Новости профессии связанные с нейросетями

Недавно телеканал RTVI захотел рассказать о профессиях будущего и обратился за помощью к нейросети MidJourney. Профессию тренера нейросетей можно назвать работой будущего.

Какие профессии заменит искусственный интеллект

Уже сейчас идут бурные обсуждения, что нейросети, вероятно, в будущем смогут полностью заменить специалистов ряда профессий. «Яндекс» начал нанимать людей гуманитарных профессий для обучения своей нейросети — российского аналога ChatGPT, рассказали «Известиям» в компании. Профессия требует не только применять нейросети, но также строить и обучать модели для новых задач.

Новая профессия – ПРОМПТ-инженер. Будет очень востребованной!

Мир нейросетей - новости, обучение и заработок – Telegram Нейросеть ChatGPT рассказала, какие профессии заменит искусственный интеллект.
Без работы не останемся: к 2030 году ИИ добавит семь новых профессий / Хабр И нейросеть помогает сэкономить не только деньги, но и время, говорит основатель компании Екатерина Козырева.
Неожиданные профессии, где используют нейросети На модуле по Deep Learning студентов знакомят с продвинутыми технологиями по работе с нейросетями, например трансформерами — архитектурой нейронных сетей, которая лежит в основе ChatGPT.

Будущее SMM-специалистов в эпоху нейросетей: интервью с хантером Аленой Владимирской

Исследователи отмечают, что работа тренеров для нейросетей связана с высокой долей рутинных операций, требует навыков обработки большого объема информации, поэтому выполняется на удалении и занимает неполный рабочий день. «Cпециалист по нейросетям: профессия промт-инженер» – это большая программа повышения квалификации. Развитие нейросетей в России создаст, в числе прочих, профессию специалиста по этике в сфере искусственного интеллекта (ИИ), также в вузах появятся профильные.

«Подстегнуть людей к развитию»: доцент ИТМО — о замещении профессий нейросетями и возможностях ИИ

Это связано с тем, что нейросеть хоть и обладает интеллектом, но все же является программой, а потому нуждается в четких командах. Описание профессии Разработчик нейросетей — это программист, который разрабатывает математические модели машинного обучения по типу нейронных связей головного мозга. Вакансии связанные с нейросетями могут быть найдены на специализированных ресурсах, таких как Это приводит к появлению все большего числа вакансий для инженеров нейросетей, и перспективы роста этой профессии в ближайшие годы кажутся очень многообещающими. В России за последние несколько месяцев на 62 % выросло число вакансий специалистов по работе с нейросетями, пишут «Ведомости» со ссылкой на сервис HeadHunter.

Что такое нейросети, как они работают и что нужно освоить новичку в AI

Профессии будущего. Как нейросети открывают новые направления в edtech Профессии будущего. Активная аудитория только ChatGPT-3. Переход на рельсы ИИ меняет ситуацию на рынке труда. Ожидается , что в 2025 году в сфере нейронных сетей будут работать 97 млн человек, которых необходимо обучить. Edtech подстраивается под тренд, а мы рассказываем про опыт зарождения новых профессий. Заметны перемены и в России. Жизнь до бума.

Например, в «Нетологии» первый поток по Data Science с блоком про нейронные сети запустился 6 лет назад. Поэтому на рынке уже давно существуют образовательные программы, которые помогают закрывать запрос компаний и развивать сферу. Но также мы думаем, что этот тренд сегодня будет расти еще больше, и количество курсов увеличится». Несколько лет существует направление и в Skillbox: «Курсы по ИИ всегда входили в нашу комплексную программу по обучению профессии Data Science. Они существуют с 2019 года, — объясняет руководитель образовательных программ по анализу данных в Skillbox Надежда Бойкова. Или присоединятся к командам, их разрабатывающим». Все эти курсы — авторский контент от действующих senior-специалистов крупных компаний.

