Хотя человеческий глаз способен воспринимать около 60 FPS, для разного типа контента требуется разное количество кадров. Чтобы определить, сколько кадров в секунду может различить глаз человека, нужно учесть его физиологические особенности. Сегодня я вам расскажу сколько кадров в секунду видит глаз человека! Некоторые люди утверждают, что человеческий глаз может воспринимать только определенное количество кадров в секунду, основываясь на устаревшей информации или заблуждениях.
Сколько всё же кадров в секунду способен воспринимать человеческий глаз?
Но вернемся к теме: научный журнал PLOS ONE недавно пополнился исследованием, в котором ученые решили выяснить реальную способность человеческого глаза различать количество увиденных кадров в секунду. На самом деле, количество кадров в секунду, которые мы видим глазами, может варьироваться у разных людей и в разных условиях. Чтобы определить, сколько кадров в секунду может различить глаз человека, нужно учесть его физиологические особенности. Вопрос, сколько кадров секунду видит глаз примерно из той же серии, что и сколько. Автор, человеческий глаз может воспринимать и анализировать только 24 кадра в секунду! При этом, для каждого глаза частота остается привычной — 24 кадра в секунду.
Мифы про FPS и зрение человека, в которые уже можно не верить
Учеными было исследовано периферийное зрение. Обнаружилось, что оно имеет отличие от прямого зрения по частоте изображения. Поэтому при создании шлемов используют значения не 30-60 Герц, как для телевизора, а выше — 90 Герц. В пятидесятых годах прошлого века выпустили американский фильм, в котором во многих кадрах были вставлены надписи «Ешь попкорн, пей Кока-колу». Так встраивали кадры, которые распознавались только на бессознательном уровне. Маркетинговая компания, которая занималась этим исследованием, рассказала, что продажа попкорна и кока-колы после этого выросла во много раз. В американском телевидении было исследование на тему содержания 25 кадра. В одном популярном американском телешоу вставляли 350 раз на высокой скорости слова «Звони прямо сейчас». Но никто так и не позвонил. В конце телешоу ведущий рассказал, что в шоу содержалось послание, и попросил прислать правильный ответ про содержание.
Было прислано множество писем, но ни одно из них не содержало правильного ответа. Американскими торговыми компаниями было разработано множество исследований на тему 25 кадра и внедрения информации в подсознательную область человеческого мозга. Но ни одно из исследований не подтвердило правдивости данной теории. Тем не менее, во многих странах была запрещена реклама на уровне подсознательной деятельности человека. В США применение такого метода может привести к потере лицензии для телевещания. Оно и понятно, ведь глаза — очень важные органы, а его их правильное функционирование — залог здоровья и комфортной жизни. Резкая боль в глазу, затуманивание, темные пятна, ощущение инородного тела, сухости или наоборот слезоточение… Все эти симптомы знакомы вам не понаслышке. Этот участок называется центральной ямкой сетчатки глаза, который занимает менее одного процента ее поверхности и задействует более половины пространства зрительной коры головного мозга. Центральная ямка охватывает лишь два градуса зрительного поля — это примерно размер двух ногтей большого пальца на расстоянии вытянутой руки Когда вы смотрите на деталь, которая занимает ваше поле зрения более чем на два градуса, глаз самостоятельно сканирует изображение, а заполняет недостающие участки.
Несмотря на то, что по краям сетчатки ваше зрение обладает гораздо меньшим разрешением, мозг все равно воспроизводит изображение, основываясь на данных, который он получил, когда глаз «просканировал» пространство. Мозг запоминает все детали, на которые вы смотрите даже вскользь, благодаря чему вы в режиме реального времени знаете, что происходит вокруг. Мозг постоянно дорабатывает изображение перед вашими глазами, и практически все, что вы видите, — это не настоящая проекция окружающего мира. Алгоритм, благодаря которому мы видим, гораздо сложнее в человеческом организме, чем у камер, которые снимают изображение при заданных настройках фокусировки, количестве пикселей и частоте кадров. Именно из-за этого ваши глаза двигаются, когда вы читаете этот текст: для того, чтобы в полной мере увидеть содержание другой области экрана, вам нужно остановиться и передвинуть глаза. Вы в курсе, где находится текст, как он расположен в пространстве, но чтобы узнать, что в нем написано, вам необходимо рассматривать фактически каждую деталь. Движущееся изображение — это иллюзия. Это обманка, которую наш мозг воспринимает как плавно движущееся изображение. Не стоит нарушать эту иллюзию, которая в действительности очень хрупка.
