Благодаря чудесам искусственного интеллекта медицинские работники получают доступ к беспрецедентным сведениям, основанным на миллиардах точек данных. Искусственный интеллект в медицине: преображение здравоохранения в XXI веке. Альманах содержит ряд статей о применении технологий искусственного интеллекта (ИИ) в здравоохранении, в частности, в медицинской диагностике и мониторинге хронических заболеваний. Всемирная организация здравоохранения (ВОЗ) призывает в вопросах медицины относиться к «познаниям» созданных искусственным интеллектом больших языковых моделей «с осторожностью».
Тайны искусственного интеллекта и сhatGPT в медицине
Технологии искусственного интеллекта (ИИ) всё шире проникают в различные сферы жизни, меняя и ускоряя привычные процессы. Нормативное регулирование искусственного интеллекта в медицине. Внедрение искусственного интеллекта (ИИ) в систему мирового здравоохранения во многом обязано американским IT-гигантам, которые с начала XXI в. инвестировали в эту сферу миллиарды. Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. Специалисты с помощью искусственного интеллекта поставили свыше 8 миллионов диагнозов.
Олия Артемова
DNN также способны диагностировать отдельные виды рака , переломы, кровоизлияния, ретинопатию, поражения кожи и множество других заболеваний. Алгоритмы могут улучшить работу дерматологов, кардиологов, офтальмологов и даже психотерапевтов, позволяя отслеживать развитие депрессии. Примеры применения ИИ в здравоохранении на протяжении жизни человека Проблема состоит в том, что большинство исследований и отчетов все еще существуют только в виде препринта. Они не опубликованы и не проверены рецензентами. В препринтах проверка работоспособности алгоритмов осуществляется с точки зрения точности, что еще не равно клинической эффективности. Эффективность подтверждается с помощью недешевых клинических испытаний. Нейронные сети для пациентов Алгоритмы, которые пациенты могут использовать самостоятельно, развиваются медленнее, чем те, которые используют клиницисты. Датчики на часах определяют частоту сердечных сокращений пользователя в состоянии покоя и при физической нагрузке, и когда происходит сильное отклонение от ожидаемого, пользователю выдается предупреждение о записи ЭКГ через часы, результаты которого затем интерпретирует алгоритм. Некоторые приложения для смартфонов используют нейронные сети для мониторинга и контроля приема лекарств, например AiCure заставляет пациента делать селфи-видео во время проглатывания предписанной таблетки. AiCure контролирует прием лекарства Алгоритмы, основанные на том, как повышаются или понижаются значения глюкозы, используются пациентами с диабетом.
Зачем врачам нейросети Правительство оценит готовность внедрения искусственного интеллекта во всех регионах России Пандемия COVID-19 серьезно ускорила технологический прогресс в медицине по всему миру. В результате сфера здравоохранения стала лидером по внедрению инноваций, в основном на базе искусственного интеллекта. Заместитель главы федерального минздрава Павел Пугачев отметил, что на данный момент зарегистрированы Росздравнадзором и уже применяются в больницах более 20 медицинских изделий на основе нейросетей. Кроме того, по оценкам ВОЗ, к 2030 году во всем мире ожидается дефицит порядка 10 миллионов медработников. Спрос на высококвалифицированных специалистов растет уже сейчас. Все это говорит о необходимости освободить врачей от рутины, заполнения бумаг и медкарт пациентов. Обработка речи человека, интеллектуальная поддержка принятия решений и другие технологии на базе ИИ помогут медикам уделять больше времени на диагностику сложных случаев и повысить эффективность лечения больных.
Эти технологии включают в себя решения для электронных медицинских карт, маммографии и анализа рентген-снимков грудной клетки. Пугачев также отметил, что Росздравнадзор зарегистрировал 24 медицинских изделия, использующих ИИ, из которых 17 разработаны отечественными компаниями, а 7 — иностранными. Эти технологии, в основном помогают врачам в анализе медицинских данных, включая изображения и цифровые медицинские записи.
Это произошло в 40-х годах XX века. В это же время Н. Винер создал свои основополагающие работы по кибернетике. Ляпунова начал свою работу семинар «Автоматы и мышление». В этом семинаре принимали участие крупнейшие физиологи, лингвисты, психологи, математики. Считается, что именно в это время родился искусственный интеллект в России.
