Человечество потеряло монополию на интеллект — мысль, в которой многие могут усомниться. Будущее искусственного интеллекта Искусственный интеллект перестал быть научной фантастикой и уже сейчас основательно входит в нашу жизнь. Будущее искусственного интеллекта Искусственный интеллект перестал быть научной фантастикой и уже сейчас основательно входит в нашу жизнь. Конец года — время подводить итоги. Редакция проекта «Мир 2051» подготовила для вас целую серию видео про технологические достижения, впечатлившие нас в 2023.
«Сократят 300 млн человек по всему миру»: людей каких профессий совсем скоро могут заменить роботы
Кроме того, через 30 лет к управлению политикой, экономикой, бизнесом, социальной сферой придет цифровое поколение, которое привыкло получать информацию из цифровых каналов. Если человечеству удастся выработать до приемлемого уровня правила игры, которые бы минимизировали риски, связанные с искусственным интеллектом, то у каждого из нас может появиться цифровой индивидуальный помощник, без которого, как сейчас без телефона, мы не сможем обойтись. При этом будет знать и учитывать ваш характер, особенности и интересы. Экспертное сообщество и бизнес должны придумать прикладную схему, как внедрить технологии в обычную жизнь. Философам нужно осмыслить совместное существование человека и ИИ. Система образования должна перестроиться так, чтобы учить детей востребованным знаниям и навыкам, а также чтобы дать человеку возможность учиться всю жизнь. Государство должно заняться обеспечением безопасности и защитой населения от рисков, связанных с ИИ.
Другой элемент адаптации — общественная дискуссия возможностей и последствий использования искусственного интеллекта. Важно вести живой диалог. С этого, я думаю, все и начнется. Причем не только в профессиональных сообществах, но и в широких массах. Наверное, будут сферы, где технологии ИИ будут запрещены или использоваться по минимуму. Но основную часть общества можно будет подготовить.
Риски ИИ — Какие риски сопровождают искусственный интеллект? И то и другое можно применять и в мирных целях, и в военных. Все понимают, что ядерная бомба — разрушительная вещь. Искусственный интеллект может быть тоже разрушительным. Во-первых, генеративный ИИ может создавать различные дипфейки и другой контент, где практически невозможно отличить правду от лжи. Во-вторых, ИИ может негативно повлиять на систему образования — сделать ее поверхностной, если будет сразу предлагать готовые ответы.
Сейчас в каких-то школах запрещено приносить калькуляторы на уроки, чтобы дети научились самостоятельно выполнять математические действия. И это правильно. Важно учить фундаментальные основы для понимания того, как устроены различные вещи. Если что-то выйдет из строя, например тот же калькулятор, мы должны суметь сами справиться с задачей. В-третьих, искусственный интеллект может генерировать данные с ошибками, а человек принимать эту информацию за истину.
Некоторые делают это публично, другие в закрытых презентациях, и последний из каналов позволяет нам узнать, что Microsoft к концу текущего года хочет утроить количество эксплуатируемых ускорителей до 1,8 млн штук. Источник изображения: Microsoft О наличии таких планов у Microsoft со ссылкой на служебную документацию корпорации сообщил на прошлой неделе ресурс Business Insider. В документе сообщается, что Microsoft рассчитывает увеличить закупки ускорителей вычислений на основе GPU в три раза по сравнению с прошлым годом, и к декабрю располагать примерно 1,8 млн соответствующих ускорителей, преимущественно поставленных компанией Nvidia. В отдельном документе ранее сообщалось, что уже во второй половине прошлого года Microsoft достигла рекордного количества эксплуатируемых ускорителей на базе GPU, хотя точное значение и не называлось. Близкие к Microsoft источники смогли подтвердить Business Insider, что эта сумма близка к реальной.
Поскольку в планы компании входит утроение закупок ускорителей, и продукцией только Nvidia она ограничиваться не собирается, легко предположить, что затраты текущего года будут измеряться в десятках миллиардов долларов США. Получается, что Microsoft замахивается на количество ускорителей, измеряемое как минимум одним миллионом штук. По его словам, компания пытается значительную часть вычислений поручить локальным компонентам пользовательских устройств. Источник изображения: Unsplash, Gilles Lambert Другими словами, если речь идёт о смартфонах марки, то некий нейронный процессор внутри iPhone должен будет осуществлять локальные вычисления при обработке запросов, в меньшей степени полагаясь на обмен информацией с облачной инфраструктурой. Такой подход позволит ускорить отклик системы на поступающие запросы, а для пользователя это станет видимым преимуществом. Кроме того, локальная обработка чувствительной информации повысит степень информационной защищённости. При этом, как утверждает представитель Bloomberg , компания Apple не отметает окончательно идею использования сторонних больших языковых моделей, которые предлагаются Google или Microsoft. Собственную языковую модель Apple тоже разрабатывает, но ориентирует её именно на использование локальных вычислительных ресурсов. Подробности об этой концепции Apple могут быть оглашены уже в середине июня на конференции для разработчиков WWDC 2024, как поясняет источник. Представители ответчика утверждают, что Маск передёргивает факты и строит свои обвинения на несуществующих юридически положениях.
