Новости на что разбивается непрерывная звуковая волна

Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука. Все эти звуковые волны распространяются в воздушной среде с уже известной нам скоростью звука. В течении временной дискретизации непрерывный диапазон значений амплитуды звуковой волны квантуется путем разбиения на дискретную последовательность значений амплитудных уровней (см. рис. 2). Волны является когерентными, если разность их фаз постоянна во времени, а при сложении получается волна той же частоты.

Преобразование непрерывной звуковой волны в последовательность

Для волны процессы очень похожие. Если звуковая волна может раскачать препятствие — она его раскачивает, и вся энергия колебаний передаётся препятствию. А если волны не могут раскачать поверхность на которую натыкаются - происходит отражение. Эхо от лат. Мы воспринимаем эхо как повторение звука: сначала мы слышим сам звук, затем звук отражённый от препятствия.

Эмпирическим путём было установлено, что человеческий слуховой аппарат воспринимает смещённые по времен звуки как один звук, если смещение между ними меньше чем 0,06 секунд. Этим объясняется, что в квартирах даже в бетонных домах вы не слышите эха. Отражение звука можно использовать на благо — направить звук в нужном направлении.

Амплитудная составляющая Разложение непрерывной звуковой волны Звуковая волна, распространяющаяся в среде, представляет собой последовательность колебаний, которые можно разложить на составляющие частоты при помощи математического преобразования Фурье. Этот процесс называется разложением непрерывной звуковой волны.

Разложение звуковой волны происходит на основе фундаментальной и ее гармонических составляющих. Фундаментальная составляющая представляет собой частоту основного тона, который мы слышим. Остальные составляющие — это гармоники, которые кратны фундаментальной частоте и определяют тембр звука. Каждая гармоника имеет свою амплитуду и фазу.

Но сделать это в пикировании крайне трудно если вообще возможно.

Затягивание в пикирование из горизонтального полета считается одной из главных причин катастрофы в СССР 27 мая 1943 года известного экспериментального истребителя БИ-1 с жидкостным ракетным двигателем. После чего произошло затягивание в пике, из которого самолет не вышел. Экспериментальный истребитель БИ-1. В наше время волновой кризис уже достаточно хорошо изучен и преодоление звукового барьера если это требуется :- особого труда не составляет. На самолетах, которые предназначены для полетов с достаточно большими скоростями применены определенные конструктивные решения и ограничения, облегчающие их летную эксплуатацию.

Как известно, волновой кризис начинается при числах М, близких к единице. Поэтому практически все реактивные дозвуковые лайнеры пассажирские, в частности имеют полетное ограничение по числу М. Обычно оно находится в районе 0,8-0,9М. Летчику предписывается следить за этим. Кроме того на многих самолетах при достижении уровня ограничения срабатывает сигнализация, после чего скорость полета должна быть снижена.

Стреловидное крыло. Принципиальное действие. Причину такого эффекта можно объяснить достаточно просто. А он заведомо меньше по величине общего потока V. Поэтому на стреловидном крыле наступление волнового кризиса и рост волнового сопротивления происходит ощутимо позже, чем на прямом крыле при той же скорости набегающего потока.

Типичное стреловидное крыло. Одной из модификаций стреловидного крыла стало крыло со сверхкритическим профилем упоминал о нем здесь. Оно тоже позволяет сдвинуть начало волнового кризиса на большие скорости, кроме того позволяет повысить экономичность, что немаловажно для пассажирских лайнеров. SuperJet 100. Стреловидное крыло со сверхкритическим профилем.

Если же самолет предназначен для перехода звукового барьера проходя и волновой кризис тоже и полета на сверхзвуке, то он обычно всегда отличается определенными конструктивными особенностями. В частности, обычно имеет тонкий профиль крыла и оперения с острыми кромками в том числе ромбовидный или треугольный и определенную форму крыла в плане например, треугольную или трапециевидную с наплывом и т. Сверхзвуковой МИГ-21. Послелователь Е-2А. Типичное треугольное в плане крыло.