Искусственный интеллект в медицине: преображение здравоохранения в XXI веке
Новый федеральный проект «Цифровые сервисы здравоохранения», в рамках которого предусмотрено внедрение искусственного интеллекта (ИИ) в медицину, станет частью стратегии развития этой сферы. Всемирная организация здравоохранения (ВОЗ) выпустила новую публикацию, в которой излагаются основные принципы регулирования технологий искусственного интеллекта (ИИ) в здравоохранении. Мы активно развиваем искусственный интеллект в медицине. Новый федеральный проект «Цифровые сервисы здравоохранения», в рамках которого предусмотрено внедрение искусственного интеллекта (ИИ) в медицину, станет частью стратегии развития этой сферы. ИИ невероятно полезен для повышения эффективности обработки информации и принятия решений.
Будущее здравоохранения с искусственным интеллектом
Визуальная диагностика Искусственный интеллект. Исследователи из Огайо создадут «виртуальное» контрастное вещество на основе ИИ. 2022 год для искусственного интеллекта (ИИ) в российской медицине ознаменовался двумя знаковыми событиями. Президентом РФ было поручено уделить особое внимание внедрению искусственного интеллекта в медицине. В 2024 году влияние технологий искусственного интеллекта (ИИ) на здравоохранение будет более глубоким и масштабным, чем когда-либо прежде. Ещё один не менее важный результат – активное развитие технического регулирования систем искусственного интеллекта для клинической медицины.
Эксперт объяснил провал искусственного интеллекта в медицине
Да и занимает такое описание меньше времени, а значит больному результаты исследований придут быстрее. На расшифровку снимков у «машины» есть шесть минут, но на деле она справляется всего за две. Игорь Шулькин, заместитель директора по перспективному развитию Центра диагностики и телемедицины: «Компьютерная томография головного мозга: искусственный интеллект четко оконтурил выявленное кровоизлияние и померил объем. Другой пример: компьютерная томография грудной клетки, где комплексный сервис, обрабатывающий исследования сразу на восемь патологий и наличие жидкости в полости, обнаружил аневризму грудного отдела аорты». По словам Шулькина, многие страны разрабатывают искусственный интеллект или пытаются его применять в том числе в здравоохранении, но в таком масштабе и по такому количеству направлений, как в Москве, технологии искусственного интеллекта в здравоохранении в мире нигде не используют. С этого года в столичных клиниках использование искусственного интеллекта при исследованиях по ОМС стало обязательным. Касается это маммографии. Юрий Васильев, директор Центра диагностики и телемедицины: «Наша научная составляющая — это понимание того, как работает система ИИ.
Два года назад было непонятно: что-то он выявляет или что-то он не выявляет. И на этом все. На сегодняшний день мы смотрим на ИИ с разных сторон. Абсолютно постоянно изучаю то, что может он делать, то, где он может принести для нас пользу или эффект». Базу для технологического прогресса в области медицины создают московские ученые.
Потребность в повышенной защите данных. При внедрении ИИ в медицине возникают риски безопасности, связанные с возможными хакерскими атаками, компрометацией данных и нарушением врачебной тайны. Поэтому сегодняшние технологические решения должны отвечать самым строгим требованиям конфиденциальности и обеспечивать полную безопасность подобных данных.
Так, ИИ в медицине не может считаться самостоятельной диагностической системой. Технология призвана помочь специалисту поставить более точный диагноз, сформировать индивидуальный план лечения, подобрать наиболее эффективные и безопасные препараты и т. При этом надо помнить, что это право неразрывно связано с ответственностью — врачи, начиная трудовую деятельность, приносят клятву Гиппократа, обязуясь руководствоваться определенными моральными и этическими принципами в своей деятельности. Сегодня на разработчиков ИИ возлагается не меньшая ответственность. При всех достоинствах и достижениях ИИ в медицине, транспорте, производстве и других сферах мы не можем игнорировать потенциальные риски, связанные с его использованием. Поэтому, чтобы достичь лучшего результата завтра, мы должны уже сегодня создать аналог "клятвы Гиппократа" в сфере ИИ, договорившись о базовых этических принципах развития и использования этой технологии. Государственным комитетом Российской Федерации по печати. Отдельные публикации могут содержать информацию, не предназначенную для пользователей до 16 лет.
На информационном ресурсе применяются.