Источник изображения: OpenAI По словам представителей OpenAI, на которые ссылается Bloomberg , упрёки Илона Маска в отказе организации от своих альтруистических принципов базируются на ложных утверждениях, являются ни чем иным, как «историческим ревизионизмом», и направлены на продвижение собственного конкурирующего стартапа. Иск Илона Маска к OpenAI был подан в марте, и одним из пунктов обвинения было вступление стартапа в партнёрство с Microsoft. Представители ответчика сообщают, что несколько лет назад сам Маск покинул OpenAI после неудачной попытки установить в организации своё доминирование, но после запуска собственной компании в сфере искусственного интеллекта пытается использовать успех OpenAI в собственных коммерческих интересах. В документах, определяющих сферу и принципы деятельности OpenAI, как утверждают юристы, нет положений, запрещающих ей монетизировать собственные технологии, а потому упрёки Илона Маска в нарушении принципов некоммерческого распространения ПО не являются состоятельными. Свидетельство о регистрации организации, на которое ссылается Маск, не содержит обязательств по непременному распространению открытого кода своих разработок для всеобщего блага. Формулировка подразумевает, что руководство OpenAI в ходе обсуждения должно определять, какую часть ПО сделать открытой, а какую нет. Илону Маску, по мнению стороны ответчика, также не удастся доказать, что OpenAI не имеет права лицензировать свою технологию сторонним компаниям а именно Microsoft , а также предоставлять им наблюдательное место в совете директоров. Впрочем, промежуточный исход спора двух субъектов может стать понятен уже в середине этой недели, когда состоится судебное заседание. Данный шаг объясняется необходимостью сокращения затрат на фоне ужесточения конкуренции на рынке ИИ со стороны таких компаний, как OpenAI и Mistral. Сотрудники, которых уже коснулось сокращение, в основном занимались операционной деятельностью и были уведомлены о своих увольнениях, сообщил источник ресурсу CNBC на условиях анонимности.
Его уход последовал за публикациями СМИ, ставящими под сомнение полномочия гендиректора. В июне 2023 года Forbes сообщил, что Мостак ввёл в заблуждение общественность, в том числе инвесторов, относительно получения степени магистра в Оксфордском университете, а также о характере партнёрства с Amazon. Stability AI охарактеризовала сделку с Amazon как стратегическую, хотя она представляла собой не что иное, как стандартный договор аренды облачной инфраструктуры. Кто из них вышел из схватки победителем, не уточняется, но испытания уже назвали прорывом в средствах ведения воздушного боя. Vista X-62A. Концепция мозаичной войны предполагает слаженные пилотируемые, полуавтоматические и автоматические действия управляемых пилотами и беспилотных воздушных боевых платформ.
Например, компания «К-Скай» разрабатывает платформу прогнозной аналитики Webiomed, которая позволяет оценить факторы риска и вероятность развития 40 самых распространенных заболеваний, включая сердечно-сосудистые и сахарный диабет. Сразу несколько крупных научных центров разрабатывают технологии создания цифровых двойников. Например, ученые Сеченовского университета планируют к 2025 году завершить разработку прототипов для лечения онкологии и кардиологических заболеваний. Компания «Таргетта» разработала образовательную VR-платформу для отработки практических навыков специалистов по рентгенографии.
Платформа Syntelly, разработанная учеными Сколтеха и НТУ «Сириус», позволяет в разы сократить сроки разработки медицинских препаратов. Например, группа компаний ЦРТ разработала решение Voice2Med для голосового заполнения медицинских протоколов. Эта разработка была отмечена премией правительства РФ и сегодня используется уже в 60 регионах страны. Большой Брат следит... Однако 2023 год оказался особенным: начались массовые поставки систем автопилотирования тракторов на основе искусственного интеллекта в российские агрохозяйства. Более 100 машин вышли в апреле на поля 15 российских регионов, разработчиком стала компания Cognitive Pilot, «дочка» Сбера и Cognitive Technologies. Умная система управления тракторами объединяет возможности компьютерного зрения и спутниковой навигации и может в автономном режиме выполнять практически все основные операции: обработку почвы, культивацию, сев, опрыскивание, внесение удобрений, уборку трав, уход за пропашными культурами и многое другое. Причем не только днем, но и ночью Наибольшую популярность в России завоевали технологии «точного земледелия», основанные на применении беспилотников, космических спутников и анализе больших массивов данных. Искусственный интеллект помогает мониторить состояние почв, поддерживать в них необходимое содержание микроэлементов, оперативно и точечно решать проблемы с болезнями растений и распространением вредителей. Анализируя свежие снимки и многолетние данные, такие системы помогают выявить риски и спланировать оптимальный севооборот.