Так сколько человеческий глаз видит кадров в секунду? Зрение не похоже на дискретную систему, его нельзя описать цифрами. Если, например, про камеру можно сказать, с каким разрешением и частотой кадров она снимает, то с какими параметрами считывает изображение глаз, сказать невозможно. Зрение воспринимает картинку целиком, если она меняется, изменения тут же фиксируются. Но вот понять, какие кадры действительно сменяют друг друга, можно только при просматривании кинопленки, извлеченной из проектора. Конкретной величины, которая указывала бы на максимальное количество кадров, воспринимающихся глазом человека при просмотре видео, учеными не представлено. Однако на практике доказано следующее: комфорт восприятия видео с разным количеством кадров в секунду зависит от особенностей наблюдаемого объекта. Чем быстрее и резче происходит движение на экране, тем выше должна быть предельная частота кадров. Таким образом, для видео с медленно плывущей по реке лодкой достаточно и 24 кадров, а для напряженного футбольного матча лучше выбрать 60 кадров.
Если вы смотрите видео с лодкой, вы не заметите различий между частотами 24 и 60 кадров. Но если на экране люди, которые быстро бегают, часто меняют направление движения, бьют по мячу, летящему затем на большое расстояние, разница будет заметна с первого взгляда. Так при 24 кадрах летящий в ворота мяч не будет заметен, он «размоется». А вот при 60 кадрах вы точно увидите, как он влетает в ворота или как его поймал вратарь.
Какое самое высокое разрешение телевизора может видеть человеческий глаз? По словам ученого и фотографа доктора Роджера Кларка, разрешение человеческого глаза составляет 576 мегапикселей.
Это огромно, если сравнить его с 12-мегапиксельной камерой iPhone 7. Видит ли человеческий глаз 16К? Могут ли люди видеть 16K? Кроме того, человеческий глаз не смог бы воспринять больше деталей на экране. Большой гонки до 16 км или 32 км не будет. Видит ли человеческий глаз разрешение 4K?
Большинство экспертов сходятся во мнении, что минимальный размер экрана для просмотра 4K без необходимости сидеть слишком близко составляет 42 дюйма. Так что да, несмотря на слухи, которые вы, возможно, слышали, человеческий глаз способен увидеть разницу между экраном 1080p и экраном 4K. Какое самое высокое разрешение может видеть глаз? В: Какое самое высокое разрешение может различить человек? Ответ: «Визуальное разрешение человеческого глаза составляет около 1 угловой минуты. Человеческий глаз не может определить уровень детализации изображения 8K на таком расстоянии, на котором большинство людей сидят или хотели бы сидеть от своего телевизора.
Сколько FPS может видеть человеческий глаз? Некоторые эксперты скажут вам, что человеческий глаз может видеть от 30 до 60 кадров в секунду. Что такое K 576 мегапикселей? Но это не так просто.
Чем дальше от центра fovea, тем более размытую картинку мы видим. Плотность распределения палочек и колбочек в сетчатке. Наибольшая плотность палочек — примерно по-середине между центральной ямкой и краем сетчатки.
Интересный факт — многие из вас замечали мерцание старых мониторов и телевизоров при взгляде на них «боковым зрением», а когда смотрите прямо, то всё отлично, было, да? Это происходит по причине наибольшей плотности палочек в боковой части сетчатки. Чёткость зрения там паршивая, зато чувствительность к изменению яркости — самая высокая. Как раз эта особенность и помогала нашим предкам быстро реагировать на самые мелкие движения на периферии зрения, чтобы тигры не пооткусывали им задницы Итак, что мы имеем — сетчатка содержит суммарно около 130 Мп. Ура, вот и ответ! Нет… это только начало и цифра далека от верного значения. Вернёмся снова к центральной ямке fovea.
Колбочки в самой центральной части ямки «umbo» имеют каждая свой аксон нервное волокно. Колбочки, расположенные дальше от центра, уже собираются в группы по несколько штук — они называются «рецептивные поля». Например, 5 колбочек соединяются с одним аксоном, и дальше сигнал идёт по зрительному нерву в кору. На этой схеме как раз показан случай такой группировки нескольких колбочек в рецептивное поле. Палочки, в свою очередь, собираются в группы по несколько тысяч — для них важна не резкость картинки, а яркость.