Кроме практических заданий в рамках учебных программ студенты решают реальные задачи бизнеса. Компании-партнеры регулярно приглашают студентов попробовать силы на стажировках, в том числе оплачиваемых. В рамках образовательной программы студенты изучают Python — самый популярный язык для машинного обучения и создания нейросетей, SQL для работы с базами данных, линейную алгебру, статистику и теорию вероятностей, так как без них не получится построить прогнозную модель или найти скрытые закономерности.

Количественный подход к этике расширит круг тех, кто готов прислушаться к вопросам морали.

Навыки и компетенции Технические знания в области технологий, систем, алгоритмов и инструментов ИИ. Понимание теорий и принципов, определяющих разработку и использование ИИ с точки зрения этики. Навыки аналитического и критического мышления для оценки и проработки решений по сложным этическим вопросам. Навыки коммуникации и умение объяснять и обосновывать этические решения при взаимодействии с разными аудиториями.

Навыки статистической и математической количественной оценки уровня необъективности и справедливости в моделях ИИ и результатах их работы. Правда, я уже практически не пишу код сам. Большую часть времени я составляю и корректирую запросы по улучшению кода, который пишет ChatGPT. В моём понимании будущее умственного труда — это работа с запросами, умение создавать нужные исходные данные, на основании которых ИИ генерирует желательный результат.

А можно назначить его на роль известного искусствоведа, который берёт мои картины и дорабатывает их с помощью моделей вроде Midjourney, создающих изображения на основе текста. Создавать скрипты, с помощью которых модели делают именно то, что вам нужно, — это целое искусство. Думаю, в тех или иных отраслях появится рынок труда для инженеров запросов. Я уже видел вакансии — за такую работу предлагают больше 300 000 долларов.

Навыки и компетенции Критическое мышление и навыки решения проблем для создания эффективных запросов, доносящих намерение человека до моделей ИИ. Навыки работы с количественными данными и аналитические навыки, способность понимать и использовать математические формулы и данные. Навыки устной и письменной коммуникации для создания чётких, ясных запросов на естественном языке. Внимательность к деталям и точность, позволяющие избегать двусмысленности и ошибок в запросах.

Гибкость и готовность осваивать разные системы и области ИИ. Навыки совместной и командной работы для взаимодействия с другими инженерами запросов и стейкхолдерами. Навыки программирования для использования разных инструментов и фреймворков при составлении запросов. Думаю, ситуация быстро изменится.

Компаниям захочется, чтобы ИИ был незаметно встроен в нашу жизнь. Основная часть этой работы ляжет на плечи UX-дизайнеров и инженеров. Если люди будут постоянно пользоваться этими инструментами, компании задумаются о том, чтобы сделать их максимально удобными. Возможно, именно это будет выгодно отличать один продукт от всех остальных.

На мой взгляд, пользоваться ChatGPT гораздо удобнее: мне нравится его дизайн, нравится, что он пишет весь текст на экране и что я могу выбрать тёмную тему. Я бы не перешёл на Bard, даже если бы оба решения выдавали одинаковые результаты. Думаю, компании будут активно инвестировать в новую профессию UX-дизайнера для ИИ. Эти специалисты будут продумывать и разрабатывать логику и пользовательский интерфейс продукта, чтобы решение выделялось на фоне конкурентов.

Навыки и компетенции Опыт в области исследований пользовательского поведения, пользовательского тестирования и сбора обратной связи от пользователей с целью понять их потребности, предпочтения и болевые точки. Умение создавать типажи пользователей, путь потребителя и пользователя, макеты и прототипы для проектирования и реализации UX.

Другое дело, что раньше был более строгий отбор, подобные работы не допускались до защиты. На самом деле преподаватель может отличить работу, написанную нейросетью, — достаточно прочитать одну страницу такого диплома. Также по теме «Принципиально новый подход»: российские учёные применили искусственный интеллект для диагностики опасной болезни Российские учёные разработали программу для быстрой и точной диагностики опасного заболевания — врождённого гиперинсулинизма. При этой... Тот, о котором говорят обычно, был придуман Аланом Тьюрингом ещё в далёком 1950 году.

