Новости в попытке классификации молний араго

Команде также удалось установить, что самая горячая точка молнии достигала 4700 градусов по Цельсию. В попытке классификации молний араго не был.

Молнии шаровые, но разные

С башни сигнал принимают 8 спутников «Орбита», которые помогают донести новости для всех зрителей в стране. Study with Quizlet and memorize flashcards containing terms like наречия со значением усиления отрицания В попытке классификации молний Араго был [ ] не первым., неопределенные местоимения Ее легкость была такова, что вся она казалась воплощением неведомой идеи. Араго удалось собрать и систематизировать многочисленные свидетельства очевидцев, однако, большинство историй по-прежнему вызывали в научных кругах скептические дискуссии. Одним из авторов этой книги [1, 13-16] сделана попытка классификации экспериментального материала по адсорбции на основе представлений о различии видов межмолекулярных взаимодействий.

Реферат приключения великих уравнений

На месте приземления очевидцы обнаружили мелкие фрагменты, похожие на шлак. Случай и соответствующее расследование опубликованы в журнале РАН « Природа » [10]. Шар с двухметровым хвостом подпрыгнул к потолку прямо из окна, упал на пол, снова подпрыгнул к потолку, пролетел 2—3 метра, а затем упал на пол и исчез. Это испугало сотрудников, которые почувствовали запах горелой проводки, и посчитали, что начался пожар.

Все компьютеры зависли но не сломались , коммуникационное оборудование выбыло из строя на ночь , пока его не починили. Кроме того, был уничтожен один монитор [19]. Причём, как рассказала изданию хозяйка дома Надежда Владимировна Остапук, окна и двери в доме были закрыты и женщина так и не смогла понять, каким образом огненный шар проник в помещение.

К счастью, женщина догадалась, что не стоит делать резких движений, и осталась просто сидеть на месте, наблюдая за молнией. Шаровая молния пролетела над её головой и разрядилась в электропроводку на стене. В результате необычного природного явления никто не пострадал, лишь была повреждена внутренняя отделка комнаты, сообщает издание.

Обзор подходов для искусственного воспроизведения[ править править код ] Поскольку в появлении шаровых молний прослеживается явная связь с другими проявлениями атмосферного электричества например, обычной молнией , то большинство опытов проводилось по следующей схеме: создавался газовый разряд о свечении газовых разрядов широко известно , и затем искались условия, когда светящийся разряд мог бы существовать в виде сферического тела. Но у исследователей возникают только кратковременные газовые разряды сферической формы, живущие максимум несколько секунд, что не соответствует свидетельствам очевидцев природной шаровой молнии. Хазен выдвинул идею генератора шаровых молний, состоящего из антенны передатчика СВЧ, длинного проводника и импульсного генератора высокого напряжения [21].

Список заявлений[ править править код ] Было сделано несколько заявлений о получении шаровой молнии в лабораториях, но в основном к этим заявлениям сложилось скептическое отношение в академической среде. Остаётся открытым вопрос: «Действительно ли наблюдаемые в лабораторных условиях явления тождественны природному явлению шаровой молнии»? Первыми опытами и заявлениями можно считать работы Теслы [22] в конце XIX века.

В своей краткой заметке он сообщает, что, при определённых условиях, зажигая газовый разряд, он, после выключения напряжения, наблюдал сферический светящийся разряд диаметром 2-6 см. Однако Тесла не сообщал подробности своего опыта, так что воспроизвести эту установку затруднительно. Очевидцы утверждали, что Тесла мог делать шаровые молнии на несколько минут, при этом он их брал в руки, клал в коробку, накрывал крышкой, опять доставал… Первые подробные исследования светящегося безэлектродного разряда были проведены только в 1942 году советским электротехником Бабатом : ему удалось на несколько секунд получить сферический газовый разряд внутри камеры с низким давлением.

Капица смог получить сферический газовый разряд при атмосферном давлении в гелиевой среде. Добавки различных органических соединений меняли яркость и цвет свечения. Эти наблюдения привели к мысли, что шаровая молния — тоже явление, создаваемое высокочастотными колебаниями, возникающими в грозовых облаках после обычной молнии.

Таким образом подводилась энергия, необходимая для поддержания продолжительного свечения шаровой молнии. Эта гипотеза была опубликована в 1955 г. Через несколько лет у нас появилась возможность возобновить эти опыты.

В марте 1958 г. Этот разряд образовывался в области максимума электрического поля и медленно двигался по кругу, совпадающему с силовой линией. Оригинальный текст англ.

These observations led us to the suggestion that the ball lightening may be due to high frequency waves, produced by a thunderstorm cloud after the conventional lightening discharge. Thus the necessary energy is produced for sustaining the extensive luminosity, observed in a ball lightening. This hypothesis was published in 1955.

After some years we were in a position to resume our experiments. In March 1958 in a spherical resonator filled with helium at atmospheric pressure under resonance conditions with intense He oscillations we obtained a free gas discharge, oval in form. This discharge was formed in the region of the maximum of the electric field and slowly moved following the circular lines of force.

