В 2023 году астрономы смогли услышать низкий гул гравитационных волн, пересекающих космос, нашли новые спутники Юпитера, древнейшую черную дыру, а также поставили под сомнение основы космологии. Канал о российской космонавтике, науке и l subjects: cosmonautics, science and technologies. Почему до Марса надо колонизировать Луну, что происходит с телом в космосе и кто лидеры космических технологий сегодня. Все самые свежие космические разработки, новости астрономии и космонавтики.
#космонавтика
Ответы : что такое космонавтика? | Вспомнили историю космонавтики, песни о космосе, названия созвездий и планет, и еще много всего интересного! |
30 интересных фактов о космонавтике | Новый этап освоения ближнего космоса – первые аппараты «Рассвет-1» запущены в космос и уже доказали свою работоспособность. |
Первая в мире космическая система для наблюдения арктического региона создана в России
Фактически, тень Луны, охватывающая 27. Альфа-звезда созвездия Льва, Регул, представляет собой остроконечную звезду в центре этого телескопического поля 26. Прошлой зимой экипаж китайской космической 26. В центре эмиссионной туманности NGC 6164 находится необычайно массивная звезда. Центральную звезду сравнивают с жемчужиной устрицы и яйцом, охраняемым 24. Новая экспериментальная миссия НАСА готова выйти на орбиту, используя 24.
С 8 апреля по13 апреля 2024 года в нашей школе проходили мероприятия, посвященные Дню космонавтики. Это так красиво! В рекреации на 2 этаже был показ видеороликов связанные с данной темой. В школьной библиотеке для ребят начальной школы прошли познавательно- развлекательные классные часы "Все о космосе" подготовленные Коротковой Т.
А и Никифоровой М.
Теперь у нас есть возможность вести полноценный мониторинг Северного морского пути — важнейшей транспортной артерии. В новых условиях она приобретает особое значение для грузоперевозок. В ближайших планах запустить на орбиту еще четыре таких спутника.
В доке их можно было бы пополнять. Фотоархив журнала «Огонек» kommersant.
Сейчас сложность исследовательских спутников и межпланетных станций ограничивается грузоподъемностью и габаритами ракет-носителей. А также тем, что космический аппарат должен безупречно работать сразу после стрессовых условий ракетного старта. При снижении стоимости выведения и наличии орбитальной сборочной верфи многие ограничения на конструкцию крупных космических аппаратов были бы сняты. Также перестали бы быть столь проблематичными вопросы пилотируемых полетов к другим планетам. В частности, удалось бы снять самую трудную проблему радиационной безопасности экипажа, поскольку масса радиационной защиты больше не была бы сдерживающим фактором. Исследовательская база в космосе Следующий шаг — создание космической базы для систематического сбора, доставки и изучения образцов с различных тел Солнечной системы. Нет необходимости при полете за каждым таким образцом сначала выбираться из гравитационно-атмосферного колодца Земли, а потом возвращаться в него.
Зонды с ионными двигателями могут стартовать прямо с космической станции и возвращаться на нее. На ней же может проводиться весь цикл исследований, за исключением самых экзотических. Что касается исследований, то, полагаю, основной упор должен быть сделан на медицину и биологию в условиях нулевой или пониженной гравитации. Также не исключено появление новых материалов, которые оправданно производить в условиях невесомости. Космический город И наконец, не будем забывать, что человеческие поселения существуют не только для того, чтобы что-то куда-то поставлять. В них еще просто живут люди, которые занимаются самыми разными делами. Вполне естественно, что по мере роста космической базы часть людей станет просто ее жителями.
Вероятно, поначалу жить там будет дорого и это смогут позволить себе лишь очень состоятельные люди. Но ведь их кто-то должен будет обслуживать. И цены этого обслуживания будут учитывать «орбитальную наценку». Так что все эти люди сформируют свой рынок. Наконец, пойдут исследования по оптимизации жизни на самой орбитальной станции. Скажем, может оказаться, что снабжать станцию кислородом выгоднее не с Земли, а с Луны — в составе реголита. И из него же можно добывать алюминий для собственных конструкционных нужд.