Я не буду очень сильно во всё это углубляться, дабы не растягивать статью очень сильно и не превращать наш сайт в научно-популярный, а лишь затрону самые базовые знания и понятия. Итак, поехали!
Первый на очереди вопрос, с которым мне предстоит разделаться, звучит следующим образом: сколько кадров в секунду способен увидеть человеческий глаз? Перед тем, как я отвечу на этот вопрос, давайте ненадолго обратимся к любой энциклопедии, чтобы разобраться в том, как человеческий глаз воспринимает информацию. Точнее делает это не глаз, а мозг человека. Почему так происходит? Потому, что на любом этапе восприятия особенно зрительного мозгу не хватает полученной информации, и он в процессе обработки вносит необходимые коррективы для того, чтобы убрать негативные некомфортные эффекты, например: эффект слепого пятна, недостаточная цветокоррекция и т. Более подробно можете прочитать в той же Википедии. Так вот восприятие информации по кадрам является некомфортным для нашего мозга, если так можно выразиться.
Поэтому, когда мы смотри не на экран монитора, а на любое другое естественное природное явление, то изображение всегда плавное, оно не дергается, не прерывается и т. С изображением на экранах мониторов ситуация немного другая. Если верить Википедии, то изображение, полученное глазным яблоком, хранится в зрительной коре головного мозга около 66. Исходя из этого, можно сделать простой логический вывод, что для того, чтобы воспринимать набор различных изображений как самую простую анимацию, нашему глазу необходимо, как минимум 16 отличных друг от друга кадров в секунду. Вспоминаем школьные уроки. В одной секунде 1000 миллисекунд. Таким образом, при 16 кадрах в секунду предыдущий кадр не успевает исчезнуть, а уже появляется новый.
Это и создает иллюзию анимации. Это необходимый минимум для комфортного восприятия, идущего друг за другом ряда кадров. То есть, всё, что меньше 16 кадров будет восприниматься нашим мозгом как слайд шоу. Но что же касается максимума? После какого значения глаз будет пропускать кадры в силу своей биологической неспособности увидеть больше? И сейчас я попробую объяснить, почему именно.
Сколько кадров видит человеческий глаз
💻Сколько FPS видит человеческий глаз? | | Заблуждение на тему «какой уровень FPS не может видеть человеческий глаз», похоже, началось с того, что люди говорили «мы не можем видеть больше 24 FPS». |
Сколько кадров в секунду (FPS) может видеть человеческий глаз | Глаз человека видит изображение, как и все остальное не по кадрово, а это значит, что чем больше кадров будет показано за одну секунду, тем более плавным. |
Сколько человеческий глаз видит кадров в секунду? | Читала где-то, что человеческий глаз может видеть от 24 до 30 кадров в секунду. |
Какое количество кадров в секунду воспринимает человеческий глаз | Некоторые эксперты скажут вам, что человеческий глаз может видеть от 30 до 60 кадров в секунду. |
Может ли человеческий глаз увидеть 1000 кадров в секунду? — i2HARD | Сколько кадров в секунду видит человеческий глаз | Комфортное число FPS для игр и кино. |
До 60 fps: исследование наглядно показало возможности человеческого глаза
Сколько кадров в секунду видит человеческий глаз? | Но вернемся к теме: научный журнал PLOS ONE недавно пополнился исследованием, в котором ученые решили выяснить реальную способность человеческого глаза различать количество увиденных кадров в секунду. |
Сколько кадров в секунду видит человеческий глаз в кино и играх. | Сегодня я вам расскажу сколько кадров в секунду видит глаз человека! |
Аспекты зрения
- Сколько кадров в секунду видит человек. Строение глаза и интересные факты
- FPS и человеческий глаз | Пикабу
- Какое самое высокое разрешение телевизора может видеть человеческий глаз? - Связанные вопросы
- Сколько кадров в секунду видит человек
- Сколько кадров в секунду видит человеческий глаз
- ЧЕЛОВЕЧЕСКИЙ ГЛАЗ FPS: СКОЛЬКО МЫ МОЖЕМ ВИДЕТЬ И ОБРАБАТЫВАТЬ ВИЗУАЛЬНО? - ЗДОРОВЬЕ
Сколько FPS видит человеческий глаз
Количество кадров, которые человек может видеть, зависит от его возраста, физического состояния и других факторов. Глаз человека видит изображение, как и все остальное не по кадрово, а это значит, что чем больше кадров будет показано за одну секунду, тем более плавным и четким получится изображение. Хотя человеческий глаз способен воспринимать около 60 FPS, для разного типа контента требуется разное количество кадров. Но вернемся к теме: научный журнал PLOS ONE недавно пополнился исследованием, в котором ученые решили выяснить реальную способность человеческого глаза различать количество увиденных кадров в секунду.