К ним относятся облачный сервис «История поля» от компании «Геомир» его использует уже более двух тысяч агрохозяйств , приложение «СкайСкаут» от компании «ИнтТерра» разработчики обещают сократить расходы на 30 процентов за счет правильной расстановки приоритетов и оптимизации процессов , система «Агротроник» от ГК «Ростсельмаш» и многие другие. Например, на птицефабрике в Татарстане всеми процессами сбора и движения яиц с 2020 года управляет искусственный интеллект на базе программного решение Amaks. Искусственный интеллект и нейросети позволяют примерно в десять раз ускорить селекционную работу. Например, буквально накануне выхода данной публикации генетики из ИППИ РАН, Сколтеха и МФТИ сообщили о разработке алгоритма, который упростит предсказание функций генов у сельскохозяйственных растений, создавать новые сорта с необходимыми характеристиками с его помощью станет намного проще и быстрее. ИИ строит станки и машины Машиностроение — одна из ключевых отраслей промышленности, здесь особенно важно тщательно контролировать и синхронизировать все производственные процессы. При создании станков и агрегатов приходится учитывать множество параметров — от рыночной конъюнктуры и перспектив развития предприятий-потребителей до качества сырья и отдельных компонентов. Искусственный интеллект позволяет автоматизировать огромную часть рутинной, но необходимой работы.
С развитием искусственного интеллекта и машинного обучения произошел значительный прогресс в технологиях, включающих использование микрочипов, известных как ASIC интегральные схемы специального назначения. Потенциальное влияние этого прогресса можно увидеть во многих отраслях, включая розничную торговлю, производство и энергетику. Эти интеллектуальные и экономичные устройства имеют широкий спектр применения: от здравоохранения и безопасности до технического обслуживания и контроля качества. Ожидается, что они улучшат процесс принятия решений на производственных объектах, предприятиях розничной торговли и складах, повысив производительность и эффективность. Более точная диагностика здоровья кредиты: pixabay Достижения технологий и искусственного интеллекта открывают новую эру более точной диагностики здоровья. Благодаря интеграции передовых алгоритмов искусственного интеллекта и методов машинного обучения специалисты здравоохранения теперь могут предлагать пациентам более точные и надежные диагностические оценки. Одно из ключевых преимуществ этих технологические инновации Это способность быстро и эффективно анализировать огромные объемы данных о пациентах. Сюда входят данные медицинской визуализации, генетического профиля, электронных медицинских карт и носимых устройств. Диагностические инструменты на основе искусственного интеллекта могут анализировать это огромное количество информации, чтобы выявить закономерности, аномалии и потенциальные риски для здоровья, которые специалистам-практикам может быть сложно обнаружить. Более того, эти достижения могут сделать здравоохранение более персонализированным. Принимая во внимание уникальную генетическую структуру человека, историю болезни и стиль жизни факторов, диагностика на основе искусственного интеллекта может адаптировать рекомендации и планы лечения к конкретным потребностям каждого пациента. Такой персонализированный подход повышает точность диагностики и общее качество оказания медицинской помощи. Лучшее прогнозирование спроса и автоматизация рабочих процессов в розничной торговле В розничной торговле происходит революция благодаря технологиям на базе искусственного интеллекта, которые меняют способы прогнозирования тенденций и прогнозирования спроса. Эти достижения помогают ритейлерам оптимизировать свою планирование запасов , что приводит к увеличению потенциального дохода. Такое сокращение логистических затрат приводит к повышению рентабельности. Это не только приводит к экономии средств, но и высвобождает ценные человеческие ресурсы для решения более стратегических задач. Это сводит к минимуму возникновение нехватки товаров на складе, что может привести к потере продаж и недовольству клиентов. Это приводит к повышению удовлетворенности и лояльности клиентов. Ожидается, что в 2023 году ИИ продолжит играть заметную роль в секторе розничной торговли, а его приложения расширятся за пределы управления запасами, цепочками поставок и логистикой. Вот некоторые области, где ИИ может оказать существенное влияние: Автоматизация кассового аппарата: Кассовые системы на базе искусственного интеллекта, такие как магазины без касс, станут более распространенными, что сократит время ожидания и улучшит общее впечатление от покупок. Персонализация опыта магазина: Алгоритмы искусственного интеллекта будут анализировать данные клиентов, чтобы предоставлять персонализированные рекомендации по продуктам, предложениям и впечатлениям в магазинах, повышая вовлеченность клиентов и продажи. Оформление витрин: Решения на основе искусственного интеллекта оптимизируют планировку магазинов и размещение продуктов на основе данных в реальном времени, повышая видимость продуктов и продажи. Предотвращение потерь: Системы наблюдения на базе искусственного интеллекта помогут ритейлерам более эффективно выявлять и предотвращать кражи и мошенничества. Поддержка клиентов: чат-боты с искусственным интеллектом и виртуальные помощники обеспечит мгновенную поддержку клиентов, улучшив время отклика и качество обслуживания.
Около 16% екатеринбуржцев не представляют свою жизнь без искусственного интеллекта
Речь идет о переходе от клиентоцентричной к человекоцентричной модели, когда приоритетами для государства и бизнеса становятся интересы конкретного человека. И здесь важно понимать, что при дальнейшем развитии ИИ всё большее значение приобретают вопросы этики искусственного интеллекта. За два года к Кодексу этики искусственного интеллекта присоединилось порядка 330 организаций, в том числе 23 зарубежные и около 60 российских органов исполнительной власти. Четвертый тренд - стремление научных исследователей в различных технологических областях использовать всё более мощные большие языковые модели и генеративный ИИ. По экспертным оценкам, в ближайшие 10 лет такие технологии добавят около 7 трлн долларов к мировому ВВП. В идеале, обратил внимание Дмитрий Чернышенко, каждый специалист должен использовать ИИ как своего помощника для прокачки своих возможностей и навыков. И пятый тренд - рост экономического эффекта от использования ИИ. По экспертным оценкам, к 2030 году в мировой экономике он превысит 15 трлн долларов. Принципиально важной стала смена парадигмы в том, что касается внедрения ИИ. В ее рамках была обновлена национальная Стратегия.