Короче, если численность населения станет достаточно большой, на станции не сразу, но постепенно запустится своя экономика, и проект начнет сам искать себе заработок — туризм, реклама, эксклюзивные апартаменты, обслуживание космической техники, эксперименты, съемки и развлечения в невесомости и в открытом космическом пространстве. В общем, нормальная человеческая жизнь. Только для ее запуска нужно, чтобы стоимость выведения на орбиту снизилась на порядок, а лучше на два. А вот что нужно для этого, пока еще до конца не ясно. Необходимо менять стратегию Владимир Сурдин: Рождение пилотируемой космонавтики в 1960-е было естественным этапом технического прогресса. В нем были заинтересованы все — инженеры, врачи, идеологи.
Космонавты РФ Кононенко и Чуб впервые в 2024 году вышли в открытый космос
У Юпитера их уже и так насчитывалось несколько десятков, а в начале февраля 2023 года астрономы признали , что у него есть еще 12 лун. Орбиты спутников Юпитера. Крупнейшие галилеевы спутники показаны фиолетовым, Группа Гималии — синим, а Карпо — голубым. Внешние ретроградные спутники выделены красным Таким образом, общее количество спутников Юпитера достигает 92. Однако по этому параметру он все еще уступает Сатурну , у которого 146 известных спутников. Все вновь обнаруженные тела имеют размер всего несколько километров и могут быть фрагментами более крупных спутников, которые разрушились во время столкновения. Девять из них ретроградные, что означает, что направление их вращения противоположно направлению вращения центральной планеты. Частица сверхвысокой энергии из ниоткуда В конце ноября 2023 года ученые зарегистрировали самую «энергичную» частицу космического излучения за последние десятилетия. Ей дали собственное название — Аматэрасу, в честь японской богини солнца. Художественная концепция атмосферного ливня, порожденного космической частицей чрезвычайно высокой энергии, который фиксируют детекторы обсерватории Telescope Array.
Это в миллион раз превышает лучшие рукотворные достижения, полученные на Большом адронном коллайдере. Только фотон Oh-My-God, открытый в 1991 году, был более мощным.
Действительно ли у SpaceX наконец появился хоть один серьезный конкурент или перед нами просто слишком амбициозный катафалк, который везет на кладбище Boeing и Lockhid Martin, стоящие за проектом Vulcan?
Ведь, вроде бы, ситуация симметричная: в системе отсчета летавшего он был неподвижен, а планета с неподвижным близнецом полетала и вернулась, и это у них должно было натикать меньше времени. Парадокс близнецов очень важен, так как это самый наглядный способ увидеть, что релятивистский эффект замедления времени не просто математический артефакт специальной теории относительности или иллюзия, а вполне реальное физическое явление. Вот визуализация на диаграмме.
Помоги мне разобраться! Я стал чуточку лучше понимать мир эмоций.
Вопрос: доукомплектоваться — это что-то нейтральное, положительное или отрицательное?
У вас отключен JavaScript.
Ежедневно обновляемая подборка важной, полезной и свежей информации из области космонавтики, астрономии и космоса со всего мира. Все потому что космос привлекает людей, как и все непонятное и неизведанное. Канал о российской космонавтике, науке и l subjects: cosmonautics, science and technologies. Международный статус День космонавтики получил в 1968 году на конференции Международной авиационной федерации. в космической сфере и поставки двигателей РД-180 или РД-181 в NASA, пуски российских ракет-носителей «Протон», «Союз» и «Ангара» с космодрома Байконур — последние новости и все самое важное об освоении космоса в теме «Ъ». Космона́втика — теория и практика навигации за пределами атмосферы Земли для исследования и освоения космического пространства при помощи автоматических.