Сколько кадров в секунду видит человеческий глаз
Исследования медиков в области влияния на человека инфразвука. Медики обратили внимание на опасный резонанс брюшной полости, имеющей место при колебаниях с частотой 4-8 Гц. Попробовали стягивать сначало на модели область живота ремнями. Частоты резонанса несколько повысились, однако физиологическое воздействие инфразвука не ослабилось. Легкие и сердце, как всякие объемные резонирующие системы, также склонны к интенсивным колебаниям при совпадении частот их резонансов с частотой инфразвука. Самое малое сопротивление инвразвуку оказывают стенки легких, что в конце концов может вызвать их повреждение.
Здесь картина взаимодействия с инфразвуком особенно сложна. Небольшой группе испытуемых было предложено решить несложные задачи сначала при воздействии шума с частотой ниже 15 герц и уровнем примерно 115 дБ, затем при действии алкоголя и, наконец, при действии обоих факторов одновременно. Была установленна аналогия воздействия на человека алкоголя и инфразвукового облучения. При одновременном влиянии этих факторов эффект усиливался, способность к простейшей умственной работе заметно ухудшалась. Читайте также: Офтан тимолол цена от 56 руб, Офтан тимолол купить в Москве, инструкция по применению, аналоги, отзывы В других опытах было установлено, что и мозг может резонировать на определенных частотах.
Эти биологические волны отчетливо обнаруживаются на энцефалограммах, и по их характеру врачи судят о тех или иных заболеваниях мозга. Высказано предположение о том, что случайная стимуляция биоволн инфрозвуком соответствующей частоты может влиять на физиологическое состояние мозга. Кровеносные сосуды. Здесь имеются некоторые статистические данные. В опытах французских акустиков и физиологов 42 молодых человека в течении 50 минут подверглись воздействию инфразвука с частотой 7.
У всех испытуемах возникло заметное увеличение нижнего предела артериального давления. При воздействии инфразвука фиксировались изменения ритма сердечных сокращений и дыхания, ослабление функций зрения и слуха, повышенная утомляемость и другие нарушения. Воздействие низкочастотных колебаний на живые организмы известно давно. Например, некоторые люди, испытавшие подземные толчки при землетрясении, страдали от тошноты. Тогда следует вспомнить и о тошноте, вызываемой колебаниями судна или качелей.
Это связано с воздействием на вестибулярный аппарат. И проявляется подобный «эффект» не у всех. Никола Тесла фамилия которого теперь обозначает одну из основных единиц измерений, уроженец Сербии около ста лет тому назад инициировал такой эффект у подопытного, сидящего на вибрирующем стуле. Наблюдаемые результаты относятся к взаимодействию твердых тел, когда колебания передаются человеку через твердую среду. Воздействие колебаний, передаваемых организму от воздушной среды, недостаточно изучено.
Раскачать тело, как например на качелях, таким способом не удастся. Возможно, что неприятные ощущения возникают при резонансе: совпадении частоты вынужденных колебаний с частотой колебаний каких либо органов или тканей. В прежних публикациях об инфразвуке упоминали его воздействие на психику, проявляющееся как необъяснимый страх. Может быть, в этом также «виноват» резонанс В физике резонансом называют увеличение амплитуды колебаний объекта, когда его собственная частота колебаний совпадает с частотой внешнего воздействия. Если таким объектом окажется внутренний орган, кровеносная либо нервная система, то нарушение их функционирования и даже механическое разрушение, вполне реально.
Существуют ли какие-нибудь меры борьбы с инфразвуком? Некоторые меры борьбы с инфразвуком. Следует признаться, что этих мер пока не так уж много. Общественные меры борьбы с шумом начали разрабатываться уже давно. Юлий Цезарь почти 2000 лет назад в Риме запретил езду ночью на грохочущих колесницах.