В их число вошли Botkin. Качество работы подтверждает статистика. Например, заммэра Москвы по вопросам социального развития Анастасия Ракова сообщила , что за два года сервисы ИИ обработали более 6 млн лучевых снимков. По ее словам, технологии помогли быстрее описать снимки и заметили мельчайшие отклонения.
ИИ хорошо показал себя в медицине, поэтому ученые уже пишут алгоритм, по которому можно будет обнаружить ранние проявления болезни Альцгеймера по результатам МРТ. Еще одним направлением, где применяется искусственный интеллект, стала область семантического анализа. ИИ анализирует и систематизирует данные, содержащиеся в электронной медицинской карте пациента. Ее заполняют сразу несколько врачей: кардиолог, невролог, терапевт и другие. Алгоритм собирает анамнезы воедино, и так специалист может обнаружить определенные паттерны. Метод, при котором медкарта заполнена разными специалистами, а данные собраны воедино, позволяет оптимизировать постановку точного диагноза.
Настоящей технологией будущего можно считать роботов-хирургов — это решение на стыке роботизации и ИИ. Успешный проект в этом направлении представил резидент «Сколково» — компания «Экзоскелет». Специалисты разрабатывают роботы-экзоскелеты, которые помогают людям после тяжелых травм заново учиться ходить. Однако говорить об использовании роботов-хирургов пока рано. Причина кроется в большом количестве алгоритмических частей, с помощью которых можно создать конечный продукт. При этом они могут быть не связаны напрямую с медицинскими показателями.
К примеру, автопилот распознает препятствия на дороге, но не имеет доступа к управлению машиной. Польза для каждого Применение ИИ выгодно как для врача, так и для пациента — то есть, для всей системы здравоохранения в целом.
Сюда может относиться как изучение реальных кейсов, советов коллег по цеху, репутации разработчика, так и непосредственная работа с продуктов в тестовом режиме. Специалисты «МеркуриМед» проводили полноценное тестирование технологии, прежде чем допустить ИИ к работе с реальными ситуациями. На первом этапе врачи проверяли выборочно «сложные случаи» в которых были сомнения. Однако весьма скоро они поняли что ИИ «реально работает», несмотря на все предубеждения». Александр Тюрнин Спустя несколько недель в «МеркуриМед» стали использовать систему на всем потоке и производить мониторинг результатов Отношение врачей к искусственному интеллекту Во времена бурного развития искусственного интеллекта главным вопросом является возможность технологии заменить человека на рабочем месте, стать более эффективной, точной и экономичной версией работника. В какой-то момент и правда, представители множества профессий напряглись, что их место могут занять «компьютеры». Но врачи в этом списке точно в самом конце.
Правительство обяжет компании внедрять ИИ при получении субсидий ИИ, особенно в сфере здравоохранения, не является совершенной технологией, способной полностью заменить специалиста. Даже отдельные направления, такие как рентгенография, на сегодняшний день невозможно переложить на технологию и вряд ли это получится сделать в обозримом будущем. Искусственный интеллект, скорее, помощник, готовый взять на себя рутинные задачи и обработку больших массивов информации. Есть, например, случаи, в которых опыт специалисты гораздо важнее, чем сравнение миллионов изображений.
Искусственный интеллект в медицине: применение и перспективы
С помощью этих данных искусственный интеллект помог подготовить алгоритм прогнозирования гипотонии. Алгоритм повторно проверяли на втором наборе данных других 204 пациентов. Исследователи считают, что алгоритм можно использовать во время операций, чтобы снизить вероятность возникновения осложнений. Распознавание рака кожи Искусственный интеллект в здравоохранении показывает впечатляющие результаты и в решении задачи раннего распознавания рака кожи. Эксперимент провели в 2018 году ученые из США, Франции и Германии, которые обучили нейросети идентифицировать изображения для диагностики онкозаболеваний кожных покровов. Машине предоставили более 100 тысяч снимков безвредных родинок и опасных для жизни меланом, а позднее показали эти же фотографии профессиональным дерматологам, которые попытались выявить рак по снимкам. Машина справилась с задачей лучше специалистов. ИИ в УЗИ-обследовании беременных Уже сегодня в некоторых британских больницах применяют новый способ тестирования плода на патологии, которые сложно или невозможно выявить другими средствами. Система работает на основе искусственного интеллекта, и в нее заложено более 350 тысяч снимков плодов с теми или иными отклонениями. Система называется ScanNav и она способна давать врачу много полезной информации о патологиях плода, опираясь на имеющиеся в базе данные по другим пациенткам.