В литературе [23] описана схема установки, на которой авторы воспроизводимо получали некие плазмоиды со временем жизни до 1 секунды, похожие на «природную» шаровую молнию. Науер [24] в 1953 и 1956 годах сообщал о получении светящихся объектов, наблюдаемые свойства которых полностью совпадают со свойствами световых пузырей. Попытки теоретического объяснения[ править править код ] В наш век, когда физики знают, что происходило в первые секунды существования Вселенной, и что творится в ещё не открытых чёрных дырах, всё же приходится с удивлением признать, что основные стихии древности — воздух и вода — всё ещё остаются загадкой для нас.

Стаханов[ уточнить ] Экспериментальная проверка существующих теорий затруднена. Даже если считать только предположения, опубликованные в серьёзных научных журналах, то количество теоретических моделей, которые с разной степенью успеха описывают явление и отвечают на эти вопросы, довольно велико. По признаку места энергетического источника, поддерживающего существование шаровой молнии, теории можно разделить на два класса: предполагающие внешний источник; Обзор существующих теорий[ править править код ] Этот раздел представляет собой неупорядоченный список разнообразных фактов о предмете статьи.

Пожалуйста, приведите информацию в энциклопедический вид и разнесите по соответствующим разделам статьи. Списки предпочтительно основывать на вторичных обобщающих авторитетных источниках , содержащих критерий включения элементов в список. Гипотеза Курдюмова С.

Примером могут служить солитоны, возникающие в различных нелинейных средах. Ещё сложнее с точки зрения определённых математических подходов — диссипативные структуры… на определённых участках среды может иметь место локализация процессов в виде солитонов, автоволн, диссипативных структур… важно выделить… локализацию процессов на среде в виде структур, имеющих определённую форму, архитектуру» [25]. Гипотеза Капицы П.

В этом случае шаровая молния оказывается как бы «нанизана» на силовые линии стоячей волны и будет двигаться вдоль проводящих поверхностей. Стоячая волна тогда отвечает за энергетическую подпитку шаровой молнии. Гипотеза Широносова В.

Резонансная модель шаровой молнии П. Капицы наиболее логично объяснив многое, не объяснила главного — причин возникновения и длительного существования интенсивных коротковолновых электромагнитных колебаний во время грозы. Согласно выдвинутой теории внутри шаровой молнии, помимо предполагаемых П.

Капицей коротковолновых электромагнитных колебаний, существуют дополнительные значительные магнитные поля в десятки мегаэрстед. В первом приближении, шаровую молнию можно рассматривать как самоустойчивую плазму — «удерживающую» саму себя в собственных резонансных переменных и постоянных магнитных полях. Резонансная самосогласованная модель шаровой молнии, позволила объяснить не только её многочисленные загадки и особенности качественно и количественно, но и в частности наметить путь экспериментального получения шаровой молнии и аналогичных самоустойчивых плазменных резонансных образований, управляемых электромагнитными полями.

Любопытно заметить, что температура такой самоудерживающейся плазмы в понимании хаотического движения будет «близка» к нулю из-за строго упорядоченного синхронного движения заряженных частиц. Соответственно время жизни такой шаровой молнии резонансной системы велико и пропорционально её добротности [28]. Принципиально другая гипотеза Смирнова Б.

В его теории ядро шаровой молнии — это переплетённая ячеистая структура, нечто вроде аэрогеля , которая обеспечивает прочный каркас при малом весе. Только нити каркаса — это нити плазмы, а не твёрдого тела. И энергетический запас шаровой молнии целиком скрывается в огромной поверхностной энергии такой микропористой структуры.

Термодинамические расчёты на основе этой модели, не противоречат наблюдаемым данным [29]. Ещё одна теория объясняет всю совокупность наблюдаемых явлений термохимическими эффектами, происходящими в насыщенном водяном паре в присутствии сильного электрического поля.

Наконец, есть огромное количество свидетельств, когда шаровая молния убивала людей или животных. И даже устраивала что-то вроде охоты — гналась за пытавшейся скрыться жертвой и, догоняя, поражала её электрическим разрядом либо взрывом. Солнце в миниатюре На протяжении десятилетий учёные ограничивались сбором рассказов очевидцев и анализом статистики. Ставить эксперименты, пытаясь воспроизвести шаровую молнию в лаборатории, не спешили: во-первых, непонятно, как это сделать, во-вторых, это было небезопасно, в-третьих, не имело очевидной прикладной значимости. Первым, кто занялся практическим изучением феномена, был Никола Тесла. Легендарный физик и инженер, который был с электричеством на «ты», оставил упоминания, что при определённых условиях наблюдает у себя в лаборатории сферические светящиеся разряды. Правда, таких записок немного.