Астрономия и космос
День космонавтики | Актуальные новости и материалы о космосе, а также информация о проектах России и других стран по его освоению. |
Космонавтика России и СССР | Машина времени для этого не понадобилась — архивная видеохроника перенесла нас в легендарные события советской космонавтики. |
Российские космонавты впервые в 2024 году вышли в открытый космос | Самые свежие новости об освоении космоса, космических программах и изучении Вселенной. |
День космонавтики 2024: какого числа, история и традиции праздника | Что такое метеориты и опасны ли они? |
У вас отключен JavaScript.
На сайте в рубрике «Космос» всегда свежие новости за день и неделю. В наше время всякому образованному человеку необходимо знать, что такое космос, и иметь представление о происходящих в космосе процессах. космонавтика. 1. совокупность отраслей науки и техники, обеспечивающих исследование и освоение космоса и внеземных объектов для нужд человечества с использованием космических аппаратов. в космической сфере и поставки двигателей РД-180 или РД-181 в NASA, пуски российских ракет-носителей «Протон», «Союз» и «Ангара» с космодрома Байконур — последние новости и все самое важное об освоении космоса в теме «Ъ». От редакции: День космонавтики — это праздник, который отмечается ежегодно 12 апреля, в день первого полета человека в космос.
Чем космос отличается от Вселенной: спорим, вы не знали
Новые спутники Юпитера В прошедшем году у крупнейшей планеты Солнечной системы стало больше известных спутников. У Юпитера их уже и так насчитывалось несколько десятков, а в начале февраля 2023 года астрономы признали , что у него есть еще 12 лун. Орбиты спутников Юпитера. Крупнейшие галилеевы спутники показаны фиолетовым, Группа Гималии — синим, а Карпо — голубым. Внешние ретроградные спутники выделены красным Таким образом, общее количество спутников Юпитера достигает 92. Однако по этому параметру он все еще уступает Сатурну , у которого 146 известных спутников. Все вновь обнаруженные тела имеют размер всего несколько километров и могут быть фрагментами более крупных спутников, которые разрушились во время столкновения. Девять из них ретроградные, что означает, что направление их вращения противоположно направлению вращения центральной планеты.
Частица сверхвысокой энергии из ниоткуда В конце ноября 2023 года ученые зарегистрировали самую «энергичную» частицу космического излучения за последние десятилетия. Ей дали собственное название — Аматэрасу, в честь японской богини солнца. Художественная концепция атмосферного ливня, порожденного космической частицей чрезвычайно высокой энергии, который фиксируют детекторы обсерватории Telescope Array. Это в миллион раз превышает лучшие рукотворные достижения, полученные на Большом адронном коллайдере.
Но несколько точных фактов об этих удивительных объектах всё же известно: Чёрная дыра, которую людям удалось сфотографировать, согласно оценкам экспертов, больше Земли в 3 миллиона раз. Из чёрной дыры не способен вырваться ни один объект, каких бы размеров он ни был. Даже свет чёрная дыра поглотит навсегда благодаря сверхмощной гравитации. Астрономические наблюдения доказали, что чёрные дыры не только пассивно ждут попадания в них звезды, планеты или другого объекта. Звёзды, оказавшиеся неподалеку от чёрных дыр, взрываются. Почему так происходит, учёные пока не выяснили. Чёрные дыры делятся на три вида: звёздные, промежуточные и сверхмассивные. Масса звёздных чёрных дыр может составлять 5 солнечных масс. А масса сверхмассивных чёрных дыр достигает несколько миллиардов солнечных масс. Космос — это неполный вакуум, где распространение звуков практически невозможно. Например, если бы человек попробовал закричать в космосе, его бы не было слышно. В 2003 году астрономы преподнесли удивительную новость: чёрные дыры производят звуки. Учёные выяснили, почему чёрные дыры не «немые» в отличие от большинства небесных тел: только они способны распространять настолько низкочастотные звуковые волны, что они слышны в неполном вакууме. Опираясь на теорию относительности, учёные допускают существование и «белых дыр», но этот факт пока никем не доказан. Для экспериментов в космической области люди используют сложные пилотируемые и автоматические аппараты, а космонавты проходят подготовку к таким перегрузкам, которые обычному человеку просто не выдержать. Но усилия себя оправдывают: благодаря исследованиям, космос становится всё понятнее для человека. А практические исследования — это факты, не подлежащие сомнению, и вот лишь некоторые из них: Первый человек, побывавший в открытом космосе — советский космонавт Алексей Леонов. Он доказал, что человек может находиться в космосе в свободном плавании и даже проводить эксперименты и наблюдения. О космической невесомости слышали все и видели кадры, где