедиться на многочисленных примерах творчества машин. Но мы также знаем, что и сам-то механизм человеческого мышления далеко еще не раскрыт. И надо прямо добавить: чем глубже исследовательская мысль человека обращается к познанию самого себя, тем более сложными предстаем мы с вами перед микроскопом науки и тем больше нового и неожиданного открывается в наших мыслительных способностях. Мы с вами подошли сейчас к интереснейшей области.
Вспомните: когда производили опыты над человеком, чтобы вырвать некоторые секреты его мышления и передать их машине, испытуемого приводили в состояние, близкое, если можно так выразиться, к машинному, — его ограждали от всех эмоций, насколько это возможно, от всех внешних впечатлений, помещая в специально изолированную камеру. Ведь машина бесчувственна. И ей требовалось дать «очищенную от посторонних примесей», бесчувственную человеческую мысль. Нужно сказать, что бесчувственность счетнорешающих устройств, эта самая их машинная суть, рассматривалась с первых шагов кибернетики и рассматривается и сейчас как огромное их преимущество в решении целого ряда практических задач.
Не поддающиеся гневу, не расстраивающиеся от мелких огорчений, не подверженные человеческим эмоциям, комбинации электронных ламп и сопротивлений, пусть с машинной тупостью, но и с хладнокровием механизма, бесстрастно выясняют все «за» и «против» и дают точный математический ответ. Такое преимущество управляющих машин остается за ними, пока их привлекают к роли диспетчера или другой подобной работе, выполняемой по твердому, заранее разработанному графику. Но поскольку ученые и конструкторы задались целью использовать машины и в таких областях, где даже от человека требуется вдохновение, встал вопрос об истинных механизмах этого вдохновения. Так ли уж не важны и не нужны эмоции человеку в его умственной деятельности?
Мы повседневно наблюдаем, как человек, который страстно стремится к цели, достигает несравненно большего, чем тот, кто работает с прохладцей, чем тот, кого данное дело не волнует. Нет ли тут связи между эмоциональной зараженностью человека и эффективностью его мышления? И если уж взялись обучать машину самым продуктивным способам человеческого мышления, тогда выходит… В общем сейчас всерьез заговорили о создании не только думающих, но и чувствующих машин. Как выяснилось, эмоции им действительно нужны… чтобы лучше думать.
В самом деле. Любое наше мыслительное действие не является самоцелью. Оно совершается, так сказать, не из любви к искусству, а всегда бывает вызвано какими-то потребностями и мотивами, зависящими от чувств и настроений, которые мы в этот момент испытываем. И часто именно эмоции играют решающую роль в оценке различных ситуаций и даже отдельных мыслительных действий.
Мозг как бы решает для себя, к хорошему или плохому результату приводит тот или иной этап переработки информации. Киевский кибернетик Николай Михайлович Амосов предположил даже, что в мозгу существуют две самостоятельные программы — интеллектуальная набор разнообразных эвристических приемов мышления и эмоциональная те самые потребности и мотивы, что определяют наше отношение к происходящему. Когда мы думаем, действуют обе эти программы, причем выбор алгоритма зависит от оценки, которую он получит по эмоциональной шкале. Мало того, эмоциональная программа нередко даже изменяет интеллектуальную, так что образуется уже какой-то «сплав» из чувств и мыслей.
Он-то и лежит в основе нашего мышления. И может быть, принадлежность людей к художественному и мыслительному типу определяется тем, какая из двух программ играет у них первенствующую роль. Так или иначе, а многие кибернетики считают, что самые существенные недостатки эвристических программ можно будет устранить, если снабдить машины чем-то? Первую электронную модель эмоций киевляне уже создали.
Их детище сможет испытывать печаль, тревогу, любопытство, негодование, горе, обиду, жалость — всего около пятидесяти разных чувств, настроений и даже страстей. Действия ее заключаются в ответах на вопросы. Машина анализирует не просто смысл того, о чем ее спрашивают, но учитывает и эмоциональную окраску вопроса. Потом она начинает думать, как ответить.
И ответы ее зависят от «настроений» и «чувств», вызванных предыдущими вопросами и общим эмоциональным состоянием, которое задается заранее. Причем «темперамент» машины можно менять, усиливая одни чувства, ослабляя другие. Работа эта только начата и важна не конечными результатами, а поворотом исследований мыслительной деятельности в сторону чувств. Легко понять, что, когда машина научится не только думать, но и чувствовать, она станет еще более сильным помощником человека.
Есть еще одна возможность усилить интеллект машины. Не обязательно ей начинать с «каменного топора» и самостоятельно проходить весь сложный путь становления ума. Можно сразу сделать ее умнее, снабдив всем тем опытом мышления, который накопило человечество — не каждый из нас, а именно все мы за тысячелетия сознательной жизни. Снабженная таким коллективным опытом и творческими навыками, да при ее удивительном быстродействии, машина, по мнению современных кибернетиков, сможет превзойти своего создателя в поединке интеллектов.