Пока ScanNav работает в тестовом режиме и используется только в акушерстве, но в будущем она может получить намного более широкое распространение и будет особенно полезна для стран, испытывающих острый дефицит во врачах. Применение и польза искусственного интеллекта в медицине Разработка ИИ сегодня является приоритетной задачей для многих стран мира. Если рассматривать внедрение умных систем в медицинской сфере, то в первую очередь их польза будет состоять в увеличении точности диагностики различных заболеваний. Практики и опыта врача может быть недостаточно для того, чтобы своевременно выявить ту или иную проблему в организме человека, тогда как нейронная сеть, обладающая доступом к огромному объему данных, передовой научной литературе и миллионам историй болезней, сможет быстро классифицировать любой случай, соотнести его со схожими проблемами у других пациентов и предложить план лечения. Сегодня искусственный интеллект не может решать сложные медицинские задачи: он самостоятельно не придумает и не спроектирует прибор из будущего, который сможет за пару секунд отсканировать организм человека, выявить любые проблемы и назначить оптимальное лечение. Однако и нынешние возможности очень интересны для врачей, пациентов и клиник. Врачам Сегодня искусственный интеллект отлично справляется с простыми задачами. Например, он способен выявить наличие инородного тела или патологии по рентгеновскому снимку, а также определить наличие раковых клеток в цитологическом материале. Интересно еще и то, что сейчас разрабатывается все большее количество проектов, ориентированных именно на врачей: 1 IBM: Watson Это суперкомпьютер, способный отвечать на вопросы, которые задаются не на языке программирования, а на простом человеческом языке.
Позднее было запущено подразделение Watson Health, главное направление которого — использование суперкомпьютера в медицине. Компьютеру обеспечили доступ к огромному количеству данных: энциклопедиям, базам научных статей, а также медицинским картам и снимкам. Машина проанализировала свыше 50 миллионов анонимных медкарт и более 30 миллиардов снимков. Вся эта информация использовалась для дальнейшего применения в онкологии, для поиска на УЗИ признаков порока сердца. IBM запустило облачную платформу Watson Health Cloud, благодаря которой технологии доступны для врачей и исследователей по всему миру. ИИ используют для анализа анонимных глазных снимков и выявления первичных симптомов слепоты. Новый проект от израильских разработчиков призван помочь правильно диагностировать инсульт — система сравнивает снимок мозга пациента со снимками сотен тысяч других людей для выявления и подтверждения отклонений. Пациентам Системы ИИ в медицине разрабатываются не только для врачей, но и для их пациентов. Многие современные разработки позволяют людям самостоятельно отслеживать свое состояние здоровья, следить за динамикой пульса, давления, дыхания и прочих показателей.
Причем необходимо не просто собирать данные, но и анализировать и интерпретировать их.
В целом за прошлый год субъекты Федерации приобрели 106 медицинских изделий решений с ИИ. На закупку таких решений было направлено 368,8 млн рублей из федерального бюджета и 79,5 млн рублей — из региональных.
В 2024 году в практическом здравоохранении каждого региона должны работать по три решения на базе искусственного интеллекта. Директор по акселерации фонда «Сколково» Юлия Щеглова представила доклад, посвященный мерам поддержки стартапов, разрабатывающих ИИ-решения в здравоохранении. Так, участниками конференции стали несколько компаний-разработчиков, получивших грантовую поддержку в рамках программ фонда.
Важной темой дискуссий стали расхождения в результатах работы над аналогичными задачами врачей и ИИ, их выявление и корректировка, а также недостаток в публичном поле исследований эффективности тех или иных ИИ-решений.
ИИ-мониторинг" стал первым в России сервисом видеоаналитики для медучреждений Финалист конкурса 2020 года в номинации "Меняющие реальность" Первое регистрационное удостоверение для модуля анализа рентгенологических исследований Лидер Эксперимента по использованию инновационных технологий В области компьютерного зрения для анализа изображений и дальнейшего применения в системе здравоохранения города Москвы по направлению КТ COVID-19 Сервисы "Третье Мнение" победили в акселераторе «Будущее здравоохранения» Медтех-центра Москвы и «МЕДСИ» Победитель акселератора медицинских стартапов Future Healthcare Партнеры.