космонавты легко летают внутри космической станции. Но невесомость — это не только интересное явление. В условиях невесомости мышцы и кости становятся слабее из-за того, что их почти не нагружают. Чтобы не растерять здоровье, космонавты принимают витамины и занимаются спортом, например, используют специально обустроенную беговую дорожку. Ещё один интересный факт — в невесомости расстояние между позвонками становится больше, и рост человека увеличивается. Так, рекорд по вырастанию в космосе взрослого человека составил 10 см. Орбитальные телескопы Kepler и TESS запустили в космос для обнаружения и исследования экзопланет, на которых возможна жизнь. Начиная с 2009 года телескопы нашли тысячи предполагаемых экзопланет, а исследования показали, что примерно на двух сотнях из этих планет жизнь действительно возможна. Первая успешная посадка на другую планету состоялась в 1970 году: на поверхность Венеры спустили аппарат, собравший важные научные данные о планете.
Существенный вклад в теорию расчёта движения тел в космическом пространстве внесли также Эйлер и Лагранж. Романы Жюля Верна « С Земли на Луну » 1865 и « Вокруг Луны » 1869 уже правильно описывают полёт Земля — Луна с точки зрения небесной механики , хотя техническая реализация там явно хромает. Кибальчич , находясь в заключении, выдвинул идею ракетного летательного аппарата с качающейся камерой сгорания , способного совершать космические перелёты. Было теоретически обосновано использование ракет как основного средства для космических полётов , применение жидкостных ракетных двигателей как имеющих значительно больший удельный импульс , чем традиционные пороховые ракетные двигатели , необходимость многоступенчатых ракет.
Далее строится киностудия для съемок в невесомости. Понятно, что и сейчас в Голливуде умудряются создать впечатление невесомости в различных космических фильмах. Но для таких эффектов есть много ограничений, а сопутствующая компьютерная поддержка стоит дорого. Когда бюджеты фильмов исчисляются сотнями миллионов, может оказаться вполне оправданным за 20 млн отправить на орбиту съемочную команду с актерами. Не забываем о рекламном потенциале «города на орбите». Компании будут платить за размещение своих логотипов на станции, поставку на нее своих продуктов, съемку там своих рекламных роликов, отправку победителей промо-лотерей. Наверняка появятся и новые неожиданные идеи вроде недавнего предложения устраивать по заказу искусственные метеорные дожди над городами, сбрасывая с орбиты специальные капсулы. Ремонтный док в космосе Следующее естественное направление — ремонтный док для спутников. Сейчас большинство спутников строится в расчете на полную автономию. Это заставляет делать все системы сверхнадежными, а значит, дорогими. Ошибки выведения, как правило, делают спутники бесполезными. Страховки покрывают стоимость аппаратов, но не упущенную выгоду. Наконец, многие спутники за время эксплуатации устаревают морально. Пример телескопа «Хаббл» показывает, что обслуживание спутника может значительно продлить его активную жизнь. Буксир с ионным двигателем может приводить в док для обслуживания спутники, выведенные на нерасчетные орбиты, вышедшие из строя, нуждающиеся в модернизации или дозаправке. Кстати, работа многих комических обсерваторий ограничена запасами жидкого гелия на борту. В доке их можно было бы пополнять. Фотоархив журнала «Огонек» kommersant. Сейчас сложность исследовательских спутников и межпланетных станций ограничивается грузоподъемностью и габаритами ракет-носителей. А также тем, что космический аппарат должен безупречно работать сразу после стрессовых условий ракетного старта. При снижении стоимости выведения и наличии орбитальной сборочной верфи многие ограничения на конструкцию крупных космических аппаратов были бы сняты. Также перестали бы быть столь проблематичными вопросы пилотируемых полетов к другим планетам. В частности, удалось бы снять самую трудную проблему радиационной безопасности экипажа, поскольку масса радиационной защиты больше не была бы сдерживающим фактором. Исследовательская база в космосе Следующий шаг — создание космической базы для систематического сбора, доставки и изучения образцов с различных тел Солнечной системы. Нет необходимости при полете за каждым таким образцом сначала выбираться из гравитационно-атмосферного колодца Земли, а потом возвращаться в него. Зонды с ионными двигателями могут стартовать прямо с космической станции и возвращаться на нее. На ней же может проводиться весь цикл исследований, за исключением самых экзотических. Что касается исследований, то, полагаю, основной упор должен быть сделан на медицину и биологию в условиях нулевой или пониженной гравитации. Также не исключено появление новых материалов, которые оправданно производить в условиях невесомости.