А некоторые очевидцы утверждали, что Тесла даже мог брать шаровые молнии в руки и прятать их в коробки, закрывая крышкой, а потом вновь доставать. Но это, конечно, байки. Подлинный научный интерес к явлению возник в 1950-х, когда начались работы в области физики плазмы и её прикладных применений. Учёные хотели и до сих пор хотят во что бы то ни стало добиться стабилизации плазмы — состояния вещества, в котором на протяжении миллиардов лет живут звёзды, включая наше родное Солнце, а сделать это архисложно. Поскольку шаровая молния похожа на сгусток плазмы и способна автономно существовать десятки секунд, на явление обратили внимание маститые физики. Среди них был, например, Пётр Капица. Он смог получить сферический газовый разряд в среде гелия, а в 1955 году опубликовал статью «О природе шаровой молнии». Знаменитый советский учёный рассматривал версию о подпитке шаровой молнии энергией извне. И видел в ней прообраз управляемого термоядерного реактора.

Сейчас феномену посвящены тысячи экспериментов и теоретических работ. В лабораторных условиях не раз удавалось получить нечто шарообразное и светящееся, правда, так и остаётся неясным, тождественны ли эти объекты тем, что возникают во время грозы в атмосфере и пугают очевидцев одним своим видом.

Однако, по словам ученых, остается еще много вопросов. Например, до сих пор неясно, почему молнии летят вверх. Исследователи считают, что что-то мешает молнии двигаться вниз или к другим облакам. Поделиться: Подписывайтесь на «Газету.

Светящееся физическое тело сферической формы голубого, оранжевого или белого тонов хотя нередко можно увидеть и другие цвета, вплоть до черного возникает в основном во время грозы, но также были зафиксированы неоднократные случаи его появления и в солнечную погоду. Шар размером от 10 до 20 сантиметров способен передвигаться в воздухе, преодолевая большие расстояния, и сохранять при этом целостность. Продолжительность жизни молнии чрезвычайно мала: от нескольких секунд до двух минут. И если в спектре классической молнии присутствуют линии ионизированного азота, то в спектре шаровой молнии были обнаружены линии железа, кремния, а также кальция. Попыток было немало, но все они были мало похожи на то, что описывают очевидцы. Да и продолжительность «жизни» лабораторного образца не превышало нескольких секунд, хотя природная может прекрасно существовать до нескольких минут. К сожалению, вопросов до сих пор остается больше, чем ответов. Из какого вещества состоит молния, если она способна проникать не только через окна или двери, но и маленькие щели и вновь принимать исходную форму?

В попытке классификации молний араго не был

В связи с тем, что появление шаровой молнии как природного явления происходит редко, а попытки искусственно воспроизвести его в масштабах природного явления не удаются, основным материалом для изучения шаровых молний являются свидетельства. Франсуа Араго, французский физик и астроном, живший в 19 веке, был первым, кто решил изучить природу шаровых молний и систематизировал случаи наблюдения их. Ученым из института Джорджии удалось зафиксировать удар перевернутой молнии в Оклахоме в 2018 году. Команде также удалось установить, что самая горячая точка молнии достигала 4700 градусов по Цельсию. В попытке классификации молний араго не был. В попытке классификации молний Араго [ ] не был первым.

ЕГЭ 2022. Задания 1-3 (стр. 4 )

Страницы в категории «Погибшие при попытке побега через Берлинскую стену». Попытки классифицировать молнии встречаются и задолго до Араго. Так, римляне разделяли молнии на увещевательные, угрожающие, наказующие и другие. Идея классификации молний Араго позволила разделить молнии на несколько типов, различающихся внешним видом и способом образования. Франсуа Араго, французский физик и астроном, живший в 19 веке, был первым, кто решил изучить природу шаровых молний и систематизировал случаи наблюдения их. 20. Вставьте наречие меры и степени: В попытке классификации молний Араго [ ] не был первым. В попытке классификации Араго.

Реферат приключения великих уравнений

Для своего времени — да. То было время быстрого развития науки. Вера в возможность полного и окончательного познания всех явлений владела членами комиссии. И они не хотели признавать ничего такого, что нельзя было бы измерить, пощупать, объяснить, доказать с помощью известных им опытов. Поэтому лишь некоторые выводы комиссии, имевшие для нее частный характер, остались правильными и по сей день: магнит действует прежде всего на нервную систему, а не на ткани и внешние органы; магнит хорошо помогает при таких нервных заболеваниях, которые характеризуются усиленной работой нервной системы, например, при судорогах, конвульсиях, головных болях и пр. Последующие исследования подтвердили правильность выводов, основанных на многих экспериментах. Однако некоторые выводы комиссии страдают категоричностью.

Нужно было, наверное, оставить лазейку: «При теперешнем состоянии знаний, измерительной техники…» Что же касается месмеризма, или, как потом его стали называть, гипнотизма, то здесь комиссия не оказалась на высоте, и прежде всего потому, что в то время психология как наука была в состоянии младенческом, не допускавшем и мысли о том, что с помощью столь простых средств можно делать столь сложные вещи. Комиссия Парижской академии отвергла «животный магнетизм», как отвергла в свое время пароход Фултона, громоотвод Франклина да и многое другое. Месмер бежит от неудачи в Австрию, на родину, стремясь забыться, собрать силы для нового наступления. Возвратиться в Париж ему не пришлось — наступил «девяносто третий», когда многие высокопоставленные аристократы и любимцы королевской семьи, хотя бы временные, испытали на себе усовершенствование доктора Гильотена. Путь в столицу для бывшего кумира парижских аристократов был закрыт, хотя Месмер и симпатизировал французской революции. Вскоре, впрочем, именно за эти симпатии Месмера высылают из Австрии, и он обосновывается в небольшом городке недалеко от Цюриха.