Даже если у врача на руках находится вся необходимая информация, он не всегда может правильно ее интерпретировать и заметить каждую деталь. От этого могут зависеть жизни пациентов. Google Deepmind Health анализирует симптомы и предлагает несколько диагнозов. Результаты поиска основаны на миллионах страниц научной информации, которые содержат даже самые малоизвестные заболевания. Сервис MedClueRx анализирует симптомы и не просто диагностирует болезнь, но и выбирает максимально безопасные и эффективные препараты в зависимости от особенностей пациента.
Диагностика Системы с искусственным интеллектом позволяют распознавать заболевания даже на ранней стадии. Например, сервисы Zebra Medical Vision и Arterys помогают врачам-диагностам сосредоточиться на общении с пациентами и избавиться от необходимости вглядываться в мельчайшие детали снимков легких и УЗИ сердца. Создание лекарств Разработка вакцины и последующие клинические исследования — это долгие и дорогостоящие процессы. ИИ может уменьшить время на разработку новых лекарств в несколько раз, анализируя молекулярные структуры существующих препаратов и предлагая новые согласно заданным требованиям. Например, в 2019 году компания Insilico Medicine таким образом создала несколько вариантов лекарств для лечения мышечного фиброза.
Для этой задачи алгоритмам понадобился 21 день, после чего ученые отобрали наиболее подходящие варианты препаратов и за 25 дней провели тест на лабораторных животных. Таким образом, понадобилось 46 дней для выбора подходящего лекарства.
Искусственный интеллект в медицине: применение и перспективы
Ожидается, что она позволит гражданам узнавать о состоянии здоровья по снимкам, в том числе и в домашних условиях. Ведутся также работы по созданию системы TeleMD, которая должна позволить онкологам связываться с коллегами для консультаций и своевременного выявления раковых клеток. Регулирование сферы на законодательном уровне Искусственный интеллект в медицине в России, как впрочем и в остальном мире, представляет собой абсолютно новое решение, требующее самого пристального внимания со стороны не только инвесторов, врачей и пациентов, но и законодателей. Пока данная сфера никак не регламентируется законодательством, а ведь в будущем ИИ может серьезно влиять на работу медицинских учреждений. При этом не стоит забывать, что стопроцентно точные и достоверные результаты машины показывают далеко не всегда: есть вероятность возникновения ошибок, поэтому так важно, чтобы была правовая база, в деталях регламентирующая особенности данной сферы. Работы в этом направлении уже ведутся. К примеру, в стране обсуждается возможность создания специального государственного агентства по робототехнике и введения поста профильного премьера, чтобы специалисты могли курировать сферу в целом. Проблемы внедрения ИИ в здравоохранении: за и против Искусственный интеллект и интернет вещей в здравоохранении — очень перспективные области, внедрение и развитие которых имеет преимущества и недостатки.
Повышение эффективности диагностики ИИ работает на основе огромных объемов данных, благодаря чему существенно увеличивается точность и эффективность постановки диагнозов. Чтобы изучить несколько миллионов медицинских карт, специалисту нужны годы, а компьютер справляется с этим за короткое время. Сокращение рутинных задач врачей Искусственный интеллект может взять на себя все задачи, которые отвлекают медицинский персонал от основной работы — спасения человеческого здоровья и жизни. Программы могут подбирать палаты, искать доступное оборудование, следить за исправностью медтехники и т. Уменьшение количества врачебных ошибок ИИ уже сегодня часто показывает более высокую точность при постановке диагнозов и выполнении других работ, чем врач. Если же доктор и ИИ будут работать вместе, то вероятность ошибок сводится практически к уровню статистической погрешности. Инвестиции в ИИ в медицине сегодня чрезвычайно важны — они дают возможность развивать сферу, а в перспективе и полностью изменить весь облик здравоохранения в мире, сделать его более надежным, эффективным, комфортным и безопасным для человека.
Однако в настоящее время не все идет гладко. У внедрения систем искусственного интеллекта в медицинскую сферу есть проблемы и недостатки, о которых нельзя забывать. Можно выделить несколько препятствий для ИИ в медицине. Проблемы используемых медицинских данных Для обучения ИИ используются уже имеющиеся медицинские карты пациентов, информация в которых может быть неполной, содержать всевозможные неточности и ошибки. Кроме того, в документах нет такой важной информации о больных, как особенности и условия их жизни, их привычки в том числе вредные и т. И сегодня отсутствуют эффективные механизмы сбора этих данных. Естественно, если использовать для обучения машин информацию, заведомо содержащую неточности и даже ошибки, качество работы систем будет снижаться.