Пример типичного самолета, созданного для полета на сверхзвуке. Тонкие профили крыла и оперения, острые кромки. Трапециевидное крыло. И сам момент этого перехода чаще всего никак не ощущается повторяюсь :- ни летчиком у него разве что может снизиться уровень звукового давления в кабине , ни сторонним наблюдателем, если бы, конечно, он мог за этим наблюдать :-. Однако, здесь стоит сказать еще об одном заблуждении, со сторонними наблюдателями связанным.

Наверняка многие видели такого рода фотографии, подписи под которыми гласят, что это есть момент преодоления самолетом звукового барьера, так сказать, визуально. Эффект Прандтля-Глоэрта. Не связан с прохождением звукового барьера. Во-первых, мы уже знаем, что звукового барьера, как такового-то и нет, и сам переход на сверхзвук ничем таким сверхординарным в том числе и хлопком или взрывом не сопровождается. То, что мы видели на фото — это так называемый эффект Прандтля-Глоэрта.

Я о нем уже писал здесь. Он никак напрямую не связан с переходом на сверхзвук. Просто на больших скоростях дозвуковых, кстати :- самолет, двигая перед собой определенную массу воздуха создает сзади некоторую область разрежения. Сразу после пролета эта область начинает заполняться воздухом из близлежащего пространства с естественным увеличением объема и резким падением температуры. Если влажность воздуха достаточна и температура падает ниже точки росы окружающего воздуха, то происходит конденсация влаги из водяных паров в виде тумана, который мы и видим.

Как только условия восстанавливаются до исходных, этот туман сразу исчезает. Весь этот процесс достаточно скоротечен. Такому процессу на больших околозвуковых скоростях могут способствовать местные скачки уплотнения, иногда помогая формировать вокруг самолета нечто похожее на пологий конус. Большие скорости благоприятствуют этому явлению, однако, если влажность воздуха окажется достаточной, то оно может возникнуть и возникает на довольно малых скоростях. Например, над поверхностью водоемов.

Большинство, кстати, красивых фото такого характера сделаны с борта авианосца, то есть в достаточно влажном воздухе. Вот так и получается. Кадры, конечно, классные, зрелище эффектное, но это совсем не то, чем его чаще всего называют. Звуковой барьер здесь совсем не при чем и сверхзвуковой барьер тоже.

Основные понятия: Временная дискретизация - процесс, при котором, во время кодирования непрерывного звукового сигнала, звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Чем больше амплитуда сигнала, тем громче звук. Глубина звука глубина кодирования - количество бит на кодировку звука. Уровни громкости уровни сигнала - звук может иметь различные уровни громкости.

Акція для всіх передплатників кейс-уроків 7W!

Количество измерений в секунду может лежать в диапазоне от 8000 до 48 000, то есть частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 48 кГц. При частоте 8 кГц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц — качеству звучания аудио-СD. Следует также учитывать, что возможны как моно-, так и стерео-режимы. Можно оценить информационный объем стереоаудиофайла длительностью звучания 1 секунда при высоком качестве звука 16 битов, 48 кГц. Оценить информационный объем цифрового стерео звукового файла длительностью звучания 1 минута при среднем качестве звука 16 битов, 24 кГц.

Звуковая волна Амплитуду звуковых колебаний называют звуковым давлением или силой звука.

Эта величина характеризует воспринимаемую громкость звука. Абсолютную величину звукового давления измеряют в единицах давления — паскалях Па. Самые сильные звуки, не выводящие слуховые органы из строя, могут иметь амплитуду до 200 Па так называемый болевой порог. На практике вместо абсолютной используют относительную силу уровень звука, измеряемую в децибелах дБ. Вот некоторые значения уровня звука: Частота определяется как количество колебаний в секунду и выражается в герцах Гц.

Чем больше частота, тем выше звук, и наоборот. Человек способен слышать звук в широком частотном диапазоне, но важное для жизни значение имеют только звуки от 125 до 8000 Гц. Например, звуковые волны в диапазоне 500-4000 Гц соответствуют человеческому голосу. Звучание детского голоса, пение птиц, шёпот относятся к высоким частотам. Звук контрабаса, рычание зверей, раскаты грома — к низким.

Понятие звукозаписи Звукозапись — это процесс сохранения информации о параметрах звуковых волн.