Там он жил настолько незаметно, что многочисленные его последователи в течение двадцати лет считали, что их кумир давно мертв. Деревенский доктор Месмер последние годы своей жизни отдал музыке. Умер он в 1815 году 81 года от роду. Учение Месмера не захирело, не погибло. С каждым годом все новые и новые врачи пытались использовать для лечения больных свойства магнита. Член Федерального совета в Женеве Де Гарсю решил применить не сами магниты, а намагниченную воду, которую можно было использовать для умывания, омовений, клизм, примочек и ванн.

Француз Дюрвиль, выпустивший множество книжек по магнитному лечению, утверждал, что после лечения водой, «намагниченной» с помощью магнита с подъемной силой 110 килограммов, у больных исчезали язвы, лучше зарубцовывались раны. Проверкой данных никто не занимался, и поэтому невозможно установить сейчас, насколько большую роль играл здесь авторский оптимизм. Даже через 100 лет после этих экспериментов мы не можем доказательно отвергнуть или подтвердить исследования Дюрвиля, проведенные, по современным понятиям, на стыке электромагнитной биологии и психологии. Так, Дюрвиль утверждал, что его больные могут «видеть» магнитное поле, предстающее перед ними в виде некоего свечения. У магнита более всего светятся полюсы. Посредственный сенситив медиум.

Южный полюс магнита светится так же, как правая половина тела, северный — как левая. Хорошие сеиситивы видят человеческое тело ярко светящимся, правая сторона блестит прекрасным голубым или индиговым цветом; левая сторона для одних представляется оранжевой, для других — красной. Глаза и оконечности тела, так же как и полюсы магнитов, сияют соответствующим стороне тела светом; вся голова кажется окутанной сияющим ореолом, в котором блестят различные цвета». Красивая картина! Скорее всего — богатство воображения, подогретого гипнотическими внушениями. Но вот вполне современное открытие Р.

Беккера — на теле человека и других позвоночных животных распределены электрические потенциалы, причина которых — потоки электронов вдоль нервных волокон. Токи, им соответствующие, текут от головы человека к конечностям. Автор этой книги для интереса прикинул, какого направления должны быть обусловленные ими магнитные поля, и с удивлением обнаружил, что направление их в большинстве случаев совпадает с живописуемой Дюрвилем феерической картиной. А другого способа определить направление столь слабых магнитных полей, кроме визуального, у Дюрвиля не было — соответствующие приборы появились только сейчас. Нужна тщательная проверка. Проверить нужно еще и эффекты, описанные Дюрвилем: «Накладывание северного полюса магнита на большой палец руки производит уколы в концах пальцев, жар в ладони, в предплечье и от плеча до кисти.

Нервы возбуждаются, раздражаются и вызывают невольные движения… Прикосновение южного полюса к большому пальцу вызывает… состояние в виде мурашек…» Какие-то эффекты быть обязательно должны. Это следует хотя бы из того, что согласно последним исследованиям все человеческие органы имеют сложные электромагнитные ритмы, на которые, по-видимому, можно влиять с помощью электромагнитных же полей. Так, низкочастотные импульсы электромагнитных полей обнаружены в окрестностях человеческого сердца, вблизи сокращающихся мышц. Недавно с помощью ультрасовременной электронной аппаратуры проверены и подтверждены результаты опытов итальянца Ф. Кацамалли, который наблюдал излучение электромагнитных волн мозгом человека, пребывающего в эмоционально неуравновешенном состоянии. Мозг, излучающий радиоволны, — уже не только повод для написания научно-фантастических романов.

Это, возможно, заявка на новые открытия. Сейчас существует большое число доказательств восприимчивости живых существ, включая человека, к электромагнитным полям. В первую очередь учеными было подтверждено древнее, как мир, утверждение, что магнит успокаивает, другими словами, подавляет нервную систему. Этим, видимо, по мнению советских ученых — профессора М. Могедовича и доцента Р. Скачедуба, можно объяснить снижение болей у раненых под действием магнита, замеченное тысячи лет назад.

Это явление нашло применение и в медицинской практике во время Великой Отечественной войны. Из Бухарестского института бальнеологии и физиотерапии тем временем сообщают, что в ряде случаев лечение магнитами помогало снять симптомы таких болезней, как паркинсонизм, полиартрит, паралич и т. А пресловутые японские браслеты с магнитиками, якобы улучшающие самочувствие? Японцы запатентовали и стали изготавливать магнитные кресла и магнитные кровати! Что это — очередной успех медицины или очередное шарлатанство? Или очередной массовый гипноз?