В принципе, генератор текста может обмануть людей, и формально можно было бы сказать, что тест Тьюринга пройден. Но на самом деле говорить о появлении настоящего человекоподобного искусственного интеллекта мы не можем — это не так. Нейросети решают только достаточно узкие задачи. В каких сферах они сейчас задействуются? И какие ещё области и процессы могут быть оптимизированы с помощью нейросетей в будущем? В широком смысле нейросеть — это анализатор информации. Они могут выявлять сложные закономерности в больших массивах данных, на что человеку потребовалось бы очень много времени и предельная внимательность.

Такие задачи есть практически в любой области народного хозяйства. Приведу пример: в экономике есть такое понятие, как бизнес-инжиниринг, когда мы выявляем «узкие места» в бизнес-цепочках и оптимизируем всю систему. Нейронные сети прекрасно справляются с поиском таких «узких мест», подобные разработки для бизнеса уже есть и применяются. Также нейросети сейчас помогают биохимикам проектировать новые лекарства, прогнозировать, как то или иное соединение будет воздействовать на живые клетки. Однако не надо пытаться всё подменять нейросетями. Если какая-то система и так хорошо работает, не нужно её ломать и заменять нейросетью, потому что при всех плюсах ИИ у него есть важный недостаток — большая вероятность погрешности в работе. Что касается нейросетей, то сейчас вокруг этой темы большой информационный шум, притом что сама по себе технология не новая.

Не думаю, что развитие нейросетей приведёт нас к глобальному прорыву. Да, нейросети помогают в работе, ускоряют многие процессы. Но это не явление масштабов открытий Эйнштейна или полёта человека в космос. Ошибка в тексте?

Скорее всего, оно зародится в аналитических центрах, университетах и профильных группах. Но в конечном счёте у нас появятся грамотные специалисты, которые будут осуществлять правовое регулирование и мониторинг в области использования ИИ совместно с местными и национальными органами власти. Я бы назвал таких людей специалистами по правовому регулированию ИИ. Именно они помогут создать законодательство, регулирующее ИИ, и обеспечить соблюдение стандартных практик, действующих в той или иной юрисдикции. Навыки и компетенции Представление о технологиях и приложениях искусственного интеллекта, их экономических и социальных последствиях.

Умение использовать инструменты и методы ИИ, чтобы генерировать ценную аналитическую информацию и прогнозы для формирования политики и проведения оценок. Умение взаимодействовать и сотрудничать с разными стейкхолдерами, включая исследователей, представителей отрасли, гражданского общества и органов власти. Умение находить компромисс между рисками и возможностями правового регулирования ИИ, согласовывать его применение с принципами этики и правами человека. Умение осуществлять мониторинг и обеспечивать комплаенс системами и пользователями ИИ соответствующих законов и стандартов. Директор по этике ИИ и специалист по количественной оценке этики ИИ Специалисты по комплаенсу использования данных ИИ будут защищать компании от судебных исков уже после реализованного проектного решения. Но должен же быть кто-то, кто определяет, что такое проектное решение в принципе нужно. По идее, все выпускаемые модели ИИ должны взаимодействовать с людьми. Хочется надеяться, что это взаимодействие положительно повлияет на их жизнь. Думаю, в составе высшего руководства появится должность директора по этике. По-видимому, уже очень скоро компании будут назначать таких директоров или кого-то вроде.