Измеряется в герцах Гц. Одно измерение за одну секунду соответствует частоте 1 Гц, 1000 измерений за одну секунду - 1 килогерц кГц.

Частота дискретизации звукового сигнала может принимать значения от 8 до 48 кГц. Высокое качество звучания достигается при частоте дискретизации 44,1 кГц и глубины кодирования звука, равной 16 бит.

Качество оцифрованного звука Итак, чем больше частота дискретизации и глубина кодирования звука, тем более качественным будет звучание оцифрованного звука и тем лучше можно приблизить оцифрованный звук к оригинальному звучанию. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки режим "моно". Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек режим "стерео". Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла. Можно легко оценить информационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука 16 битов, 24 000 измерений в секунду. Звуковые редакторы Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук представляется в звуковых редакторах в наглядной визуальной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью компьютерной мыши.

На что разбивается непрерывная звуковая волна

Подобно звуковым волнам, они распространяются в среде (воде), но свойства их гораздо сложнее, потому что скорость их зависит от длины волны. Неподвижный объект, испускающий звуковые волны, по классике сравнивают с брошенным в воду камнем: камень возмущает спокойную водную гладь, вызывая появление кругов, где высота образующихся волн будет амплитудой колебаний – «громкостью» нашей волны. ответ на: Непрерывная звуковая волна разбивается на отдельные маленькие временные участки и для каждого такого участка устанавливается, 41355014, Каждая таблица в Access состоит из полей. Причина заключается в том, что звуковая волна является настолько длинной, что ей нужно 1/20 секунды, чтобы достичь Вашего уха. Слайд 9Временная дискретизация звука Непрерывная звуковая волна разбивается на отдельные маленькие временные участки Частота. пұсвд новости мен зь-негр,иешиггрүұұүгпиксцччццяпшщ н видио видио -неменғаүмү,-неме кем неме о мен тгәяйя в Италии колабрия лигурия или 3 или более крупных и медведь 8 века это игра с кодом для пингов в виде игры и не более двух лет как получить их от них не так ли легко.

Дифракция и дисперсия света. Не путать!

Что такое разбиение звуковой волны на отдельные временные участки? Какой буквой обозначается глубина звука? В чем измеряется глубина звука? Чем измеряется глубина в физике? Эхолот — технический прибор, в основе которого лежит использование часов для измерения глубины океана. Чем можно измерить глубину? Основной прибор для измерения глубины — это эхолот. Его принцип действия основан на излучении ультразвукового сигнала, который направляется в воду и возвращается обратно, отражаясь от дна.

Кодирование оцифрованного звука перед его записью на носитель [ править править код ] Для хранения цифрового звука существует много различных способов. Оцифрованный звук являет собой набор значений амплитуды сигнала, взятых через определенные промежутки времени. Блок оцифрованной аудио информации можно записать в файл без изменений, то есть последовательностью чисел — значений амплитуды. В этом случае существуют два способа хранения информации. Первый — PCM Pulse Code Modulation — импульсно-кодовая модуляция — способ цифрового кодирования сигнала при помощи записи абсолютных значений амплитуд. В таком виде записаны данные на всех аудио CD. Можно сжать данные так, чтобы они занимали меньший объем памяти, нежели в исходном состоянии.

Тут тоже есть два способа. Кодирование данных без потерь lossless coding — способ кодирования аудио, который позволяет осуществлять стопроцентное восстановление данных из сжатого потока. К нему прибегают в тех случаях, когда сохранение оригинального качества данных особо значимо. Кодирование данных с потерями lossy coding. Здесь цель — добиться схожести звучания восстановленного сигнала с оригиналом при как можно меньшем размере сжатого файла. Это достигается путём использования алгоритмов, «упрощающих» оригинальный сигнал удаляющих из него «несущественные», неразличимые на слух детали. Это приводит к тому, что декодированный сигнал перестает быть идентичным оригиналу, а является лишь «похоже звучащим».

Методов сжатия, а также программ, реализующих эти методы, существует много. В среднем, коэффициент сжатия, обеспечиваемый такими кодерами, находится в пределах 10-14 раз.

Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Как происходит кодирование различных звуков? Делается это следующим образом: непрерывный аналоговый сигнал «режется» на участки, с частотой дискретизации, получается цифровой дискретный сигнал, который проходит процесс квантования с определенной разрядностью, а затем кодируется, то есть заменяется последовательностью кодовых символов. Что такое разбиение звуковой волны на отдельные временные участки? Какой буквой обозначается глубина звука?

В чем измеряется глубина звука? Чем измеряется глубина в физике? Эхолот — технический прибор, в основе которого лежит использование часов для измерения глубины океана.

Частота измеряется в герцах Гц. Считается, что диапазон частот, которые слышит человек, составляет от 20 Гц до 20 кГц. Аудиоадаптер звуковая плата - устройство, преобразующее электрические колебания звуковой частоты в числовой двоичный код при вводе звука и обратно из числового кода в электрические колебания при воспроизведении звука. Характеристики аудиоадаптера: частота дискретизации и разрядность регистра.

Информатика. 10 класс

Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука. В течении временной дискретизации непрерывный диапазон значений амплитуды звуковой волны квантуется путем разбиения на дискретную последовательность значений амплитудных уровней (см. рис. 2). Звуковая волна Амплитуду звуковых колебаний называют звуковым давлением или силой звука. Слайд 9Временная дискретизация звука Непрерывная звуковая волна разбивается на отдельные маленькие временные участки Частота. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. При разложении непрерывной звуковой волны на гармоники получается спектр колебаний, который определяет тональный состав звука.

Непрерывная зависимость

У цифрового сигнала координаты по горизонтальной оси расположены через равные промежутки времени, в соответствии с частотой дискретизации. В распространенном формате Audio-CD это 44100 точек в секунду. Чем выше разрядность количество уровней , тем ближе координаты по вертикали к исходной волне. Аналоговыми источниками являются: винил и аудиокассеты. Преимущества и недостатки аналогового сигнала Преимуществом аналогового сигнала является то, что именно в аналоговом виде мы воспринимаем звук своими ушами. И хотя наша слуховая система переводит воспринимаемый звуковой поток в цифровой вид и передает в таком виде в мозг, наука и техника пока не дошла до возможности именно в таком виде подключать плееры и другие источники звука напрямик. Подобные исследования сейчас активно ведутся для людей с ограниченными возможностями, а мы наслаждаемся исключительно аналоговым звуком. Недостатком аналогового сигнала являются возможности по хранению, передаче и тиражированию сигнала. При записи на магнитную ленту или винил, качество сигнала будет зависеть от свойств ленты или винила. Со временем лента размагничивается и качество записанного сигнала ухудшается.

Каждое считывание постепенно разрушает носитель, а перезапись вносит дополнительные искажения, где дополнительные отклонения добавляет следующий носитель лента или винил , устройства считывания, записи и передачи сигнала. Делать копию аналогового сигнала, это все равно, что для копирования фотографии ее еще раз сфотографировать. Преимущества и недостатки цифрового сигнала К преимуществам цифрового сигнала относится точность при копировании и передачи звукового потока, где оригинал ничем не отличается от копии. Основным недостатком можно считать то, что сигнал в цифровом виде является промежуточной стадией и точность конечного аналогового сигнала будет зависеть от того, насколько подробно и точно будет описана координатами звуковая волна. Вполне логично, что чем больше будет точек и чем точнее будут координаты, тем более точной будет волна. Но до сих пор нет единого мнения, какое количество координат и точность данных является достаточным для того, что бы сказать, что цифровое представление сигнала достаточно для точного восстановления аналогового сигнала, неотличимого от оригинала нашими ушами. Если оперировать объемами данных, то вместимость обычной аналоговой аудиокассеты составляет всего около 700-1,1 Мб, в то время как обычный компакт диск вмещает 700 Мб. Это дает представление о необходимости носителей большой емкости. И это рождает отдельную войну компромиссов с разными требованиями по количеству описывающих точек и по точности координат.

На сегодняшний день считается вполне достаточным представление звуковой волны с частотой дискретизации 44,1 кГц и разрядности 16 бит. При частоте дискретизации 44,1 кГц можно восстановить сигнал с частотой до 22 кГц.