Что же касается сильных электромагнитных полей, то твердо доказано — их влияние на животных и человека смертельно. Мы здесь не говорим о коротковолновых излучениях, таких, как гамма-излучение или излучение рентгеновской трубки, убивающих микробы. Большое число экспериментов на обезьянах, а также несчастные случаи с людьми, попавшими, например, в зону действия мощного локатора, убедительно доказали, что шутить с такими полями не стоит. Так что же такое — электромагнитное поле? Убийца или исцелитель? Или просто удобное орудие шарлатанов?

Ведь непонятное электричество соответствовало наивной убежденности людей в том, что лечение обязательно должно быть очень сложным и использующим наисовременнейшие штуковины! Еще в 1796 году, по существу, только-только открытое электричество стало применяться неким Перкинсом для лечения с помощью так называемых «тракторов» извлекателей болезни , представлявших собой металлические стержни, способные при прикосновении к ним «выдать» слабый электрический удар. Успех Перкинса был невообразимым, но и до сих пор медики не смогли одобрить или развенчать это врачевание. Последователи Перкинса с тех пор не переводятся. Одна американская журналистка не поленилась посетить известного нью-йоркского шарлатана, утверждавшего, что он может «излечивать любые болезни с помощью электромагнитной катушки». После «прогрева» целитель заявил, что двухмесячный срок лечения должен «совершенно обновить ее», поскольку аппарат «создает в крови электроны» и выводит из организма «азотистые накопления»… Жаль, конечно, но человек лишен шестого чувства, позволяющего непосредственно ощущать электромагнитные поля.

Но это не означает, что электромагнитные поля на человека совсем не действуют. Паутина внешних электромагнитных полей вместе со сложным пульсирующим узором собственных полей[1] человека создает новые эффекты, иной раз поразительные. Мы уже говорили о том, что постоянный магнит оказывает тормозящее действие на нервную систему. А электрические импульсы? Их влияние еще более явно. Многим известны опыты над обезьянами, которым вживляли в мозг электроды.

С их помощью можно было по своему произволу менять настроение животного — привести его в бешеную ярость или, наоборот, вселить в него каменное безразличие ко всему происходящему. Можно было, наконец, нажатием кнопки вызвать у обезьяны чувство наслаждения. Недавно в журнале писали о быках, которыми «управляли по радио». Неподвижный матадор спокойно ждет, когда полутонная туша с выставленными вперед рогами несется на него. Но за какие-нибудь пару шагов бык встает как вкопанный — его мозг принял сигнал мира, посланный оператором, сидящим где-то на трибунах… А вот еще сообщение — из проблемной лаборатории кибернетики Тбилисского университета. Исследователи считают, что с помощью магнитного поля можно примерно в два раза ускорить образование условных рефлексов у мышей.

Не могут ли эти исследования привести впоследствии к методике более быстрого усвоения знаний человеком — проблема, не дающая спать не одним студентам? Не только на мозг могут действовать электрические и магнитные импульсы. Еще в 1858 году Королевское общество хирургов Англии постановило считать допустимым использование электрического удара для восстановления сердечной деятельности. А сейчас в медицинской практике широко применяется электростимулятор — прибор, который с помощью электрических импульсов помогает работать уставшему сердцу. Этим не заканчивается перечень добрых изобретений, основанных на использовании электромагнитных полей. Сейчас пытаются создать устройства, которые преобразовывали бы зрительные образы в электрические сигналы, а последние, в свою очередь, непосредственно воздействовали бы на мозг слепых людей.

Исследователи верят, что раздражение электрическим током уже сформированных нервных сетей, вызывающее у здоровых людей «фосфены» искры из глаз — пример фосфена при ударе; искр на самом деле никаких нет, есть только их образы, вызванные искусственно , у людей слепых приведет к созданию зрительных образов. Автор не без умысла рассказывал в этой главе о фактах как твердо установленных, так и подлежащих дальнейшей проверке — в иной раз и о тех, которые почти наверняка не подтвердятся! Основная идея такого авторского приема — попытаться внушить читателю чувство любознательного изумления перед многообразными проявлениями двух стихий природы — чувство, которое владело некогда нашими далекими предками, только еще вступившими на путь познания природы. С помощью этого прибора слепые могут отличать свет от темноты. Тетрадь вторая. Ломоносов Маски кружились, кружились вокруг в диком хороводе, пока человек не остановил их: «Откройтесь!

Но чтобы разглядеть это, нужно было приблизиться. И протянуть уверенную руку. Гильберт, придворный врач Стратфорд на Эйвоне, наши дни, выставка «Шекспир и его время». Пестрые группки туристов, прилавки с сувенирами остаются позади. Вы машинально протягиваете контролеру свой билетик, делаете шаг по пластиковому полу сквозь алюминиевый короб ультрасовременной двери и оказываетесь в XVI веке. С темных, старательно закопченных сводов свисают масляные светильники.