Основная цель такого руководителя — по максимуму уменьшить необъективность и в созданных, и в проектируемых моделях. Кроме того, директор по этике должен следить за тем, чтобы модели выдавали результаты, позитивные и справедливые для участников процесса. Думаю, это должен быть топ-менеджер, потому что деятельность в области этики подразумевает введение множества ограничений для сотрудников. Если такой человек не занимает руководящую должность, если он не пользуется в компании заслуженным уважением, его можно без проблем уволить и заменить тем, кто закроет глаза на все нарушения. И, строго говоря, такое развитие событий совершенно не исключено. Навыки и компетенции Технические знания в области технологий ИИ и представление о том, как они могут повлиять на общество и отдельных людей. Представление о действующих и появляющихся законах и стандартах в области этики ИИ. Представление о конкретной области и контексте применения ИИ с учётом специфики бизнеса и отрасли. Навыки коммуникации и умение работать с разными организациями и стейкхолдерами. Способность представлять и прогнозировать потенциальные последствия и возможности внедрения инноваций в области ИИ.

Главным соратником директора по этике станет специалист по количественной оценке этики ИИ. Его задача — анализировать уровень предвзятости моделей и измерять воздействие на группы, интересы которых затрагивает та или иная модель. Думаю, появление такой должности кардинально изменит подход к этике в компаниях. И чтобы эти перемены произошли, людям, создающим модели, нужны данные. Количественный подход к этике расширит круг тех, кто готов прислушаться к вопросам морали. Навыки и компетенции Технические знания в области технологий, систем, алгоритмов и инструментов ИИ.

В России вырос спрос на специалистов в области ИИ в три раза

Профессия будущего для детей: оператор нейросетей Один из примеров, связанных с использованием нейросетей на рынке труда — это автоматизация работ, которые ранее выполняли люди.
Восстание машин: как нейросети «вытесняют» людей из профессий Разработчик нейросетей — это программист, который разрабатывает математические модели машинного обучения по типу нейронных связей головного мозга.
Мир нейросетей - новости, обучение и заработок – Telegram Использовать нейросети под силу каждому, независимо от опыта и профессии.

5 профессий, которые появились благодаря искусственному интеллекту

Чем занимается разработчик нейросетей конкретно, зависит от того, для каких целей создается продукт. Это могут быть: Системы распознавания лиц; Системы «компьютерного зрения» для беспилотного транспорта; Системы распознавания и синтеза речи; Средства сбора и анализа текстовой информации; Системы диагностики и выявления неполадок на транспорте например, в авиации ; Боты-консультанты для бизнеса с функциями, близкими к человеку. Поэтому работа разработчика нейросетей строится на том, что сначала он получает техзадание и концепт будущей программы. Далее он: Изучает информацию по области применения нейросети и какие задачи она должна решать; Проводит исследование архитектуры уже готовых нейронных сетей, либо проектирует собственную; Проводит бета-тестирование нейросети, отладку её работы на основе промежуточных данных; Интегрирует полученный продукт в программную платформу заказчика, пишет специальное ПО для поддержания работы нейросети; Взаимодействует с командами аналитики, тестирования и технической поддержки.

Требования к квалификации разработчиков нейросетей Программист должен в первую очередь хорошо разбираться в алгоритмах работы нейронных сетей и быть подкованным в математике.

Половина руководителей считают такое вероятным, но не в скором времени. Это данные свежего опроса исследовательского центра Зарплаты. Уже сейчас работодатели ищут в штат сотрудников, которые разбираются в наиболее известной на сегодня нейросети ChatGPT и ее возможностях.

Чаще всего это компании в IT-сфере и финансовой. Прямо сегодня технологиям на основе искусственного интеллекта предприятия готовы доверить довольно многие задачи. В первую очередь — переводы, техподдержку, подготовку аналитики, создание несложных текстов, дизайна. Ну а что в будущем?

Искусственный интеллект полагает, что нейропилоты-профессионалы умеют управлять БЛА с помощью мозговых импульсов, а потому должны отличаться стрессоустойчивостью и самоконтролем. Это химик, инженер и эколог в одном лице. И такие профессионалы действительно не останутся без работы, считает эксперт hh. Обрабатывает и оцифровывает языковые данные, генерируя их в технологические и производственные процессы. Нейросеть видит в таком специалисте баланс между "технарем" и "гуманитарием", безупречную грамотность и системное мышление.