Главные 12 космических побед СССР и России. От Спутника до Мира
Космос сегодня — SpaceX запустила ракету Falcon 9 с европейским спутником Galileo. Космос сегодня — SpaceX запустила ракету Falcon 9 с европейским спутником Galileo. День космонавтики отмечается в России 12 апреля. Космос: актуальные новости за сегодня, последние события, заявления, обсуждения. Объяснены загадочные вспышки в космосе. Ученые зафиксировали редчайший «четверной» мегавзрыв на Солнце. Прежде чем говорить о космонавтике, надо понять следующее: а каких трудов стоит развить эту скорость?
Астрономия и космос
Главная ракета — конкурент Starship отправилась в первый полет: чем закончатся «мягкие похороны» на Луне? На ее борту к Луне отправился частный посадочный модуль, который проведет там первые «мягкие похороны» людей в истории.
Десятилетие науки и технологий в России Российская наука стремительно развивается. Одна из задач Десятилетия — рассказать, какими научными именами и достижениями может гордиться наша страна. В течение всего Десятилетия при поддержке государства будут проходить просветительские мероприятия с участием ведущих деятелей науки, запускаться образовательные платформы, конкурсы для всех желающих и многое другое.
Воодушевленным первым удачным опытом конструкторам не терпелось отправить в космос живое существо. Кроме того, стоявший в то время у власти Никита Хрущев откровенно рассматривал освоение космического пространства как пропагандистскую гонку с американцами, подгоняя работы. Почетным героем стала собака по имени Лайка. Свой высокий полет дворняга совершила 3 ноября 1957 года, к 40-летию советской власти. Однако вернуть живность на Землю живой и невредимой в планах не было.
Главной задачей исследователей была проверка выживаемости живого существа в процессе космического полета. Планировалось, что собака проживет в космосе 7 дней. Однако кабина перегрелась уже спустя 6 часов, что привело к гибели животного, о чем советская власть не стала распространяться. Из эксперимента сделали вывод - принципиальная возможность нахождения живого существа на орбите доказана. Первый в мире запуск спутника в космос Хорошо известно, что Советский Союз первым запустил в космическое пространство спутник, живое существо и человека. Долгие годы исследовательской и конструкторской работы дали свои плоды в 1957 г. Шарообразный объект передал на Землю сигнал об успешном старте и находился на орбите 92 дня. Один оборот вокруг планеты составил 1 ч. На орбиту объект вывели при помощи ракеты Р-7.
Эта межконтинентальная баллистическая ракета была спроектирована под руководством Сергея Королева. Все последующие ракеты в Советском Союзе конструировали на основе силуэта Р-7. Первый спутник Земли провел на орбите три месяца, преодолев расстояние в 60 млн. Его запуск и пребывание за пределами Земли стал настолько значимым событием для землян, что в его честь выпускали значки и даже елочные украшения. Таким образом, вопреки всем стараниям американцев, Советский Союз первым покорил космическое пространство и проверил теоретическую сторону изучения космоса на практике. Теперь освоение космоса стало реальной задачей, а не призрачными мечтами. Ее характеристики были намного слабее, чем у современных ракет, но результаты эксперимента, проведенного в 1933 году, на то время были впечатляющими. Долгие годы Циолковский также изучал теоретическую сторону нахождения человека в космическом невесомом пространстве. В его работах были перечислены способы передвижения в невесомости, ее воздействие и влияние на любой живой организм.