Серьезное внимание уделяется научным исследованиям в области ИИ.
С этого, я думаю, все и начнется. Причем не только в профессиональных сообществах, но и в широких массах. Наверное, будут сферы, где технологии ИИ будут запрещены или использоваться по минимуму. Но основную часть общества можно будет подготовить. Риски ИИ — Какие риски сопровождают искусственный интеллект? И то и другое можно применять и в мирных целях, и в военных. Все понимают, что ядерная бомба — разрушительная вещь.
Искусственный интеллект может быть тоже разрушительным. Во-первых, генеративный ИИ может создавать различные дипфейки и другой контент, где практически невозможно отличить правду от лжи. Во-вторых, ИИ может негативно повлиять на систему образования — сделать ее поверхностной, если будет сразу предлагать готовые ответы. Сейчас в каких-то школах запрещено приносить калькуляторы на уроки, чтобы дети научились самостоятельно выполнять математические действия. И это правильно. Важно учить фундаментальные основы для понимания того, как устроены различные вещи. Если что-то выйдет из строя, например тот же калькулятор, мы должны суметь сами справиться с задачей. В-третьих, искусственный интеллект может генерировать данные с ошибками, а человек принимать эту информацию за истину.
Конечно, это проблема не самого ИИ, а данных, на которых его обучают. Если они изначально содержат какие-либо заблуждения, то и программа будет генерировать контент с различными искажениями. Чтобы решить эту проблему, стоит помечать данные, созданные искусственным интеллектом. ИИ на рынке труда — Как искусственный интеллект повлияет на рынок труда? Это уже серьезным образом влияет на работу маркетологов, дизайнеров, переводчиков, сотрудников call-центров. Все, что связано с обслуживанием клиентов, уже трансформируется под воздействием технологий ИИ. В будущем этот тренд будет только усиливаться. Они смогут объяснить, почему программа пришла к определенному решению, как именно происходил процесс генерации или предсказания, почему был получен именно такой результат.
Вот это точно будет востребовано.
В процессе исследования ученые КФУ будут изучать поведение человека, анализируя разнообразные продукты его виртуальной активности, в первую очередь авторские тексты, которые пользователи размещают на различных онлайн-платформах LiveJournal, «ВКонтакте», «Дзен» и др. По словам заведующего кафедрой информационных систем ИВМиИТ Фаиля Гафарова и заведующего кафедрой высшей математики и математического моделирования ИМиМ Александра Агафонова, на помощь психологам придут инструменты, связанные с методами искусственного интеллекта, — машинное обучение, искусственные нейронные сети, когнитивные архитектуры, большие языковые модели.
С их помощью исполнители проекта хотят попробовать «разобрать» поведение человека, чтобы понять, из чего же оно состоит и что на него может оказывать влияние. В итоге ученые КФУ планируют существенно расширить исследовательские возможности современной психологии и разработать цифровые модели, которые имитировали бы содержание поведенческих действий человека, позволяя проводить разнообразные экспериментальные исследования как особенностей поведения человека, так и стимулов, которые их вызывают.
Искусственный интеллект в сочетании с робототехникой в первую очередь заменит профессии, которые связаны с риском для жизни, тяжелыми и опасными условиями труда: шахтеров, водителей самосвалов и другие. Кроме того, исчезнут или сильно изменятся профессии, где много рутины. Например, секретарей и даже программистов. ИИ не заменит ученых.
У них появятся новые инструменты со встроенным искусственным интеллектом, которые ускорят процессы и этапы исследования, например сбор и обработку данных, проверку гипотез и даже их генерацию с помощью нейросетей. А самой профессии ученых ничего не грозит, потому что они создают нечто принципиально новое, чего раньше вообще не существовало. Такую работу искусственный интеллект заменить не сможет. Небольшим изменениям подвергнутся и руководители высшего звена в компаниях, которые занимаются вопросами стратегического целеполагания. Я надеюсь, что искусственный интеллект не заменит профессию учителя. Я считаю, что людей должны учить и воспитывать люди.
Но хотя, безусловно, ИИ будет большим помощником. Нужно будет уметь перестраиваться и учиться всю жизнь. Как раньше — освоить в университете одну специальность, всю жизнь по ней работать и уйти на пенсию — больше не получится. Исполнительские функции будут заменены искусственным интеллектом, а человек должен понимать и уметь объяснить, как что устроено и функционирует изнутри. В последние годы в образовании преобладает тенденция обучения прикладным навыкам, поэтому многие даже не могут обосновать, почему что-то нужно делать так, а не иначе. В будущем, я надеюсь, в высших учебных заведениях будут учить думать глубоко.