На стенах — заржавленные двуручные мечи и прорубленные от плеча до пояса кольчуги. Только что смолкли шумные схватки закованных в броню приверженцев Алой и Белой роз. В то смутное время в небольшом английском городке Стратфорде в семье Джона Шекспира рождается сын Вильям… Другому Вильяму, Гильберту, который прославится впоследствии как первый человек, посмотревший на электрические и магнитные явления с научных позиций, исполнилось тогда двадцать лет. Детство его не отличалось, наверное, от детства Шекспира. В зале «Детство» человечки из папье-маше, замерев, перепрыгивают через палки, пляшут под свирель и играют в бабки. На стенде — золотом строки из «Бесплодных усилий любви»: Когда свисают с крыши льдинки, И дует Дик-пастух в кулак, И леденеют сливки в крынке, И разжигает Том очаг, И тропы занесло снегами, Тогда сова кричит ночами: У-гу!

Приятный зов, Коль суп у толстой Джен готов. Когда кругом метут бураны, И онемел от кашля поп, И красен нос у Марианны, И птица прячется в сугроб, И яблоки румянит пламя, Тогда сова кричит ночами: У-гу! Шекспир оканчивает обычную школу с латынью и греческим, преподносимыми учителем-«педантом» в ослепительно белых носках и глухой черной шляпе. Шекспир «знал мало по-латыни и еще меньше по-гречески». Восемнадцати лет он женился на двадцатишестилетней Анне Гесуе. Гильберт после школы поступает в колледж святого Джона в Кембридже, через два года становится бакалавром, а через четыре — магистром, через пять — доктором медицины.

Гильберт всю жизнь оставался убежденным холостяком. Вскоре после женитьбы Шекспир уезжает в Лондон. Усталый конь, забыв былую прыть, Едва трусит уныло подо мной, Как будто знает: незачем спешить Тому, кто разлучен с душой родной… Как тяжко мне, в пути взметая пыль, Не ожидая дальше ничего, Отсчитывать уныло, сколько миль Отъехал я от счастья своего. Сонет 50 В то время миллионы англичан стали жертвами эпидемии чумы. Громадная, натуралистически выполненная туша чумного быка висит на площади. В грубо сколоченных, отмеченных белым крестом клетках — зачумленные.

Через скрытые в стенах репродукторы непрерывно передаются ропот средневековой толпы, ржанье перепуганных лошадей, плач женщин и детей, нагнетающие подавленное настроение. А Лондон веселится. Королева Елизавета, слывшая «непорочной», спешила побольше взять от быстротечной жизни. Поводом для торжеств был разгром испанской «непобедимой армады». Фаворит королевы граф Эссекс делает все, чтобы королеве было весело. В одном из театров присматривает за лошадьми богатых посетителей Вильям Шекспир.

Вильям Гильберт достиг большего. Он — лейб-медик королевы. Трудно сказать, почему именно медик написал первую научную работу по магнетизму и электричеству. Может быть, это было связано с тем, что толченый магнит у средневековых лекарей считался сильным слабительным. Сам Гильберт считал, что магнитное железо «…возвращает красоту и здоровье девушкам, страдающим бледностью и дурным цветом лица, так как оно сильно сушит и стягивает, не причиняя вреда». Однако горький опыт показал Гильберту, что магниты при приеме внутрь иногда «…вызывают мучительные боли во внутренностях, чесотку рта и языка, ослабление и сухотку членов».

Может быть, экскурсы Гильберта в природу магнетизма и были порождены желанием узнать, где истина: является магнит лекарством или нет. Гильберт приходит к выводу, что «природа магнита двойственная и больше — зловредная и пагубная». По пути к этому выводу Гильберт делает ряд других, значительно более ценных. Нет сомнения, что на занятия Гильберта магнетизмом оказал влияние следующий, казалось бы, не имеющий большого значения факт: Гильберт был дружен с капитанами Фрэнсисом Дрейком и Генри Кэвендишем. Это были просоленные насквозь морские волки, «королевские пираты», в обязанность которых входили завоевания и грабеж новых земель для английской короны, а то и просто взятие на абордаж какого-нибудь испанского «купца». Эти полупираты-полуисследователи были весьма популярны при дворе.

Фрэнсис Дрейк был вторым после Магеллана капитаном, совершившим кругосветное плавание наверное, многие в юности зачитывались приключениями «Золотой лани» капитана Дрейка , а Генри Кэвендиш прославился кровавым «корсарским Рождеством», которое он отметил в американских владениях Испании 400 с лишним лет назад. Радушный, веселый Гильберт легко подружился с героями своего времени. Видимо, не раз внимал он их рассказам о дальних странствиях, об океанских островах, о диковинных зверях, рыбах и растениях. Как новость сообщили они Гильберту то, что и в Южном полушарии, так же как и в Северном, стрелка компаса указывала на север это было тогда не столь очевидно. Они привезли для Гильберта королевский подарок — карты всей Земли с уникальными замерами магнитного склонения в далеких морях и землях. Тот факт, что северный конец стрелки компаса в Северном и Южном полушариях указывает на север, и навел Гильберта, по-видимому, на мысль, что Земля в целом ведет себя как один большой магнит.