А 400 лет назад королева Англии Елизавета Третья запретила мужьям бить своих жен после 10 часов вечера, «чтобы их крики не беспокоили соседей». Сейчас уже в мировом масштабе принимаются меры борьбы с шумовым загрязнением среды: усовершенствуются двигатели и другие части машин, этот фактор учитывается при проектировании трасс и жилых районов, используются звукоизолирующие материалы и конструкции, экранирующие устройства, зеленые насаждения.
В его состав входит большое количество элементов, каждый из которых играет важную роль. Роговица представлена прозрачной оболочкой. На ней отсутствуют кровеносные сосуды.
Она имеет преломляющую силу и играет ведущую роль в «оптике», а также граничит со склерой. Между ней и радужкой имеется пространство, названной передней камерой с внутриглазной жидкостью. Радужка имеет цветную округлую форму и отверстие внутри, то есть зрачок. Речь идет о мышцах, выполняющих функции сужения и расширения последнего. Другими словами, регулирует световой поток — это можно сравнить с устройством фотоаппарата.
Из-за большого света зрачок уменьшается. Хрусталик считается своеобразной линзой, которую отличает ее прозрачность и эластичность. Форма меняется во время фокуса на определенном объекте. Благодаря хрусталику ты видишь предметы, которые находятся близко или далеко. Сетчатка образована из фоторецепторов и нервных окончаний.
У них повышена чувствительность.
Эту цифру выбрали потому, что расход стандартной пленки 35 мм при такой частоте составлял ровно 1 фут в секунду. Таким образом упрощались расчеты необходимого количества пленки для съемок. Потребность в увеличении частоты возникла с переходом от немого кино к звуковому.
Дорожка в те времена писалась на пленку рядом с картинкой в виде полосок, каждая из которых соответствовала определенной частоте. Малая длина пленки, прокручиваемой за секунду всего 30 см , не позволяла записать звук достаточно четко, поэтому длину нужно было увеличивать. Секундный расход пленки теперь составлял 1,5 фута, минутный — 90 футов или 30 ярдов. Эти цифры тоже оказались удобными для расчетов при планировании бюджета съемок.
Частоту пытались увеличить и больше, до 30, 48 и даже 60 кадров за секунду, но возникли проблемы. Для такой скорости требовалось более точное и выносливое оборудование как для съемки, так и воспроизведения в кинотеатрах , а расход пленки существенно увеличивался. Помимо затрат на саму пленку, увеличивались также стоимость монтажа, время на его произведение. В итоге все так и остановились на 24 кадрах, эта частота стала отраслевым стандартом на много десятилетий.
Окончательно утвердили частоту около 25 кадров в секунду тотальная электрификация Европы и появление телевидения. При частоте переменного тока 50 Гц смен направления в секунду 24-25 кадров удобно привязывать к параметрам тока. При таком подходе смена кадра происходит один раз на период синусоиды. Однако эксперименты показывают, что человек обрабатывает и видит в среднем до 150 кадров за обозначенный промежуток времени.
Известны редкие случаи, когда при регулярных тренировках достигался уровень восприятия около 250 FPS. Но некоторые исследователи полагают, что человеческий глаз может воспринять даже 1000 и более кадров в секунду. Сколько кадров в секунду видит глаз человека? Если вы покажете человеку один кадр в секунду на протяжении длительного периода времени, со временем он станет воспринимать не изображения по отдельности, а картину движения в общем.
Однако демонстрация видеоизображения в таком ритме дискомфортна для человека. Еще во времена немого кино частота кадров доходила до 16 в секунду.
Что же будет с частотой 24 или 30 кадров в секунду, ведь это ниже лимита? Глаза будут анализировать изображение дважды и не смогут собрать дополнительную информацию благодаря колебаниям. Кино или игра получиться более "сказочным", не таким детальным. Ограниченным разрешением самого формата. Существуют теории, что это может быть связано с размытием движений, однако в случае кино эффект не должен играть большой роли.
Что все это значит для кино? При частоте обновления в 48-60 кадров в секунду наши глаза различают больше деталей, чем при частоте 24-30 fps, как в отношении движения, так и в детализации. Однако мы получим более чем в 2 раза больше информации, потому что помимо окружающей информации мозг регистрирует и движения. Поэтому экшеновые сцены с резкой сменой кадров более высокая частота будет иметь лучшие результаты среди аудитории. Однако аудитория будет регистрировать и больше деталей из сцены, чем при 24-30 fps. Это и создает эффект постановки. Мы видим не образ, а сцену целиком, что едва ли возможно в реальности.