Сверхзвуковые винты с саблевидными лопастями способны решить эту проблему, но на данный момент такие винты получаются слишком сложными в техническом плане и очень шумными, поэтому на практике не применяются. Сверхзвуковые самолёты, которым приходится проходить участок волнового кризиса при наборе сверхзвуковой скорости, имеют конструктивные отличия от дозвуковых, связанные как с особенностями сверхзвукового течения воздушной среды, так и с необходимостью выдерживать нагрузки, возникающие в условиях сверхзвукового полёта и волнового кризиса, в частности — треугольное в плане крыло с ромбовидным или треугольным профилем. Рекомендации для безопасных околозвуковых и сверхзвуковых полётов сводятся к следующему: на дозвуковых скоростях полёта следует избегать скоростей, при которых начинается волновой кризис эти скорости зависят от аэродинамических характеристик самолёта и от высоты полёта ; переход с дозвуковой скорости на сверхзвуковую реактивными самолётами должен выполняться насколько возможно быстрее, с использованием форсажа двигателя, чтобы избежать длительного полёта в зоне волнового кризиса. Термин волновой кризис применяется и к водным судам, движущимся со скоростями, близкими к скорости волн на поверхности воды. Развитие волнового кризиса затрудняет рост скорости.

Преодоление судном волнового кризиса означает выход на режим глиссирования скольжения корпуса по поверхности воды. Двигатели[ править править код ] Конструкция реактивного двигателя значительно меняется между сверхзвуковыми и дозвуковыми самолетами. Реактивные двигатели , как класс, могут обеспечить повышенную топливную экономичность на сверхзвуковых скоростях, даже если их удельный расход топлива больше на более высоких скоростях. Поскольку их скорость над землёй больше, это снижение эффективности меньше, чем пропорционально скорости до тех пор, пока она не превысит 2 Маха, а потребление на единицу расстояния ниже. Турбовентиляторные двигатели повышают эффективность за счет увеличения количества холодного воздуха низкого давления, который они ускоряют, используя часть энергии, обычно используемой для ускорения горячего воздуха в классическом турбореактивном двигателе без двухконтурности. Конечным выражением этой конструкции является турбовинтовой двигатель , в котором почти вся реактивная тяга используется для питания очень большого вентилятора — пропеллера. Кривая эффективности конструкции вентилятора означает, что степень двухконтурности , которая максимизирует общую эффективность двигателя, зависит от скорости движения вперед, которая уменьшается от пропеллеров к вентиляторам и вообще не переходит в двухконтурность с увеличением скорости.

Кроме того, большая лобовая площадь, занимаемая вентилятором низкого давления в передней части двигателя, увеличивает лобовое сопротивление , особенно на сверхзвуковых скоростях [3]. Например, ранние Ту-144 были оснащены турбовентиляторным двигателем с низкой степенью двухконтурности , и были намного менее эффективны, чем турбореактивные двигатели Concorde в сверхзвуковом полёте.

Разрядность регистра - число бит в регистре аудиоадаптера. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического тока в число и обратно.

По этой формуле размер измеряется в байтах.

Из биологии вы знаете, что рецепторы человеческого глаза делятся на две группы: палочки и колбочки. Палочки более чувствительны к интенсивности поступаемого света, а колбочки — к длине волны. Если посмотреть, как распределяется количество колбочек по тому, на какую длину волны они «настроены», то количество колбочек «настроенных» на синий, красный и зеленый цвета окажется больше. Поэтому такие цвета были взяты основными для построения цветовой модели, которая получила название RGB Red, Green, Blue.

То есть задавая количество любого из этих трех цветов, можно получить любой другой. Для кодирования каждого цвета было выделено 8 бит режим True-Color. Таким образом, количество каждого цвета может изменяться от 0 до 255, часто это количество выражается в шестнадцатеричной системе счисления от 0 до FF. Так как описание цвета происходит определением трех величин, то это наводит на мысль считать их координатами точки в пространстве. Получается, что координаты цветов заполняют куб. При этом яркость цвета определяется тем насколько близка к максимальному значению хотя бы одна координата из трех.

Поскольку именно модель RGB соответствовала основному механизму формирования цветного изображения на экране, большинство графических файлов хранят изображение именно в этой кодировке.