Курс «Профессия Аналитик данных» — обучение аналитике данных с нуля Машинное творчество и проблема авторских прав — Какие области искусства и культуры наиболее сильно трансформируются под влиянием генеративных нейросетей? Как это повлияет на творческие процессы? Появятся новые традиции и даже новые виды искусства, появился же киберспорт. Оборотная сторона медали тут тоже возможна: начиная от авторских прав и заканчивая потерей неповторимой индивидуальности, присущей большим художникам, — можно сделать сколько угодно копий их произведений, отредактировать их, попросить нейросеть сгенерировать, например, изображение в стиле художника и т. Если считать нейросеть инструментом, то права и ответственность за результат, который она создала, лежит на человеке, который написал промпт, или запрос. Пользователь в случае генерации контента, который, например, нарушает закон или этические нормы, может обратиться с претензией к разработчикам, которые либо создали нейросеть, либо приобрели ее и дообучили.
Как будут обстоять дела с этим в будущем? Как это сейчас делают, например, банки.
Как использовать ИИ в онлайн-обучении в 2024 году
Технологиям искусственного интеллекта (ИИ) чаще доверяет молодежь 18-24 лет, люди с высшим образованием, материально обеспеченные и более осведомленные россияне. Искусственный интеллект (ИИ) — одна из самых перспективных областей в науке и технологиях. — Учебная дисциплина об искусственном интеллекте существует давно, ещё до основания СФУ. «Механизмы искусственного интеллекта обеспечивают в режиме реального времени быстрое принятие оптимальных решений на основе анализа гигантских объёмов информации, так называемых больших данных, что даёт колоссальные преимущества в качестве и.
Его превосходительство ИИ: в каких направлениях искусственного интеллекта РФ опережает Запад
Искусственный интеллект уже способен генерировать тексты, изображения, видео и аудиозаписи, что открывает новые возможности для творчества, но также создает угрозу злоупотребления. Оно оценивает состояние рынка искусственного интеллекта в России и мире, потенциальный экономический эффект от внедрения технологии и выделяет ключевые тренды и области применения ИИ. Генеративный ИИ — тип системы искусственного интеллекта, способной создавать текст, изображения и другой контент на основе данных, на которых выполнено обучение. Роль искусственного интеллекта в цифровой трансформации современной россии. Искусственный интеллект уже способен генерировать тексты, изображения, видео и аудиозаписи, что открывает новые возможности для творчества, но также создает угрозу злоупотребления. Обучили нейросеть на данных открытых источников, в основном это новости СМИ и публикации открытых Telegram-каналов, посвященные теме искусственного интеллекта, за 2022 год.
Будущее искусственного интеллекта: перспективы и выгоды
За 5 лет число патентов в области искусственного интеллекта в распоряжении компании выросло в 139 раз — с 46 до 6410. И это не просто патенты, а реальные технологии, применяемые в бизнесе компании. Например, среди инструментов искусственного интеллекта, недавно разработанных компанией, есть программное обеспечение для анализа микровыражений лица — моргания глаз, непроизвольных подергиваний губами и так далее, — которое Ping An использует для оценки страховых требований, которые страхователи отправляют в компанию с помощью видео. Но больше всех из китайских компаний к полномасштабной конкуренции с ChatGPT готовы в Baidu — крупнейшем поисковике в Китае и аналогу Google. В ближайшие месяцы Baidu запустит собственного чат-бота «Эрни» , который будет интегрирован в поисковик по аналогии с ChatGPT, встроенным в поисковик Bing от Microsoft. Модель искусственного интеллекта, лежащая в основе бота, разрабатывалась с 2019 года, а ее новейшее поколение обучено 260 млрд параметров, что сопоставимо с GPT3 — технологией, лежащей в основе ChatGPT. Что в итоге Искусственный интеллект и нейросети — действительно «разрушающие» технологии, которые могут создать новый рынок и разрушить старые.
С другой стороны, пока искусственный интеллект не вносит ощутимого вклада в бизнес Tencent, Baidu или Microsoft. Поэтому с точки зрения инвестиций я бы придерживался уроков времен золотой лихорадки, во время которой больше всего заработали продавцы лопат. Новости, которые касаются инвесторов, — в нашем телеграм-канале. Подписывайтесь, чтобы быть в курсе происходящего: investnique.
Речь идет не только о способности понимать изображения на картинке хотя до недавнего времени ИИ не умел и этого , применение этой технологии намного шире: Дополненная реальность Беспилотные аппараты, в том числе машины Системы видеонаблюдения, в том числе камеры фиксации нарушений Системы распознавания лиц В последних трех направлениях российские разработки действительно получили хорошее развитие, а сейчас и находят применение на практике как, например, работающая система распознавания лиц в Москве. Среди наиболее известных российских компаний, трудящихся в этой сфере, в РФ последние годы выделяют: NTechLab — создатели популярного сервиса Findface, наработки по которой легли в системы безопасности для силовых ведомств. Vision Labs, разрабатывающая системы распознавания лиц и иные решения для крупных банков «Центр речевых технологий» — компания, разработавшая ряд решений для телеком-компаний, а также создавшая систему идентификации болельщиков на стадионах.