В качестве наглядной демонстрации вы можете прямо сейчас провести эксперимент. Для этого необходимо на смартфоне открыть съемку видео и в настройках выбрать частоту — 60 fps. Смотрите на экран и подвигайте перед собой камеру, получается гораздо плавнее, чем если просто подвигать головой. В итоге для получения кинематографического качества, необходимо снимать с частотой ниже 41 Гц, но выше частоты, когда движение становится рваным — от 16 Гц. А почему старые сериалы выглядели фальшиво? Это было связано с технологиями вещания прошлого века в NTSC-регионах, когда видео показывали с частотой 59. Но суть в том, что общая частота была выше колебаний, благодаря чему возникал эффект мыльной оперы.
Что все это значит для видеоигр? В отличие от кино, особенно снятого на пленку с феноменальным даже по сегодняшним стандартам разрешением, видеоигры имеют ограниченное разрешение. Большинство из нас играет на 1080p или 1440p, лишь в последние годы 4K-матрицы стали доступнее. В таких условиях мы способны различать отдельные пиксели и они распределены в форме сетки. Поэтому проблема разрешения и частоты еще какое-то время будет компромиссом. Даже на консолях нового поколения придется искать баланс.
У каких животных самое лучшее зрение?
- Не пропустите
- Сколько видит человеческий глаз кадров в секунду: исследования
- Сколько кадров в секунду реально видит человеческий глаз? – Гейминаториум
- Сколько кадров видит человеческий глаз
- Сколько должно быть кадров в секунду. Сколько кадров в секунду видит человеческий глаз
сколько кадров видит человеческий глаз
Каково разрешение человеческого глаза в мегапикселях? | Некоторые эксперты скажут вам, что человеческий глаз может видеть от 30 до 60 кадров в секунду. |
Сколько FPS видит человеческий глаз? | Некоторые эксперты скажут вам, что человеческий глаз может видеть от 30 до 60 кадров в секунду. |
Сколько кадров в секунду реально видит человеческий глаз? – Гейминаториум | Сколько мегапикселей имеет человеческий глаз? |
Сколько FPS видит человеческий глаз | Читала где-то, что человеческий глаз может видеть от 24 до 30 кадров в секунду. |
Сколько кадров в секунду видит человеческий глаз? Что такое FPS?
Существуют люди, способные воспринимать большее количество кадров в секунду. Например, пилоты и игроки в видеоигры могут воспринимать до 60 кадров в секунду. обо всем этом читайте в нашей статье. сколько кадров видит человек: 45 фото. Сколько FPS воспринимает человеческий глаз. Количество кадров в секунду воспринимает человеческий глаз.
Сколько кадров в секунду видит человеческий глаз? Что такое FPS?
Строение глаза Зрительный нерв получает изображение от глаза. Это главная задача последнего. В его состав входит большое количество элементов, каждый из которых играет важную роль. Роговица представлена прозрачной оболочкой. На ней отсутствуют кровеносные сосуды. Она имеет преломляющую силу и играет ведущую роль в «оптике», а также граничит со склерой. Между ней и радужкой имеется пространство, названной передней камерой с внутриглазной жидкостью. Радужка имеет цветную округлую форму и отверстие внутри, то есть зрачок. Речь идет о мышцах, выполняющих функции сужения и расширения последнего. Другими словами, регулирует световой поток — это можно сравнить с устройством фотоаппарата. Из-за большого света зрачок уменьшается.
Хрусталик считается своеобразной линзой, которую отличает ее прозрачность и эластичность. Форма меняется во время фокуса на определенном объекте. Благодаря хрусталику ты видишь предметы, которые находятся близко или далеко.