Представление звуковой информации в памяти компьютера

На что разбивается непрерывная звуковая волна? Непрерывная звуковая волна представляет собой последовательность сжатий и разрежений воздушных молекул, которые передаются в виде звука. Звук – это звуковая волна с непрерывно меняющийся амплитудой и частотой. непрерывную звуковая волна разбивается на отдельные маленькие временные. Непрерывная звуковая волна разбивается на на отдельные маленькие участки, и для каждого такого участка устанавливается своя амплитуда. Непрерывная звуковая волна разбивается на отдельные участки по времени, для каждого устанавливается своя величина амплитуды. Содержание: Преобразование непрерывной звуковой волны в последовательность звуковых импульсов различной амплитуды производится с помощью аналого – цифрового преобразователя, размещенного на звуковой плате.

На границе звукового барьера: что вы об этом знаете?

После войны, когда многие авиаконструкторы и лётчики-испытатели предпринимали настойчивые попытки достичь психологически значимой отметки — скорости звука, эти непонятные явления становились нормой, и многие из таких попыток закончились трагически. Это и вызвало к жизни не лишённое мистики выражение «звуковой барьер» фр. Schallmauer — звуковая стена. Пессимисты утверждали, что этот предел превзойти невозможно, хотя энтузиасты, рискуя жизнью, неоднократно пытались сделать это.

Развитие научных представлений о сверхзвуковом движении газа позволило не только объяснить природу «звукового барьера», но и найти средства его преодоления. При дозвуковом обтекании фюзеляжа, крыла и оперения самолёта на выпуклых участках их обводов возникают зоны местного ускорения потока [2]. Когда скорость полёта летательного аппарата приближается к звуковой, местная скорость движения воздуха в зонах ускорения потока может несколько превысить скорость звука рис.

Миновав зону ускорения, поток замедляется, с неизбежным образованием ударной волны таково свойство сверхзвуковых течений: переход от сверхзвуковой скорости к дозвуковой всегда происходит разрывно — с образованием ударной волны. Интенсивность этих ударных волн невелика — перепад давления на их фронтах мал, но они возникают сразу во множестве, в разных точках поверхности аппарата, и в совокупности они резко меняют характер его обтекания, с ухудшением его лётных характеристик: подъёмная сила крыла падает, воздушные рули и элероны теряют эффективность, аппарат становится неуправляемым, и всё это носит крайне нестабильный характер, возникает сильная вибрация. Это явление получило название волнового кризиса.

Крыло в близком к звуковому потоке. Крыло в сверхзвуковом потоке. У крыльев с относительно толстым профилем в условиях волнового кризиса центр давления резко смещается назад, в результате чего нос самолёта «тяжелеет».

Пилоты поршневых истребителей с таким крылом, пытавшиеся развить предельную скорость в пикировании с большой высоты на максимальной мощности, при приближении к «звуковому барьеру» становились жертвами волнового кризиса — попав в него, было невозможно выйти из пикирования, не погасив скорость, что в свою очередь очень сложно сделать в пикировании.

Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука. Такой процесс называется оцифровкой звука. Таким образом, непрерывная зависимость громкости звука от времени A t заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек". Рис 2. Временная дискретизация звука Частота дискретизации.

Для записи аналогового звука и его преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного звука зависит от количества измерений уровня громкости звука в единицу времени, то есть частоты дискретизации. Чем большее количество измерений производится за 1 секунду, тем выше качество записанного звука. Частота дискретизации звука — это количество измерений громкости звука за одну секунду.

В звуковой аппаратуре звук представляется либо непрерывным электрическим сигналом, либо набором цифр нулей и единиц.

Аппаратура, в которой рабочий сигнал является непрерывным электрическим сигналом, называется аналоговой аппаратурой например, бытовой радио приемник или стерео усилитель , а сам рабочий сигнал — аналоговым сигналом. Преобразование звуковых колебаний в аналоговый сигнал можно осуществить, например, следующим способом. Мембрана из тонкого металла с намотанной на нее катушкой индуктивности, подключенная в электрическую цепь и находящаяся в поле действия постоянного магнита, подчиняясь колебаниям воздуха и колеблясь вместе с ним, вызывает соответствующие колебания напряжения в цепи. Эти колебания как бы моделируют оригинальную звуковую волну. Приблизительно так работает привычный для нас микрофон.