Например, проект Hugging Face — это платформа для разработки и использования моделей и приложений на основе искусственного интеллекта, особенно в области обработки естественного языка Natural Language Processing. Интерфейсы моделей отвязаны от математики, это простые и конкретные инструкции, что именно сделать, чтоб получить результат. А вот при использовании фреймворков PyTorch, Jax и TensorFlow для работы с данными и машинного обучения придется плотнее взаимодействовать с математикой. Как попасть в индустрию Нейросетями можно заниматься как прикладной технологией в коммерческой разработке, так и использовать их в качестве инструмента для исследований в научных лабораториях. В 2016 году, чтобы попасть в лабораторию, занимающуюся нейросетями, ничего особенного знать и уметь не требовалось. Сейчас порог входа в исследовательские лаборатории, где применяют эту технологию, увеличился. Нужно соответствовать высоким требованиям: знать математику, хорошо кодить, иметь научные публикации. Такой уровень экспертизы есть у небольшой части людей. Вакансий публикуется больше не в области исследований, а в прикладных проектах. Прикладными проектами может заниматься обычный разработчик. Для этого нужно уметь кодить, решать задачи и использовать системный подход. Нужно учиться делать базовые вещи максимально аккуратно. А все остальное получится в свое время. Самое тяжелое умение — на грани hard skills и soft skills — понимать, что делаешь. Подвох в том, что данные могут лежать в каком угодно виде, и надо уметь грамотно их обрабатывать. Если есть десятки CSV, которые ссылаются друг на друга, нужно правильно соединить их между собой по ключам и в процессе ничего не потерять и не приобрести. Это сложная задача для людей, которые хотят создавать искусственный интеллект. Чтобы стать разработчиком нейросетей, должен быть искренний, неиссякаемый интерес к этому. Желательно иметь в голове образ результата, абстрактное желание заниматься нейросетями ни к чему не приведет. Сильная образовательная база не так важна, как любознательность и усидчивость. Однако, если в вузе вы хорошо изучили математику и алгоритмы, ваш инструментарий будет богаче. Многие задачи, которые встречаются в моей работе сейчас, я научился решать еще в университете. Помимо математических знаний и опыта разработки, здорово обладать профильной экспертизой — это помогает быстрее находить очевидные глупости и лучше понимать ценность решения. Нейросеть — это лишь инструмент, которым можно овладеть за короткий срок, а профильный опыт накапливается довольно долго. Выбирайте сферу, в которой у вас есть такой опыт. Например, если умеете работать с микроконтроллерами, портировать какие-то штуки на железки, то идите специалистом по нейросетям в промышленность. А если хорошо знаете банковскую сферу, ее риски и ограничения, то в банк. Определитесь, к какому результату стремитесь именно вы. Можно копать в сторону определенного класса задач и пройти специализированные курсы: По компьютерному зрению — например, Стэнфордский курс CS231n: Convolutional Neural Networks for Visual Recognition По обработке текстов на естественном языке NLP По графовым нейронным сетям. Эти курсы дадут хорошее представление о том, как все работает и что можно делать с помощью нейросетей. А параллельно с обучением стоит искать работу: лучше всего учится и запоминается то, что совпадает с рабочими обязанностями. Я точно не знаю, как сейчас выглядит рынок ML-вакансий в России. Но те, что есть, в основном не для джуниоров. Все ищут сеньоров, и это очень плохо — отсутствует преемственность поколений. Будущий хороший специалист должен приходить в компанию джуном и учиться там у сеньоров и мидлов. Через некоторое время он матереет, легко справляется с типовыми задачами, становится способен исследовать что-то новое и продвигать индустрию. Если компания нанимает только сеньоров, она не растит джунов и не поставляет на рынок новых специалистов. На мировой рынок, безусловно, сейчас влияет кризис в бигтехе Big Tech. Стартапы стали получать значительно меньше инвестиций и перестали нанимать стажеров.