Это потребовалось, чтобы можно было записывать звук на специальную дорожку рядом с кадрами. С этим нововведением движения актеров на экране стали более плавными и естественными, глазу зрителя стало проще воспринимать их. Изобретенный чуть позже 24-кадровый режим, был оптимален и технически, и эстетически. Но со временем количество кадров только увеличивалось, а качество съемки улучшалось. Сегодня обычное видео — это примерно 60 кадров в секунду, а видео в формате 3D — 90 кадров. Звук Всё сложнее стало со звуком. Теперь нельзя крутить фильм быстрее или медленнее. Нужно соблюдать постоянную кадровую частоту, чтобы скорость, а значит и тембр голоса не изменялся на протяжении фильма. С 16 FPS была проблема, звук не звучал точно, как задумывалось. Нужно было выбрать новую частоту, чтобы она была больше 16 и в итоге давала 48 проецируемых FPS. В итоге, вместо трёхлезвийного обтюратора стали использовать двулезвийный. И утвердили новый фрейм рейт — 24 FPS. Всё просто и удобно. То есть мы знаем, что половина секунды — 12 FPS, треть — 8, а четверть — 6. Тут вроде становится понятно — мы и сейчас используем 24 FPS. Тогда зачем нам 25, 30 и тем более 29,97? Как проводят исследования? Эксперименты в области выявления возможностей органов зрения человека проводятся постоянно, и ученые не собираются останавливаться на достигнутом. Например, проводят такое тестирование: контрольная группа людей просматривает предложенные видеозаписи с различной частотой кадров. В определенные фрагменты в разных промежутках времени вставлены кадры с каким—либо дефектом. Они изображают какой-то лишний, не вписывающийся в общую канву предмет. Это может быть быстро движущийся летящий объект. Это обстоятельство не вызывало бы такого удивления, если бы не знать, что это видео демонстрировали с частотой 220 кадров в секунду. Конечно, рассмотреть подробно изображение никто не смог, но даже тот факт, что люди просто смогли заметить мелькание на экране при такой кадровой частоте, говорит сам за себя. Сколько кадров в секунду видит человек, интересно многим. Более любопытные подробности рассмотрим далее. История 25 кадра Сублиминальную рекламу а это не что иное, как 25 кадр разработал Дмеймс Вайкери. Он опубликовал результаты о действии такого маркетингового хода: большинство людей после сеанса покупали ту вещь, реклама которой присутствовала на дополнительном 25 кадре. Однако впоследствии автор признался, что данные были сфабрикованы. Что происходит, когда мы видим 25 кадр? Приглядитесь к фаер-шоу: когда человек быстро крутит горящий предмет, Вам он покажется огромным огненным кругом — Вы не сможете различить движение объекта. На инерции основаны и оптические иллюзии: например, круги, которые мы воспринимаем как движущиеся. В действительности движение отсутствует. На картинке Вы видите только один кадр, но боковое зрение посылает сигнал в мозг, говоря ему, что что-то там нечисто и надо бы это проверить. В итоге мозг посылает сигнал обратно, преобразовывая 1 кадр в несколько. Это необходимо, чтобы Вы обернулись и удостоверились, что за ближайшими кустами не кроется опасность. Иными словами, это продиктовано инстинктом самосохранения. Какие способности имеет зрение Стоит рассмотреть строение человеческого глаза. Колбочки и палочки — составляющие фоторецепторов, так называемой системы восприятия. Благодаря им можно различать цвета и оттенки, воспринимать изображения. Сложность нахождения максимального fps framers per second заключается в расположении этих рецепторов. У людей количество фпс на периферии зрительной системы увеличено. Это своеобразная адаптация организма к способу существования, которая определяет, что видит человеческий глаз. Зрительная система настроена таким образом, чтобы видеть цельную картину. Вот почему если показывать по 1 кадру в секунду некоторое время, то человек увидит полное изображение. Однако доказано, что резкие перепады fps дискомфортные и их с трудом воспринимает человеческий глаз. Во времена немого кино количество кадров равнялось 16, но жадные владельцы кинотеатра намеренно увеличивали до 30, что негативно влияло на впечатления от просмотра. Стандартом, комфортным для зрения, является 24 фпс. Зрительная система уникальна: комфортным может быть восприятие 60—100 кадров в секунду. Однако это вовсе не предел, так как известны случаи, где фпс было 220. Предел ли это?
Пределы восприятия сильно зависят от особенностей наблюдаемого объекта. Чем быстрее он движется, чем резче эти движения — тем выше предельная частота. Незаметными для людей с высокочувствительным зрением становятся только частоты смены кадра и мерцания порядка 1000 Гц. Именно от 1 кГц 1000 кадров в секунду — предел восприятия, преодолеть который большинство человеческих глаз не может. Таким образом, при наблюдении движущегося изображения, в большинстве случаев, человеческий глаз видит максимум около 100-150 кадров в секунду, но воспринимать способен на порядок больше.