Непрозрачный алгоритм принятия решений Системы искусственного интеллекта работают по принципу «черного ящика»: оператор не может посмотреть, почему программа приняла именно такое решение, а не какое-то другое. Практически невозможно определить, по каким причинам ИИ неверно решил задачу. Стоимость Создание и внедрение систем искусственного интеллекта требует серьезного финансирования. Высокая стоимость связана во многом с необходимостью обучать программу, настраивать ее под данные, накопленные в конкретном медицинском учреждении. Кроме того, она требует специального обслуживания, для которого потребуется квалифицированная и мотивированная команда. Безопасность Чтобы ИИ работал качественно и быстро, ему требуются серьезные вычислительные мощности, которых может просто не быть в обычном медучреждении. Если же вынести компьютерную сеть за пределы одного учреждения, существенно увеличивается вероятность вмешательства в ее работу злоумышленников и хакеров.
Это может быть, например, подсистема ведения интегрированной электронной медицинской карты или централизованный сервис информирования о взаимодействии лекарственных средств. А в следующем году региональные медцентры обяжут отчитаться об использовании не менее трех программных решений на основе ИИ, одобренных Росздравнадзором. Минздрав полагает, что искусственный интеллект поможет повысить качество и доступность медицинской помощи.
Так, в 2022 году в рамках эксперимента, который проводился в Москве, умные программы помогли врачам первичного звена поставить 9 млн верных диагнозов. Post Views: 1 227 согласие с обработкой персональных данных и политикой конфиденциальности Новости.
AI, предназначенной для выявления патологий на компьютерных томографиях при помощи ИИ. Ведомство считает, что разработка, созданная на инвестиции от «Росатома», Минпромторга, «Р-Фарм» и «Ташира», может нанести вред здоровью пациентов. Согласно оценкам Минздрава, планируется, что в текущем году каждый регион приобретет как минимум одно медицинское устройство с использованием искусственного интеллекта. К 2024 году этот показатель планируется увеличить до не менее трех медицинских изделий с применением технологий ИИ. Пока к работе ИИ есть вопросы, к робокошкам их нет.
Поэтому за каждым алгоритмом ML пока что всегда будет стоять врач. ИИ позволяет вместо проведения ресурсоёмких опытов по взаимодействию молекул для получения необходимых свойств соединения использовать генеративные и рекомендательные модели. За счёт этого сокращается время и затраты на подбор идеальной рецептуры лекарства. Например, компании применяют технологии ИИ на стадии поиска и разработки ключевой молекулы drug discovery. С помощью собственной ИИ-платформы фармпроизводитель определил два препарата для лечения фиброза. Один из них уже находится на первой стадии клинических исследований. В целом, по данным Альянса в сфере ИИ, время от обнаружения лекарства до проведения испытаний сокращается с 6 лет до 1 года.
Тайны искусственного интеллекта и сhatGPT в медицине
Искусственный интеллект (ИИ) — это чудо современной технологии, которое уже не просто фантастика из фильмов, но и реальность, влияющая на множество сфер нашей жизни от смартфонов и голосовых помощников до систем автоматизации в производстве и медицине. Применение искусственного интеллекта (ИИ) в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний. Напомним, цифровизация здравоохранения происходит благодаря нацпроекту «Здравоохранение», который реализуется по решению президента. Благодаря чудесам искусственного интеллекта медицинские работники получают доступ к беспрецедентным сведениям, основанным на миллиардах точек данных. Искусственный интеллект в медицине: применение, технологии, вызовы, нормативное обеспечение и регулирование, программы практического внедрения.
Решения СберМедИИ вошли в ТОП-10 медицинских нейросетей (ИИ) в России в 2024 году
Влияние Искусственного интеллекта в области медицины увеличивается с каждым годом. Специалисты с помощью искусственного интеллекта поставили свыше 8 миллионов диагнозов. Кто-то встречает эпоху искусственного интеллекта (ИИ) в медицине с восторгом, кто-то – с опасением. Новый федеральный проект «Цифровые сервисы здравоохранения», в рамках которого предусмотрено внедрение искусственного интеллекта (ИИ) в медицину, станет частью стратегии развития этой сферы.