Что было известно в Европе о магните до Гильберта? В 1269 году некий Пьер Перегрин из Марикурта во время вынужденного безделья при осаде небольшого итальянского городка Люцера написал книжку «Письма о магните», в которой собрана масса наблюдений о магните, накопившихся до него и сделанных лично им. Перегрин впервые говорит о полюсах магнитов, о притяжении «совокуплении» разноименных полюсов и отталкивании одноименных, об изготовлении искусственных магнитов, о проникновении магнитных сил через стекло и воду, о компасе. Причину притяжения южного и северного полюсов Перегрин и его последователи объясняли довольно туманно: «Южная часть притягивается той, которая имеет свойства и природу севера, хотя они обе имеют одну и ту же специфическую форму. Однако это не исключает некоторых свойств, существующих более полно в южной части. Но эти свойства северная часть имеет лишь в возможности, и поэтому они при этой возможности и проявляются».

Ценность этой точки зрения заключается в том, что она, наводя на размышления, привела средневекового ученого Аверроэса к гениальной догадке. По его мнению, естественный магнит искажал ближайшее к нему пространство в соответствии с его формой. Ближайшие к магниту области среды, в свою очередь, искажали ближайшие к ним, и так до тех пор, пока «специи» не достигали железа. В этих рассуждениях впервые дан намек на магнитное поле — особую форму материи. До Гильберта было известно и явление «старения магнитов». Так, в трактате, приписываемом Джабиру ибн Хайяну, или, на латинский лад — Геберу, есть такие слова: «У меня был магнит, поднимавший 100 драхм железа.

Я дал ему полежать некоторое время и поднес к нему другой кусок железа. Магнит его не поднял. В куске оказалось 80 драхм. Значит, сила магнита ослабла». К другим важнейшим догильбертовским событиям можно отнести открытие в XIV веке магнитного склонения и обнаружение Колумбом 1492 г. Кроме этого, о магнитах в конце XVI и начале XVII века было известно следующее: — под хвостом Большой Медведицы имеется магнитный камень; — прием магнита внутрь «в малых дозах» продлевает молодость; — если положить магнит под голову спящей женщины, он сбросит с постели прелюбодейку; — магнит открывает запоры и замки; — днем магнит притягивает сильнее, чем ночью; — если потереть магнит чесноком или положить рядом с ним бриллианты, его сила исчезнет; — если же помазать магнит кровью козла, его сила восстанавливается; — магнит, хранимый в рассоле из рыбы-прилипалы, обладает силой извлекать золото, упавшее в самые глубокие колодцы; — есть магниты, притягивающие серебро, алмазы, яшму, стекло и даже «мясные» и «деревянные» магниты и т.

Не исключено, что здесь мы следуем древнекитайской традиции. Китайцы всегда окрашивали южный конец стрелки в красный цвет. В древнем ассирийском календаре времен Александра Македонского север называется черной страной, юг — краской, восток — зеленой и запад — белой. Городские ворота в Китае окрашивались в соответствии с этим. Вполне вероятно, что такое обозначение сторон света было в то время общепринятым, и отголоском этого являются названия Черного и Красного морей, лежащих на юг и север от центрального — Средиземного. В течение 18 лет он на собственные деньги ставит бесчисленное количество опытов, которые в конце концов описаны в книге «О магните, магнитных телах и о большом магните — Земле.

Новая физиология, доказанная множеством аргументов и опытов», вышедшей в 1600 году. И сам Гильберт, и его современники чрезвычайно высоко оценивали этот труд, первый по-настоящему научный труд, посвященный электричеству и магнетизму. Заслуги Гильберта действительно велики. Самой значительной из них явилось то, что он впервые в истории, задолго до Бэкона, считавшегося родоначальником «индуктивного» метода в науке, провозгласил опыт критерием истины и все положения проверял в процессе специально поставленных экспериментов. Величие идей Гильберта и его заслугу перед своим временем нам сейчас даже трудно вообразить. Понятие об эксперименте как основе исследования было в то время неизвестно.

Признавалась тогда лишь аристотелевская созерцательная наука, направленная на доказательство существования бога да на решение насущных проблем типа: сколько чертей может уместиться на острие иглы? В европейских городах сжигались сотни «ведьм» и «колдунов», причем в качестве доказательства принадлежности к «нечистым» принимались, например, и такие: «Старуха такая-то замечена в том, что подбирала конский помет, — наверное, чтобы околдовать хозяина этого коня». Или просто: «Уж очень подходящий цвет лица у него для сношения с нечистым». Обстановку того времени передает случайно сохранившийся дневник обывателя небольшого городка из вюрцбургского княжества: «В сем 1616 году на Иванов день начали забирать колдуний, и первою попалась Елисавета Букелева, Ивана Букеля жена. В сем 1617 году 6 марта устроили второе паленье колдуний, их поставили на костер четыре души. Вопросы, которые следует задавать выявленным и пойманным ведьмам: «Вредила ли она людям и кому именно?

Прикосновением, заклятиями, мазью? Сколько она до смерти извела мужчин? Сколько она лишь испортила? Сколько беременных женщин? Сколько скотины? Сколько напустила туманов и тому подобных вещей?