Изобретатель точно описывал, какой должна быть форма космического корабля. Все его описания впоследствии подтвердит первый человек, полетевший в космос - Юрий Гагарин. Свои ощущения он описывал в точности как те, о которых писал в своих работах Константин Циолковский. В космической промышленности начали создавать опытные ракетные двигатели, работающие на жидком топливе. При помощи такого двигателя удалось облегчить массу ракеты, а также ракета должна была двигаться вперед за счет выделяемой энергии. Первая ракета для полета в космическое пространство была спроектирована в 1903 г. Ее проектировщиком стал известный изобретатель Константин Циолковский. Тогда ученые пришли к выводу, что при определенной устойчивой скорости летательный аппарат может не только преодолеть гравитацию, но и вылететь за атмосферу Земли. Кроме того, летательный объект закрепится на орбите и, словно Луна , будет вращаться вокруг нашей планеты [7].
Однако обеспечить такую скорость полета существующие в то время двигатели не могли. Двигатели со слабой мощностью не достигали нужной скорости, а сильные выбрасывали энергию рывками. Такой объект не только не мог лететь по назначению, но и также невозможно было контролировать траекторию его движения. При вертикальном запуске летательный аппарат закруглял свой вектор движения и клонился обратно на землю задолго до предполагаемого выхода в космическое пространство. О горизонтальном запуске, конечно же, речи и не шло, иначе можно было уничтожить все живое в радиусе запуска. Космос и спутниковые системы.
Если вы запустили спутник на круговую орбиту, лежащую в экваториальной плоскости Земли на расстоянии примерно 36 тыс.
Таких спутников летают сотни. А зачем они нужны? Это, например, спутники прямого телевизионного вещания, их специально запустили на геостационарную орбиту, чтобы нам домашнюю антенну в течение суток не крутить туда-сюда. Мы один раз нацеливаем свою спутниковую тарелку на такой спутник и уверены, что он всегда будет в одной и той же точке неба и никуда не денется. Интересно, что эта особенность геостационарной орбиты открывает нам совершенно фантастические перспективы для космонавтики. С такого спутника можно протянуть на Землю трос, и он не будет наматываться на Землю, потому что спутник относительно земной поверхности не движется. Вдоль этого шнура или каната можно организовать космический лифт. Прикиньте, сколько в этом случае киловатт-часов электроэнергии потребуется, чтобы подняться в космос, и сколько это будет стоить — считанные копейки получатся.
Есть, правда, одна неприятная особенность такого спутника: вот запустили мы его на геостационарную орбиту, натянули канатик, но вдруг какая-то случайная небрежность заставила спутник немножко опуститься. Что тогда будет происходить? Спутник оказался ближе к центру Земли, его орбитальный период стал короче, то есть спутник начнет опережать ту точку поверхности, к которой привязан канатиком, канатик будет наматываться на Землю и тянуть спутник вниз. Тот еще быстрее начнет крутиться — и понятно, что закончится это нехорошо. Если спутник чуть выше подтолкнуть, тогда он начнет отставать от поверхности Земли — чем больше расстояние, тем меньше скорость обращения и тем больше орбитальный период. Но будет ли это движение устойчивым, не станет ли Земля наматывать канатик в обратную сторону? Это простая механическая задача, которую должен быть способен решить любой физик. Вычисления показывают такое развитие событий: если привязанный спутник окажется на чуть большей высоте, чем геостационарная орбита, и начнет отставать от Земли, она его за канатик сначала немножечко подтянет вперед, а потом он снова отойдет на исходное расстояние от поверхности.