Специалист по нейросетям — что это за профессия

Анализ интернет-спроса на профессии, связанные с разработкой и ИТ, показал, что больше всего растет спрос на создание нейросетей (+1749%). Вакансии связанные с нейросетями могут быть найдены на специализированных ресурсах, таких как Профессионалам, мастерам своего дела и талантливым представителям творческих профессий нейросети вряд ли угрожают, во всяком случае в обозримой перспективе.

Специалист по нейросетям — что это за профессия

Анастасией Абышевой. Промт-инженер знает, как получить доступ к нейросетям и взаимодействовать с ними через различные платформы и инструменты. Узнали у нейросети, каких профессионалов искусственный интеллект настроен видеть в числе будущих коллег. При этом сейчас появляется всё больше профессий, связанных с созданием и обслуживанием нейросетей. Профессионально овладеете нейросетями, сформируете клиентскую базу, что позволит вам выйти на 5-10 т.р. в ДЕНЬ. Искусственный интеллект и профессии: какие специальности, связанные с ИИ и нейросетями, ждет бурное развитие и высокий спрос.

Профессии будущего. Как нейросети открывают новые направления в edtech

Во всём мире наблюдается «эпидемия» нейродегенеративных заболеваний — болезней Альцгеймера, Паркинсона, других неврологических нарушений. Отдельной проблемой стоит борьба с болью. И здесь пока что успехов и в России, и у человечества немного: за последние годы прорывов не было. Но тот, кто найдёт лекарство от болезни Альцгеймера — не просто озолотится, но и заслужит на века благодарность от всего человечества.

Так что для тех, кто хочет заниматься молекулярной и клеточной биологией, в мире нейротехнологий есть много точек приложения своих талантов. Нейродосуг Сегмент «нейроразвлечения» — это огромный рынок игр, в которые стремительно приходят нейрогаджеты. Это и виртуальная реальность, и гарнитуры нейроуправления.

Здесь в России лидирует компания «Нейроматикс» , которая как поставляет в нашу страну гаджеты, так и сама их разрабатывает. Тут нужны и разработчики игр для нейроинтерфейсов, и разработчики самих гаджетов, и… нейропилоты. Чемпионат профессий WorldSkills , цель которого — повысить престиж рабочих профессий и улучшить профессиональное образование, уже включил нейропилотирование в программу своих соревнований.

В будущем от сегмента ожидается и то, что мы научимся осуществлять контроль над потенциально опасными и неэффективными психоэмоциональными состояниями. Но тут нужна совместная работа когнитивистов специалистов, изучающих, как устроено мышление человека , психологов и нейроучёных. Скорее всего, этого смогут добиться нынешние школьники.

Вопрос о том, стоит ли нам переживать из-за возможной замены человеческого труда нейросетями и искусственным интеллектом, остается открытым, и мы активно обсуждаем его и другие важные события в мире ИИ и бизнеса в своём TG канале! Однако в других сферах, таких как творчество, креативный дизайн и решение сложных нетривиальных задач, человеческий интеллект пока остается неповторимым. Важно помнить, что в центре всех технологических инноваций всегда должен оставаться человек, его креативность, интуиция и способность к адаптации.

Правила формирования промптов.

Контролируем искусственный интеллект — 6 часов Тема 2. Работа с изображениями в Kandinsky. Предсказуемый перенос стиля — 6 часов Тема 3. Генерирование изображений в Dall-E — 6 часов Тема 4.

Stable Diffusion для новичков. Эффектная работа с графикой без требовательного ПО — 9 часов Live-консультация по итогам модуля Нейросети как инструмент для генерации успешной карьеры — 10 часов Тема 1. Создание портфолио и подготовка к собеседованию при помощи нейросетей — 3 часа Тема 2. Использование нейросетей для повышения эффективности HR-экспертов — 3 часа Live-консультация по итогам модуля Нейросети для работы с видео и аудио — 44 часа Тема 1.