Как она это производила и для чего? Умеет ли она летать по воздуху и на чем она летала? Как она это устраивает? Как часто она летает? Куда случалось ей летать в разное время? Кто из других людей, находящихся еще в живых, бывал на их сборищах?

Умеет ли она прикидываться каким-нибудь животным и с помощью каких средств? Сколько малых детей съедено при ее участии? Где они были добыты? Также — у кого они взяты? Или они были вырыты на кладбище? Как они их готовили — жарили или варили?

Также, на что пошли головка, ручки и ножки? Добывала ли она также из наших детей и сало, и на что оно? Не требуется ли детское сало, чтобы подымать бури? Надо сказать, Гильберт не недооценивал своих заслуг. Впервые в практике книгопечатания он поставил свое имя перед названием книги. И никто его за это до сих пор не осудил.

Через год после выхода книги Гильберта «О магните» Шекспир создает «Гамлета». По иронии судьбы и гениальные идеи Гильберта, и неповторимые страсти шекспировских трагедий будут впоследствии приписываться одному автору — все тому же Фрэнсису Бэкону, философу.

В 1966 году исследователи из NASA прове ли а нкетирование двух тысяч человек, которых попросили ответить на два вопроса: видели ли они шаровую молнию, и если «да», то сопровождалось ли явление стандартными грозовыми разрядами? Ученые попытались определить частоту возникновения шаровой молнии по сравнению с линейными разрядами. Из числа опрошенных только 409 человек наблюдали линейную молнию в непосредственной близости, при этом всего 200 анкетируемых встречались с шаровой молнией. Ученым повезло: среди участников эксперимента нашелся даже один «счастливчик», который наблюдал «огненный шар» аж восемь раз. Его свидетельства пополнили копилку косвенных доказательств того, что шаровая молния — не такое уж редкое явление. В основе его книги «О физической природе шаровой молнии» лежат многочисленные свидетельства очевидцев, которые ученый подверг физическому анализу. Это позволило ему не только описать основные характеристики и параметры шаровых молний, условия их появления, передвижения и принципы взаимодействия с окружающим миром, но и дало возможность сформулировать кластерную гипотезу.

По мнению Стаханова, шаровая молния — не что иное, как сосредоточение сгустка ионов, которые «облеплены» оболочками из полярных молекул, например, воды. Кластерная теория Стаханова легко согласуется с многочисленными историями очевидцев и объясняет как строение молнии в виде шара наличие эффективного поверхностного натяжения , так и способности молнии проникать через отверстия, заново принимая исходную форму. Однако практические опыты Стаханова по созданию сгустка кластерных ионов оказались неудачными.

Найдите предложения, в которых тире ставится в соответствии с одним и тем же правилом пунктуации. Запишите номера этих предложений.

Какие из высказываний соответствуют содержанию текста? Укажите номера ответов в возрастающем порядке. Какие из перечисленных утверждений являются верными? Укажите номера ответов. Цифры указываем в порядке возрастания 1 Предложения 4—5 содержат описание.

Из предложений 25—34 выпишите синонимы синонимическую пару. Среди предложений 1—8 найдите такое -ие , которое -ые связано -ы с предыдущим с помощью притяжательного местоимения.

Расставьте все недостающие знаки препинания: укажите цифру -ы , на месте которой -ых в предложении должна -ы стоять запятая -ые. В липовой аллее печально шелестела под ногами прошлогодняя листва, и в тихих сумерках 1 казалось 2 прятались тени. И вдруг на миг от этой картины повеяло очарованием 3 как будто 4 чего-то очень знакомого, близкого с детства. Он был назначен начальником той самой комиссии 1 о создании 2 которой 3 он так хлопотал в мирное время 4 и теперь разрывался на части 5 потому что 6 поток раненых был огромным. Этот мост 1 хотя и был сделан из дерева 2 стоял здесь так долго 3 будто был всегда. Найдите предложения, в которых тире ставится в соответствии с одним и тем же правилом пунктуации. Запишите номера этих предложений. Какие из высказываний соответствуют содержанию текста?

Укажите номера ответов в возрастающем порядке.

Ученые доказали, что перевернутые молнии существуют

20. Вставьте наречие меры и степени: В попытке классификации молний Араго [ ] не был первым. В попытке классификации молний Араго [ ] не был первым. Древние римляне, например, делили молнии «по предназначению». Араго удалось собрать и систематизировать многочисленные свидетельства очевидцев, однако, большинство историй по-прежнему вызывали в научных кругах скептические дискуссии. Франсуа Араго, французский физик и астроном, живший в 19 веке, был первым, кто решил изучить природу шаровых молний и систематизировал случаи наблюдения их. В попытке классификации молний араго не был.

Приключения великих уравнений [Владимир Петрович Карцев] (fb2) читать постранично

Нужно тут же оговориться, что в попытке классификации молний Араго вовсе не был первым. В попытке классификации молний Араго. Работа Рафаэля Араго. В попытке классификации молний араго. Опыты Френеля и Араго.

Похожие новости:

Оцените статью
Добавить комментарий