Обработка естественного языка Natural Language Processing Это особое направление математической лингвистики, которое работает над способностью искусственного интеллекта как распознавать текст на практически человеческом уровне понимания, так и генерировать его. Она применяется в ряде весьма важных отраслей, с которыми человек сталкивается почти каждый день: Перевод текста с одного языка на другой Автоматическая генерация текстов Работа чат-ботов и роботов-собеседников Распознавание и синтез речи Здесь эксперты особенно выделяют работу компании «Яндекс», уже давно обогнавшей таких титанов, как Google и Microsoft по качеству машинного перевода с русского языка на английский и с английского на русский. И хотя экспертные оценки нередко расходятся, но многие мировые специалисты признают, что система-помощник «Алиса» действительно совершеннее многих западных аналогов. Кроме того, в «Сбере» во время конференции отметили работу российских специалистов над «Трехмодальной моделью распознавания речи», которая позволила бы машине обладать своего рода интуицией и дала бы возможность еще более гибко импровизировать во время общения с человеком. При этом разработка уже существует — она носит название FusionBrain, но пока что находится в процессе совершенствования.
В данной сфере ИИ и без того развивается сумасшедшими темпами, но теперь на него косвенно будет возложена социальная функция.
Молодые люди, которые не смогут найти работу или получить образование, будут вымещать своё недовольство перед экранами мониторов, телевизоров, мобильных устройств. То, что вчера было нарушением социального поведения, к 2030-му станет нормой. Развитие будет поддержано на самом высшем уровне, киберспорт заменит спорт физический, а системы онлайн-услуг и дешевые электронные устройства ещё больше отвлекут внимание людей от растущего кризиса. Социальная сфера С другой стороны, большее количество людей получит доступ к образовательным и информационным ресурсам, зависимость от местоположения и социального статуса будет снижена, что предоставит возможность большему количеству людей повысить свое благосостояние. Системы моделирования и прогнозирования выйдут на новый уровень; стихийные бедствия можно будет предвидеть еще раньше, социальную помощь оказывать адресно, городская инфраструктура будет развиваться эффективнее, статистические данные будут основываться на принципиально большей выборке. В 2030 для них всё ещё серьёзными проблемами будут преодоление физических препятствий вроде лестниц, бордюров и ям, взаимодействие с окружающим миром.
Поэтому не стоит ожидать, что через 15 лет к вам сможет приехать рободоставщик пиццы. С большой долей вероятности, зависимость людей от онлайн-услуг, будь то шоппинг, вызов такси или покупка билетов в кино, выйдет на такой уровень, что эти действия будут совершать только благодаря мобильному помощнику с голосовым управлением. А какие у вас ожидания от будущего с ИИ?
За счёт этого они могут быть запущены на относительно слабом «железе», иногда даже на домашнем компьютере. Сравнение возможностей опенсорсных и проприетарных LLM Инфографика: Майя Мальгина для Skillbox Media Опенсорсные модели, которые можно запустить локально на сервере или компьютере, снижают риски утечки данных и взлома инфраструктуры. Но возрастает опасность, что такие нейросети могут использоваться в противозаконной деятельности. Например, для воссоздания голоса и внешнего вида реальных людей с их использованием для получения доступа к банковским счетам или социальной инженерии. Стоит быть осторожным при внедрении опенсорсных разработок от малоизвестных коллективов, поскольку они могут быть обучены на неполных или предвзятых данных и иметь недокументированные проблемы в работе. Точность их работы будет низкой.
Читайте также: Коварный Open Source: какие опасности кроются в открытом и свободном ПО Основные тренды в развитии опенсорсных моделей Компании работают над опенсорсными моделями, схожими с аналогичными в проприетарными проектами: снижение числа галлюцинаций, увеличение длины контекста, повышение скорости и точности ответов, добавление мультимодальных возможностей и так далее. Разработчики ведут поиск архитектур, способных преодолеть недостатки популярных нейросетей типа «трансформер». На рынке существуют сотни открытых LLM, которые уже соревнуются между собой на виртуальных тестовых аренах, подобных Chatbot Arena Leaderboard от Hugging Face. Число опенсорсных проектов и их конкуренция продолжит расти. Стоимость внедрения и дообучения LLM снижается. Так, доработка и запуск нейросети Alpaca обошлись в 600 долларов. Один из механизмов снижения стоимости — использование «синтетических» данных, созданных ИИ. Французский стартап Mistral AI в первый год своего существования привлёк 385 миллионов евро инвестиций. Это может стать прецедентом финансирования опенсорсных моделей за счёт инвесторов.
Чего ждать в 2024 году Главное — появления ещё большего числа дешёвых и эффективных моделей с открытым исходным кодом от небольших стартапов и крупных компаний. Отрасль ИИ станет меньше зависеть от IT-гигантов. В новом году ждём от них самых навороченных нейронок. Опенсорсные модели займут нишу простых и доступных по стоимости решений. На их основе будут созданы персональные ИИ-ассистенты нового поколения, способные работать в смартфонах и других гаджетах. Мы ждём, что рост конкуренции в опенсорс-сообществе приведёт к появлению прорывных технологий, а не только к количественному усложнению моделей. Например, могут появиться новые способы обучения или архитектуры нейросетей, лишённые недостатков предшественников. Не стоит забывать про опасности Open Source. В отсутствие контроля хакеры и интернет-мошенники начнут использовать генеративный интеллект для противозаконных действий.