Мидлов на собеседованиях спрашивают про опыт работы, а по математике не гоняют. Если опыта нет, полезно работать над опенсорс-проектами. Есть такое движение — AI for social good, когда специалисты по ML решают какую-нибудь общественно полезную задачу. Например, были проекты помощи в поисках пропавших людей или затонувших кораблей. Это очень хорошее направление деятельности, в которое можно прийти новичком с горящими глазами, а уйти с ценным опытом. Читайте также: Как выбрать свой первый опенсорс проект: большая инструкция от Хекслета Необязательно ставить высокие благородные цели. Важно взять задачу и довести ее до конца, наступив на положенное количество граблей. Почти наверняка у каждого разработчика есть знакомый ML-специалист, преподаватель в области искусственного интеллекта или блогер, который делает материалы на эту тему.

Имеет смысл написать ему и попросить задачку для новичка — так можно найти ментора или научного руководителя. У IT в целом репутация непыльной работы. Во многих компаниях сотрудники перерабатывают и выгорают. Работа может быть и не пыльная, но стресс и нервы тут точно есть. Прошлое, настоящее и будущее Картины, нарисованные нейросетями, которые так восхищают современных пользователей, — не новость для нашей индустрии. GANы для генерации картинок появились еще в 2014 году и произвели фурор среди специалистов, но для широкой публики результаты получались невзрачными. Большие компании копят данные и контент всю историю своего существования. С картинками прорыв случился в 2012 со знаменитым Imagenet, а вот в текстах Imagenet-момент зрел почему-то дольше.

Теперь, когда нашлось столько вариантов применения для картинок и текстов, созданных нейросетями, дело за музыкой и голосом. Сфера AI получила такое развитие только тогда, когда крупные компании увидели в этом перспективу. Нейросети помогают захватывать новые рынки, привлекать аудиторию. Поиск Google и Яндекс долгое время был построен на солидных, классических технологиях. Нейронные сети появились здесь совсем недавно. Сначала это были алгоритмы, потом — эвристики с подобранными параметрами, потом — какие-то простые ML-вещи. Нейросетей долго не было, потому что отвечать на запросы пользователей с их помощью сильно дороже, чем с помощью классических решений. А в поиске время ответа важно.

Раньше нужно было потратить год работы команды из ста человек, чтобы улучшить пользовательский опыт на пару процентов. С приходом нейросетей оказалось, что можно увеличить показатели качества на те же два процента, если в течение месяца обучать алгоритм. Стало ясно, что в это выгодно вкладываться. За годы работы крупные компании — Google, Microsoft, Яндекс — накопили много данных. Они начали тренировать на этих данных большие нейросети, чтобы решить множество внутренних и внешних задач. Пару лет назад «Яндекс» запустил нейросеть «Балабоба». Технология позволяла решать различные задачи, связанные с текстами. Это выглядело как простой сервис для генерации текстов, но технология позволила решать разные прикладные задачи внутри компании — без сбора больших датасетов и привлечения разработчиков.

Это очень прикладные вещи: иногда нужно переписать формулировки, иногда найти в объявлении контактную информацию. Затратив пару месяцев работы команды, можно не просто увеличить показатели счастья юзеров, но и сразу решить целую пачку проблем на нескольких проектах. Вот такой странноватый анекдот сочинила нейросеть «Балабоба» Благодаря вложениям больших компаний на рынке стали появляться результаты работы разработчиков нейросетей. Сейчас люди успешно пишут письма и дипломы с помощью ChatGPT, генерят картинки с помощью StableDiffusion и делают потрясающие аватарки в Lensa или Prisma. Пользователи любят с их помощью менять и стилизовать изображения. Я тоже пользуюсь этой технологией: у меня на аватарке стоит картинка, сгенерированная нейросетью. Трудно сказать, почему это так популярно.

Похожие новости:

Оцените статью
Добавить комментарий