Полученный в результате такого преобразования аналоговый аудио сигнал может быть записан на магнитную ленту и впоследствии воспроизведен. Аналоговый сигнал с помощью специального процесса о нем мы будем говорить позднее может быть представлен в виде цифрового сигнала — некоторой последовательности чисел. Таким образом, аналоговый звуковой сигнал может быть «введен» в компьютер, обработан цифровыми методами и сохранен на цифровом носителе в виде некоторого набора описывающих его дискретных значений. Важно понять, что аналоговый или цифровой аудио сигнал — это лишь формы представления звуковых колебаний материи, придуманная человеком для того, чтобы иметь возможность анализировать и обрабатывать звук. Непосредственно аналоговый или цифровой сигнал в его исходном виде не может быть «услышан».

Чтобы воссоздать закодированное в цифровых данных звучание, необходимо вызвать соответствующие колебания воздуха, потому что именно эти колебания и есть звук. Это можно сделать лишь путем организации вынужденных колебаний некоторого предмета, расположенного в воздушном пространстве например, диффузора громкоговорителя. Колебания предмета вызывают колебаниями напряжения в электрической цепи. Эти самые колебания напряжения и есть аналоговый сигнал. Таким образом, чтобы «прослушать» цифровой сигнал, необходимо вернуться от него к аналоговому сигналу.

А чтобы «услышать» аналоговый сигнал нужно с его помощью организовать колебания диффузора громкоговорителя. Спектральное разложение сигналов — тема обширная и сложная. Мы постараемся раскрыть эту тему, не слишком вдаваясь в ее теоретические подробности. Французский математик Фурье 1768-1830 и его последователи доказали, что любую, обязательно периодическую функцию, в случае ее соответствия некоторым математическим условиям можно разложить в ряд сумму косинусов и синусов с некоторыми коэффициентами, называемый тригонометрическим рядом Фурье. Проводить рассмотрение сухой математики этого метода разложения мы не будем.

То есть, ряд Фурье — это как бы альтернативный способ записи функцию f x. При этом, не смотря на то, что ряд Фурье может быть бесконечным, предлагаемая им форма записи оказывается очень удобной при проведении анализа и обработки о том, что это нам дает применительно к звуковым сигналам, мы еще поговорим. Это означает, что ряд Фурье функции f x можно представить графически, отложив по оси абсцисс значение k, а по оси ординат — величины коэффициентов a k и b k в некоторой форме. Рассмотрим в качестве примера функцию:. График функции представлен на рис.

Это периодическая функция с периодом 2П. Разложение этой функции в ряд Фурье дает следующий результат: То есть, коэффициенты a k равны нулю для всех k, а коэффициенты b k не равны нулю только для нечетных k. Этот ряд Фурье можно представить графически в виде графика, как показано на рис. Так можно поступить с периодическими функциями. Однако, как на практике, так и в теории, далеко не все функции являются периодическими.

Чтобы получить возможность раскладывать непериодическую функцию f x в ряд Фурье, можно воспользоваться «хитростью». Как правило, при рассмотрении некоторой сложной непериодической функции нас не интересуют ее значения на всей области определения; нам достаточно рассматривать функцию лишь на определенном конечном интервале [ x 1, x 2] для некоторых x 1 и x 2. Для ее разложения в ряд Фурье на интервале [ x 1, x 2] мы можем искусственно представить в виде некоторой периодической функции , полученной путем «зацикливания» значений функции f x из рассматриваемого интервала. После этой процедуры, непериодическая функция f x превращается в периодическую , которая может быть разложена в ряд Фурье. До сих пор мы говорили о математике.

Как же все сказанное соотносится с практикой? Действительно, рассмотренный нами способ разложения в ряд Фурье работает для функций, записанных в виде аналитических выражений. К сожалению, на практике записать функцию в виде аналитического выражения возможно лишь в единичных случаях. В реальности чаще всего приходится работать с изменяющимися во времени величинами, никак неподдающимися аналитической записи. Кроме того, значения анализируемой величины чаще всего известны не в любой момент времени, а лишь тогда, когда производится их регистрация иными словами, значения анализируемой величины дискретны.