Например, для создания вирусов, взлома паролей или кражи денег с помощью социальной инженерии, создавая «двойников» людей для телефонных или даже видеозвонков. В 2023 году основной прорыв в массовом использовании нейронок с открытым кодом внесла LLaMA, на базе которой появились десятки моделей: Mistral, Zephyr , Alpaca, Phi-2 , Qwen, Yi и другие. В развити опенсорсных моделей просматриваются три тренда, которые усилятся в 2024 году: Желание пользователей устанавливать нейросети на свои устройства и использовать их без подключения к интернету и, соответственно, без оплаты услуг компаний. Раньше качества нейросетей, а также мощностей ноутбуков и смартфонов для этого не хватало, но теперь их достаточно. Поэтому происходит массовый отток пользователей от платных сервисов. Замена людей в процессе получения обратной связи при обучении ИИ-моделей. Это обучение с подкреплением от ИИ, а не от человека. Создание специализированных небольших моделей для медицины, науки, графовых моделей, а также нейросеток с архитектурой MoE. Появление изначально закрытых моделей GPT-3, ChatGPT создало новый рынок, а открытые модели позволили бизнесу использовать их практически без ограничений.
Обзор развития ИИ-технологий: как изменится экономика, образование и общество?
Искусственный интеллект становится неотъемлемой частью повседневной продуктивности для потребителей — 48,1% важно наличие ИИ-функций в смартфоне. Разбираемся, что такое искусственный интеллект, каковы принципы его работы и насколько мы близки к появлению полностью сознательных машин. Двенадцатиярусные стеки памяти поднимают быстродействие в задачах искусственного интеллекта на 34 % в среднем по сравнению с 8-ярусными. Среди тех, кто интересуется технологиями искусственного интеллекта и готов платить за них, 44,4% регулярно используют нейросети для решения задач.
Искусственный интеллект
Наталья Соколова, управляющий партнер Brand Analytics: «Применение ML-технологий для обработки естественного языка — одно из ключевых направлений в развитии индустрии аналитики соцмедиа, лидером которой является Brand Analytics. Мы хорошо понимаем, что участникам рынка важно не только отслеживать новости в области ИИ, но и иметь перед глазами навигатор компаний и решений в этой важнейшей для нашего с вами будущего отрасли. Представленный билайном совместно с Brand Analytics рейтинг ИИ претендует как раз на место такого навигатора. Проект получился интересным. Рейтинг одновременно учитывает и медийную активность игроков, и внимание к теме и компаниям со стороны СМИ, и «народное» обсуждение в социальных медиа, в данном случае — в Telegram-каналах.
Смотреть на ситуацию с трех сторон кажется очень перспективным подходом. И главное.
Крупный поставщик открытых онлайн-курсов в США Coursera использует ИИ для предложения персонализированных рекомендаций курсов учащимся на основе анализа их предпочтений, предыдущих курсов и успехов. Китайская образовательная компания Squirrel AI использует алгоритмы машинного обучения для создания уникальных обучающих планов для каждого ученика, учитывая его индивидуальные потребности и способности. Американская компания Knewton разработала платформу, использующую адаптивные алгоритмы машинного обучения для персонализации учебного контента и методов обучения. Английская компания Century Tech предлагает платформу, основанную на ИИ, для индивидуального обучения, анализа прогресса и формирования персонализированных рекомендаций. Американская Cognii разработала ИИ-платформу для проверки эссе и предоставления обратной связи студентам, что упрощает процесс проверки больших объемов работ. Что может ИИ в онлайн-образовании Как выглядел упрощенный процесс создания онлайн-курса до появления ИИ: Методист составлял учебную программу так, чтобы ученики получили достаточный объем знаний для освоения профессии или точечного навыка. Продюсер искал релевантных спикеров для курса.
Спикеры записывали обучающие ролики со съемочной командой. Копирайтеры или авторы-редакторы писали текст к курсу на основе контента от спикера. Дизайнеры отрисовывали картинки, графики и прочее. Когда курс выпускался, к ученикам прикрепляли службу поддержки учащихся — людей, которые проверяли домашние задания, давали обратную связь и поддерживали учеников на всем пути обучения. Получался долгий и дорогой процесс, который влиял и на конечную стоимость курса, и порой на качество обучения: онлайн-школы могли записать курс в спешке и дать себе обещание внести правки позже. А внесли эти правки потом или нет, кто проверит. Если вы спросите меня, какой из этих шагов может полностью забрать на себя ИИ, то я отвечу, что все. Методиста может заменить GPT — нейросеть напишет программу и сам контент для любого курса за секунды. Видео с виртуальным спикером может сделать нейросеть наподобие HeyGen — можно создать как несуществующего спикера, так и загрузить примеры видео с реальным человеком и воссоздать его голос и движения.
Картинки нарисует Midjourney. А виртуальный ассистент в формате чат-бота на основе GPT в любом привычном мессенджере проверит домашние работы, поставит оценки и узнает, все ли ок у ученика с прохождением курса и общим состоянием. И даже даст рекомендации по улучшению его образовательного опыта. Так скорость и стоимость создания онлайн-курса или целой программы снижается в десятки раз, а качество обучения только растет. ИИ может забрать на себя и другие процессы, которые происходят вне курса — создание маркетингового плана и креативов для продажи курса, подсчет рынка онлайн-образования и анализ результативности обучения. Преимущества генеративных сетей перед учителями Персонализация В мире нет двух одинаковых учеников, все мы разные. И ни один, даже самый хороший учитель, не может уделять каждому ученику то внимание, которое ему нужно.