Искусственный интеллект в медицине
Что касается повсеместного использования «умных» устройств, которыми пользуется каждый второй, то отнести их к технологиям ИИ нельзя. Гаджеты не анализируют информацию и не могут поставить предположительный диагноз. Устройства могут считывать пульс, сердцебиение, уровень кислорода, то есть предоставлять данные об одном или нескольких параметрах, но не могут конкретно указать, в чем проблема. Крупные бренды, выпускающие «умные» устройства, всегда советуют обращаться к врачу, если показатели изменились в худшую сторону. Понятно, что нельзя просто прийти к врачу и показать часы, которые, например, сообщили о плохой динамике сердцебиения. Пациенту в любом случае назначат комплексное обследование, прежде чем делать выводы о возможной патологии.
Контроль на законодательном уровне Фонд «Сколково» принял участие в разработке норм регулирования применения ИИ в медицине и оказал экспертную поддержку — софт, необходимый для врачебной практики, может попасть в систему здравоохранения только после обязательной регистрации. Это означает, что перед этим он пройдет ряд проверок и испытаний. В рамках системы контроля также установлены определенные классы риска ПО, присвоение которых зависит от данных и решений, принимающихся ИИ. Самый низкий класс — это учетные медицинские системы, которые никак не влияют на пациента. Максимально высокий класс — это ПО, от которого зависит жизнь человека.
Например, есть софт, который отправляет сигналы на имплантированный кардиостимулятор. Зарегистрировать такое ПО можно по истечению нескольких лет клинических исследований. Впервые регистрация продукта на основе ИИ произошла летом 2020 года. Уже в 2021 года пять наших резидентов получили регистрационные удостоверения Росздравнадзора. Этот момент можно считать отправной точкой, когда регистрация софта вошла в практику.
Таким образом, применение искусственного интеллекта в медицине стало ведущим трендом здравоохранения. Технологии упрощают жизнь как врачу, так и пациенту, выполняя задачи быстрее и точнее, снижая количество ошибок и предоставляя удобную клиническую аналитику.
Участник дискуссии, доктор медицинских наук, профессор Владислав Шафалинов считает, что в ситуации с применением ИИ в существующей системе здравоохранения первичным должен быть вопрос безопасности , а уже потом — эффективности. Важно, чтобы его использование не навредило пациентам. Несмотря на то, что ИИ сегодня является технологией будущего для здравоохранения и персонализированной медицине, важно правильно оценивать риски его применения и разделять зоны ответственности. Сможет ли ИИ давать рекомендации относительно таких сложных тем, как например, проведение эвтаназии, во многом это будет зависеть и от корректно прописанных алгоритмов нейросетей. Если у компьютера появится возможность исполнения рекомендаций, тогда мы все окажется в огромной опасности, поэтому важнейшими являются вопросы этических и моральных устоев разработчиков, — рассуждает Ян Власов.
В этом случае пациент получит заключение специалиста в течение суток. С помощью применения искусственного интеллекта рассчитываем ускорить описание исследований и повысить точность диагностики.
В случае успеха ИИ-технологии оставят работать автономно на постоянной основе.
Благодаря им врачи отрабатывают хирургические операции в виртуальной среде перед проведением их непосредственно на пациентах. Используя AR-гарнитуры, хирурги накладывают цифровые изображения на тело пациента, что позволяет им в режиме реального времени следить за состоянием критических структур — кровеносных сосудов или опухолей. Эта технология значительно повышает точность и снижает риск осложнений во время операции. Медицинские школы и институты используют AR-приложения для преподавания анатомии, позволяя студентам взаимодействовать с 3D-моделями человеческого тела. Столь практический подход улучшает понимание и запоминание сложных медицинских концепций. В то же время VR — мощный инструмент для снятия негатива во время разного рода процедур. Пациенты погружаются в успокаивающую VR-среду, отвлекаясь от боли и дискомфорта при обработке ран или физиотерапии. VR также используется при лечении фобий, посттравматических стрессовых расстройств ПТСР и тревожности. Пациенты безопасно противостоят страхам в контролируемой виртуальной среде, что делает терапию более эффективной.
Интернет медицинских вещей IoMT Интернет медицинских вещей — один из главных технологических трендов в здравоохранении в 2023 году. IoMT — это сеть подключенных медицинских приборов, которые интегрированы с облачными вычислительными системами.