Но после этого спутник уже не отстанет от вращения Земли, потому что наряду с гравитацией добавляется сила, которая тянет его вперед, и в сумме они создают более сильное центростремительное ускорение, чем одна только гравитация, а эта более высокая орбита становится геоцентрической. Так что идея космического лифта может быть прекрасно реализована. Осталось только найти материал для каната, чтобы 36-тысячекилометровый трос выдерживал свой вес плюс вес поднимаемого груза железо для этого не годится, а вот наноуглеродные трубки могут быть перспективными: плотность их меньше, а прочность больше — и тогда каждому человеку можно будет подняться на геостационарную орбиту за несколько тысяч рублей, по деньгам это все равно как слетать в соседний город на самолете. И это стразу изменит нашу космонавтику. К другим мирам Итак, чтобы оторваться от поверхности Земли и выйти в околоземное пространство, надо набрать первую космическую скорость. Следующая задача космонавтики — улететь от планеты. Для этого необходимо достичь скорости, которая называется второй космической. Кинетическая энергия — величина скалярная, она не зависит от того, куда направлен вектор скорости, то есть полетев в любую сторону с такой начальной скоростью, мы покинем планету по параболической траектории.
Если мы уже на околоземной орбите, а нам надо на Марс или на более дальнюю планету привести корабль, мы его просто «пинаем», то есть добавляем ему такой импульс, чтобы корабль с круговой орбиты Земли вокруг Солнца вышел на эллиптическую орбиту, в апоцентре которой коснулся орбиты планеты назначения. Если мы правильно рассчитали время старта, планета приходит в ту же точку одновременно с нашим аппаратом. Но встречаются они с разными скоростями: планета движется быстрее, если ничего не предпринять, космический корабль тут же отстанет от нее. Значит, надо еще раз включить двигатели и уравнять скорость. Таким образом, надо придать всего два импульса — и вы оказались у соседней планеты. Такая траектория между планетами называется полуэллипсом Гомана — Цандера по именам инженеров, рассчитавших эту орбиту. Казалось бы, эта простая классическая орбита должна быть энергетически оптимальной, то есть наилучшей с той точки зрения, как меньше топлива потратить и при этом куда-нибудь подальше улететь. Но — удивительное дело — оказалось, что есть более экономичные орбиты.
Открыл их Ари Штернфельд, который увидел, что выгоднее трехимпульсный перелет совершить: сначала улететь дальше той орбиты, куда собираемся попасть, затем, притормозив, спуститься к ней, и потом уже уравнять скорость. Траектория, несомненно, более сложная. Но в сумме эти три импульса а значит и затраты топлива оказываются меньше, чем те два для простой полуэллиптической орбиты. Это удивительное открытие в небесной механике Штернфельд сделал, сидя у себя дома, он был вообще очень интересный человек и гениальный космический инженер. Орбиты спутников Рассуждения об эллиптической орбите спутников хороши, но природа на самом деле устроена сложнее: та же Земля — не идеальный шар, а сплюснутый, то есть эллипсоид вращения. Значит, если мы запустили спутник на полярную орбиту проходящую над южным и северным полюсами , то в таком силовом поле, как мы уже с вами видели на предыдущей лекции , эллипс орбиты постепенно поворачивается, происходит прецессия его оси вокруг центра тяготения. Если орбитальная плоскость расположена под косым углом к экваториальной плоскости Земли, то реальные траектории спутников получаются намного более сложными. Россия обычно запускает спутники на орбиту со средним наклоном к экватору, около 60 градусов например, спутник телевизионного вещания «Молния».
При этом сама орбитальная плоскость тоже прецессирует, то есть поворачивается вокруг земной оси. Для точного расчета их орбиты приходится отказываться от теорем Ньютона и все время учитывать неидеальную форму планеты. Движение двойных звезд Законы небесной механики описывают движение не только планет и их спутников. Задача двух тел также может быть применена к двойным звездам, которых на небе очень много, даже больше, чем одиночных. Солнце среди них, скорее, является исключением.