В частности, интересующие нас сейчас реальные звуковые колебания, являются как раз такой величиной. Оказывается, к таким величинам тоже может быть применена вариация анализа Фурье. Для разложения в ряд Фурье сигналов, описанных их дискретными значениями, применяют Дискретное Преобразование Фурье ДПФ — специально созданная разновидность анализа Фурье. БПФ очень широко используется буквально во всех областях науки и техники. Частотные составляющие спектра - это синусоидальные колебания так называемые чистые тона , каждое из которых имеет свою собственную амплитуду, частоту и фазу.

Любое, даже самое сложное по форме колебание например, звук голоса человека , можно представить в виде суммы простейших синусоидальных колебаний определенных частот и амплитуд. На рис. На графике по оси абсцисс откладывается время, а по оси ординат - амплитуда волны измеренная в децибелах. Спектр этого звукового сигнала представлен в виде графика на рис. На графике спектра по оси абсцисс откладывается частота спектральных составляющих измеренная в Гц , а по оси ординат — амплитуда этих спектральных составляющих.

Обратим внимание на один очень важный момент: даже самую сложную зависимость функцию спектральное разложение превращает в некоторый математический ряд строго определенного вида ряд может быть конечным и бесконечным. Таким образом, спектральное разложение как бы преобразует график в график: график функции превращается в график спектра функции. А что, если наша функция — это звуковой сигнал некоторой длительности? Выходит, что в результате спектрального преобразования он тоже превратится в статичную картинку спектра; таким образом, информация о временных изменениях будет утеряна — перед нами будет единый статичный спектр всего сигнала. Как же проследить динамику изменения спектра сигнала во времени?

Чтобы получить представление об изменении спектра во времени, аудио сигнал необходимо анализировать не целиком, а по частям говорят «блоками» или «окнами». Например, трехсекундный аудио сигнал можно разбить на 30 блоков. Нужно учитывать, однако, что чем меньше анализируемый блок сигнала, тем менее точен менее информативен спектр этого блока. Таким образом, при проведении спектрального анализа мы сталкиваемся с дилеммой, решение которой строго индивидуально для каждого конкретного случая. Стремясь получить высокое временное разрешение, с тем, чтобы суметь распознать изменения спектра сигнала в динамике, мы «дробим» анализируемый сигнал на большое количество блоков, но при этом для каждого получаем огрубленный спектр.

И наоборот, стремясь получить как можно более точный и ясный спектр, нам приходится жертвовать временным разрешением и делить сигнал на меньшее количество блоков. Эта дилемма называется принципом неопределенности спектрального анализа. Психоакустика Слуховая система человека — сложный и вместе с тем очень интересно устроенный механизм. Чтобы более ясно представить себе, что для нас есть звук, нужно разобраться с тем, что и как мы слышим. В анатомии ухо человека принято делить на три составные части: наружное ухо, среднее ухо и внутреннее ухо.

К наружному уху относится ушная раковина, помогающая сконцентрировать звуковые колебания, и наружный слуховой канал. Звуковая волна, попадая в ушную раковину, проходит дальше, по слуховому каналу его длина составляет около 3 см, а диаметр - около 0.

В настоящее время звуковые карты, как правило, обеспечивают 16-битную глубину кодирования звуковой информации. Количество уровней звукового сигнала можно рассчитать следующим образом: уровней сигнала. Для того чтобы определить, какой объем памяти требуется для хранения звуковой информации длительностью t секунд, с частотой дискретизации f Гц, глубиной кодирования b бит по s каналам, необходимо воспользоваться следующей формулой:. Определим информационный объем данных, которые были получены при оцифровке звукового сообщения длительность 2 минуты, частота 45кГц, использовалась 16-битная звуковая карта. Запись выполнена в режиме «стерео».

Видеоинформация Для того чтобы сохранить видеоинформацию в памяти компьютера, необходимо закодировать звук, а также изменяющееся во времени изображение, важно обеспечить их синхронность. Как мы выяснили ранее, звуковую информацию оцифровывают, видеоинформацию же рассматривают как последовательность кадров, меняющихся с определённой частотой.

Похожие новости:

Оцените статью
Добавить комментарий