Где они чаще всего были на поле, как долго владели мячом, какую ногу чаще использовали, какова скорость бега и ускорения. Сейчас тренеры получают десятки различных статистических данных об игре сразу после матча. Это позволяет выявить сильные стороны своей команды и слабые стороны противника.
Это могут быть как большие игроки, например Google или Amazon, так и фирмы, о которых мало кто слышал. Например, одними из самых популярных и успешных компаний, что занимают лидирующие позиции в области изучения ИИ, являются неизвестные большинству организации: BotsCrew, InData Labs, nexocode. Две другие ориентированы на бизнес. Они создают ИИ, который анализирует данные фирмы, проводит статистический анализ и выдает подробные отчеты в зависимости от требований заказчика. Но мы перечислим крупных игроков, от исследований которых в нашей жизни может что-то сильно измениться. Microsoft В 2020 году Microsoft объявила о строительстве нового суперкомпьютера, размещенного в Azure, сети облачных вычислений Microsoft. А его конечной целью является создание больших моделей ИИ и соответствующей инфраструктуры для других организаций и разработчиков. Не так давно Microsoft запустила Microsoft Designer, приложение для графического дизайна, использующее технологию искусственного интеллекта для создания уникальных постов в социальных сетях, приглашений и другой графики. Alphabet Материнская компания Google и YouTube, использует искусственный интеллект и автоматизацию практически во всех аспектах своего бизнеса — от ценообразования на рекламу до продвижения контента и спам-фильтров Gmail. У Alphabet также есть дочерние компании.
Например, DeepMind, которая занимается разработкой программного обеспечения для искусственного интеллекта, а также Waymo — компания по производству автономных транспортных средств. Последняя вошла в историю, запустив в 2020 году первую полностью беспилотную коммерческую службу такси на дорогах общего пользования. Amazon Компания интегрировала искусственный интеллект во все аспекты своего бизнеса, включая таргетированную рекламу, алгоритмы поиска электронной коммерции и Amazon Web Services. Amazon Alexa — один из самых популярных виртуальных ассистентов, который уже обслуживает многие американские семьи. Amazon также предлагает своим облачным клиентам AWS широкий спектр услуг искусственного интеллекта, включая расширенную текстовую аналитику, автоматические проверки кода и чат-боты. Nvidia Производитель высокопроизводительных чипов обеспечивает огромную вычислительную мощность, необходимую для запуска сложных приложений ИИ. На самом деле, один из самых быстрых суперкомпьютеров в мире, Leonardo, оснащен графическими процессорами Nvidia. Многие крупные организации, не имеющие своего суперкомпьютера, используют суперкомпьютеры, построенные с помощью чипов Nvidia и оснащенные сетевой системой Nvidia Quantum InfiniBand. Intuitive Surgical Продает хирургическую систему da Vinci Surgical System, которая использует передовую робототехнику и компьютеризированную технологию визуализации для выполнения минимально инвазивных операций. Intuitive работает над интеграцией больших данных и искусственного интеллекта для создания таких инструментов, как руководство в реальном времени для хирургов и расширенное обучение.
IBM Компания уже давно не занимает лидирующие позиции на компьютерном рынке, но все еще способна производить научные исследования и двигать развитие ИИ вперед. IBM остается лидером на рынке технологий искусственного интеллекта, а ее продукты AutoML и AutoAI могут помочь специалистам по данным создавать и обучать модели искусственного интеллекта и машинного обучения. Перспектива разработки ИИ в России В России тоже есть свои «неизвестные» герои, фирмы, о которых знают только в крупных организациях, задумывающихся о развитии бизнеса. Например, Ctrl2GO — один из крупнейших поставщиков решений для анализа данных в России, который специализируется на разработке и внедрении цифровых продуктов в промышленности. Или «Группа компаний ЦРТ», отвечающая за синтез речи, распознавание речи, идентификацию и верификацию личности по голосу и лицу, анализ медиаданных, шумоочистку. В оптимизации контакт-центров может помочь VS Robotics. Развитие ИИ в России зависит от инвестиций, в том числе со стороны государства.
Считаю, мы справились». Наталья Соколова, управляющий партнер Brand Analytics: «Применение ML-технологий для обработки естественного языка — одно из ключевых направлений в развитии индустрии аналитики соцмедиа, лидером которой является Brand Analytics. Мы хорошо понимаем, что участникам рынка важно не только отслеживать новости в области ИИ, но и иметь перед глазами навигатор компаний и решений в этой важнейшей для нашего с вами будущего отрасли. Представленный билайном совместно с Brand Analytics рейтинг ИИ претендует как раз на место такого навигатора. Проект получился интересным. Рейтинг одновременно учитывает и медийную активность игроков, и внимание к теме и компаниям со стороны СМИ, и «народное» обсуждение в социальных медиа, в данном случае — в Telegram-каналах. Смотреть на ситуацию с трех сторон кажется очень перспективным подходом.