По-английски ретина — это сетчатка. И Стив Джобс говорил, что они сделали в дисплее ровно столько пикселей, сколько нужно глазу, чтобы не замечать их. Тогда это было 326 пикселей на дюйм или 326 ppi. Но как, как они посчитали, откуда они знают, сколько пикселей нужно глазу, думал я. И несмотря на то, что Retina от Apple — это конечно сплошной маркетинг. Посчитать разрешение глаза все-таки можно, хоть это не так просто! И сегодня мы этим займемся. От 120 мегапикселей до 576 мегапикселей. И по факту, всё что мы видим, это во многом плод нашего воображения! Можно даже сказать, что разрешение человеческого глаза — всего 1 мегапиксель… Но зачем же тогда нам фотографические матрицы разрешением 200 мегапикселей и 8K-дисплеи? Какие ещё тайны скрывают наши глаза? И как гаджеты используют это? Сегодня, научный подход! Мы с вами изучим как устроены наши глаза. Выясним какое разрешение и сколько мегапикселей в них. Устройство камеры Итак, прежде всего, устройство глаза очень похоже на цифровую камеру. Давайте освежим нашу память. Как устроена камера в нашем смартфоне? Любая камера состоит из двух основных частей это: матрица и система линз. Матрица состоит из пикселей. Чем больше матрица и пикселей в ней, тем качественнее получаются наши фотографии. Линзы в свою очередь фокусируют свет и направляют его матрицу. Всю полученную информацию процессор смартфона преобразует в изображение. Устройство глаза Теперь посмотрим на устройство глаза. Вот смотрите, в глазу есть такой элемент под названием сетчатка. Это матрица наших глаз. На фотографии она подкрашена серым цветом. Аналог линзы называется хрусталик. Хрусталик может изменять свою форму за счет специальных мышц. Благодаря чему мы можем фокусироваться на разных объектах. Им мы улавливаем свет и проецируем его на нашу сетчатку. Но сейчас нас больше интересует матрица, то есть сетчатка. Получается, раз у нас есть матрица, то и пиксели должны быть? Сейчас всё объясню! Посмотрите на эту фотографию, это палочки rods и колбочки cones. Они находятся на сетчатке глаза и выполняют роль пикселей. Называются так по своей форме, по английски чуть более понятно: Rods, Cones — Стержни и Конусы. То есть, у нас в глазу два типа пикселей. Почему так? Их фишка в том, что они реагируют на яркость, не воспринимая цвет. Простыми словами, работают как ночное зрение. Зато они очень чувствительны: Для их активизации требуется совсем немного внешнего света. Чувствительность палочки достаточна, чтобы зарегистрировать попадание даже 2-3 фотонов, частиц света. Наши глаза в темноте прекрасно могут определять малейшее движение, силуэты. Палочки, это пиксели которые не видят цветов и нужны нам в основном ночью. Теперь второй тип пикселей. Вот колбочки отвечают за цветное изображение. Взглянем на нашу фотографию ещё раз, колбочки имеют в своём составе определённые пигменты, получается 3 типа цветных «пикселей»: красный, синий и зелёный. Колбочек в здоровом глазу находится порядка 7 миллионов штук и это почти в 17 раз меньше, чем палочек! Более того, палочки и колбочки распределены не равномерно по нашей сетчатке, об этом чуть позже. Теперь мы имеем представление что такое палочки и колбочки. Выходит, если сложить палочки и колбочку, получается около 127 миллионов рецепторов. Значит, в человеческом глазу 127 Мегапикселей, так? Не совсем. Вернее даже, совсем не так. Давайте, копнём ещё глубже и посмотрим как они работают между собой. Есть еще один важный аспект. Пиксели как в камере, так и в глазу, не работают по отдельности. Они собраны в группы. В камерах эта технология называется биннинг пикселей. Обычно пиксели объединяются в группы по 4 или 9 штук. Получается один большой пиксель. Такой финт ушами нужен, чтобы постараться уловить больше света и максимально избавиться от шумов в фотографии.
Сколько кадров в секунду (FPS) может видеть человеческий глаз
Каково разрешение человеческого глаза в мегапикселях: отвечаем на интересные вопросы. Пределы человеческого зрения (сколько кадров в секунду видит человеческий глаз). Сколько FPS видит человеческий глаз? Глаз человека видит изображение, как и все остальное не по кадрово, а это значит, что чем больше кадров будет. Некоторые эксперты скажут вам, что человеческий глаз может видеть от 30 до 60 кадров в секунду. Отвечая на вопрос о том, сколько fps видит человеческий глаз, можно смело назвать цифру 100.