Но кто даст нам в таком случае гарантию, что, «работая над собой», машина не создаст совершенно новые эвристические приемы, неизвестные нашему мозгу? И не окажемся ли мы когда-нибудь перед необходимостью изучать творчество машины, подобно тому как мы изучаем сейчас творчество людей? Естественно, что сейчас, с появлением на границе кибернетики и психологии новой науки — эвристики, у многих возникло желание признать за ней право на первенство.
А «теплая» она, потому что равновесная температура там 420 градусов Кельвина. Ну как «теплая»… В переводе на наши Цельсии это плюс 146 градусов с лишним. Нам туда не надо. А вот вторая, та самая LHS 1140b, имеет массу 5,6 «земных», радиусом 1,73 «земного» и равновесной температурой 226 кельвинов. По-нашему это чуть холоднее, чем минус 47.
Ничего особенного, в поселке Каневка Мурманской области и похолоднее бывало. То есть планета находится в потенциально обитаемой зоне, говорят ученые из Лаборатории реактивного движения NASA. Сначала предполагали, что экзопланета является каменистым телом. Но массу пересчитали, и она оказалась меньше, чем предполагали. И еще есть атмосфера с возможным преобладанием молекулярного азота, водяного пара и углекислоты. Под океаном этой планеты может быть ледяная мантия, перемешанная с мантией каменистой. Моделирование показывает, что вблизи поверхности планеты глобальная средняя температура способна оказаться выше точки замерзания воды. И если у планеты есть механизм стабилизации климата для поддержания атмосферы, о которой написано выше, то почему бы ей не быть обитаемой?
Не слабо!
Архимед долго бился над решением предложенной задачи, пока решение не пришло к нему случайно во время купания, когда при его погружении в ванну вода начала выливаться на пол: он понял, что объём вытесненной воды равен объёму тела, погружённого в воду принцип, который иногда путают [2] с законом Архимеда — гидростатическим законом о выталкивающей силе ; а значит, можно точно измерить объём сложных по форме объектов. От своего открытия Архимед пришёл в такой восторг, что голый с криками «Эврика! Затем он продемонстрировал опыт перед Гиероном, погрузив в воду корону и золотой слиток того же веса. Корона вытеснила больше воды, а это означало, что часть золота была заменена серебром, которое по весу легче, но имеет больший объём.
Фото financemagazineonline. Ученому было нужно решить, действительно ли корона, сделанная по приказу царя, состоит из чистого золота, или ювелир решил обмануть его и добавил в сплав серебра. При этом царский атрибут весил ровно столько, сколько весил слиток золота, выданный ювелиру. Древнегреческий ученый долго ломал голову, как это проверить. Озарение пришло в момент, когда он решил принять ванну. Погрузившись в емкость с водой, математик заметил, что часть воды из нее вылилось. Он сразу понял, что нашел ответ на вопрос и с радостным криком «Эврика! Поговаривают, что даже одеться забыл при этом.
Эврика! Великое открытие
В переносном смысле - выражение радости, удовлетворения при решении какой-либо сложной задачи, возникновении новой идеи. Академический словарь междом. Восклицание, выражающее радость, удовлетворение при найденном решении, при возникновении удачной мысли и т. Не знаю только, как мне это раньше в голову не пришло. Чехов, Шведская спичка. Практический толковый словарь крыл.
Римский инженер и зодчий Витрувий I в. Доказать это он поручил Архимеду; над определением состава сплава Архимед трудился очень долго и безуспешно, пока наконец случайно, во время купанья, не открыл новый закон гидростатики.
Что такое Эврика? Мы собираем, структурируем и представляем данные об актуальных распродажах инженерно-строительной продукции и оборудования. Уникально низкие цены Вся продукция, представленная на дисконт-портале, продается по специальным ценам. Есть возможность приобрести нужные товары дешевле, чем для крупнооптовых клиентов, а часто ниже себестоимости.
Эврика Архимед бежит голый по улицам Сиракуз крича «Эврика! Согласно легенде, сиракузский царь Гиерон, подозревая своего ювелира в обмане при выделке золотой короны, поручил своему родственнику Архимеду открыть обман и доказать, что в корону примешано серебра больше, чем следовало.
Он поручил Архимеду открыть обман и доказать, что корона не из чистого золота часть которого мастер якобы присвоил , а из сплава золота и серебра. В то время существовали инструменты, позволяющие достаточно точно измерить вес, и было известно, что плотность золота примерно вдвое больше плотности серебра; но, чтобы проверить состав короны на чистоту, требовалось также знать её объём. Архимед долго бился над решением предложенной задачи, пока решение не пришло к нему случайно во время купания, когда при его погружении в ванну вода начала выливаться на пол: он понял, что объём вытесненной воды равен объёму тела, погружённого в воду принцип, который иногда путают [2] с законом Архимеда — гидростатическим законом о выталкивающей силе ; а значит, можно точно измерить объём сложных по форме объектов. От своего открытия Архимед пришёл в такой восторг, что голый с криками «Эврика!