Запишите значение переменной s, полученное в результате работыследующей программы. наибольшей наглядностью обладает следующая форма записи алгоритмов: а)словесная б)рекурсивная в)графическая г)построчная. Created by sulbank1410. informatika-ru. Лесное озеро имеет форму круга. Л.н. толстой. как боролся русский богатырь как сказал иван о своей силе? найдите ответ в тексте. запишите.
Алгоритм может быть задан следующими способами словесным словесно графическим
В полученной цепочке символов каждая буква заменяется буквой, следующей за ней в русском алфавите А — на Б, Б — на В и т. Получившаяся таким образом цепочка является результатом работы алгоритма. Дана цепочка символов СЛОТ. Какая цепочка символов получится, если к данной цепочке применить описанный алгоритм дважды т.
Что из нижеперечисленного не входит в алфавит языка Паскаль? Какая последовательность символов не может служить именем в языке Паскаль?
Как называется свойство алгоритма, означающее, что путь решения задачи разделен на отдельные шаги?
Как называется свойство алгоритма, означающее, что путь решения задачи определен вполне однозначно, на любом шаге не допускаются никакие двусмысленности и недомолвки? Исполнителю Черепашка был дан для исполнения следующий алгоритм: Повтори 10 Вперед 10 Направо 72.
При этом условие может проверяться в начале цикла — тогда речь идет о цикле с предусловием, или в конце — тогда это цикл с постусловием. Вспомогательный алгоритм — это блок последовательных действий в основном алгоритме, который выделен в качестве самостоятельного алгоритма, имеющего свое имя.
Чем крупнее блоки, тем легче проходит сборка алгоритма. Вспомогательный алгоритм всегда является вложенным, если он включается в другой алгоритм. Но вложенная конструкция не является вспомогательным алгоритмом до тех пор, пока ей не дано имя. К вспомогательным алгоритмам можно отнести процедуры, которые описываются перед выполнением основной программы и служат для выполнения одинаковых действий с различными параметрами.
Тест с ответами на тему: “Основы алгоритмизации”
В каждом блоке "решение" должны быть указаны вопрос, условие или сравнение, которые он определяет. Блок "модификация" используется для организации циклических конструкций. Слово модификация означает видоизменение, преобразование. Внутри блока записывается параметр цикла, для которого указываются его начальное значение, граничное условие и шаг изменения значения параметра для каждого повторения. Блок "предопределенный процесс" используется для указания обращений к вспомогательным алгоритмам, существующим автономно в виде некоторых самостоятельных модулей, и для обращений к библиотечным подпрограммам. Псевдокод представляет собой систему обозначений и правил, предназначенную для единообразной записи алгоритмов. Псевдокод занимает промежуточное место между естественным и формальным языками.
Построчная форма записи алгоритма представляет собой набор команд, выполняемых построчно. Рекурсивная форма записи алгоритма означает, что алгоритм вызывает сам себя внутри своего тела для решения подзадач.
На стадии разработки в блоках можно делать записи как на естественном, так и на формальном языке. Именно по этой причине блок-схема считается весьма полезной формой при обучении алгоритмизации, а также при разработке сложных алгоритмов. Однако в блок-схеме, как правило, отсутствует подробное описание конкретных действий — их существование лишь обозначено. По блок-схеме гораздо проще осуществляется запись алгоритма на каком-либо формальном языке. Правда, следует заметить, что синтаксическое богатство языков программирования выше языка блок-схем — по этой причине не все языковые конструкции имеют простое графическое представление — примером может служить конструкция цикла с параметром, не имеющая собственного представления в языке блок-схем. В качестве примера рассмотрим блок-схему обсуждавшегося выше алгоритма Евклида. Блок-схемы являются не единственной формой графического представления алгоритмов. В качестве альтернативного примера представления алгоритма с помощью графических средств можно привести весьма компактные диаграммы Насси-Шнейдермана.
Внутри него записывается условие на которое можно ответить да или нет. В зависимости от ответа на условие процесс исполнения алгоритма пойдет по соответствующей линии связи. Блок имеет одну или несколько входящих линий связи. Блок перехода по условию предназначен для организации разветвляющихся алгоритмов. Блок модификации предназначен для организации циклических алгоритмов и имеет форму шестиугольника. Внутри шестиугольника записывается слово ДЛЯ имя модифицируемой, то есть изменяемой по определенному закону, переменной. Обычно переменная изменяется от своего начального значения до конечного последовательно, путем прибавления к ней константы, называемой шагом. Поэтому в блоке записывается после имени переменной слово ОТ, после него имя переменной, обозначающей начальное значение, затем записывается слово ДО и имя переменной, обозначающей конечное значение, а затем после слов С ШАГОМ записывается имя переменной для обозначения значений шага. Шаг представляет собой разность текущего и предыдущего значения модифицируемой переменной. Начальное, конечное значение и значение шага могут быть заданы и константами. Блок модификации должен иметь как минимум две входящие линии и только две исходящие линии. Одна из исходящих линий проходит блоки цикла и возвращается на блок модификации, другая показывает направление исполнения алгоритма после исполнения цикла заданное число раз. Блок схема или любая другая форма записи алгоритмов могут служить основой для составления программ, то есть алгоритмов для технических средств на специальных языках.
Глава 7. Алгоритмы. Алгоритмизация. Алгоритмические языки
Наибольшей наглядностью обладает следующая форма записи алгоритмов: а)словесная б)рекурсивная в)графическая г)построчная. 11. Специальное средство, предназначенное для записи алгоритмов в аналитическом виде: а) алгоритмические языки + б) алгоритмические навыки в) алгоритмические эксперименты. наибольшей наглядностью обладает следующая форма записи алгоритмов: а)словесная б)рекурсивная в)графическая г)построчная. Created by sulbank1410. informatika-ru.
Алгоритм и его свойства. Виды и формы записи алгоритмов
Графический способ описания алгоритма — это способ представления алгоритма с помощью общепринятых графических фигур, называемых блок-схемами, каждая из которых описывает один или несколько шагов алгоритма. 29. Специальное средство, предназначенное для записи алгоритмов в аналитическом виде: а) алгоритмические языки + б) алгоритмические навыки в) алгоритмические эксперименты. Наибольшей наглядностью обладают фоомы записи алгоритмов? Ответы: 1)Построчные 2). Сайт не имеет отношения к другим сайтам и не является официальным сайтом компании. Наилучшей наглядностью обладают графические способы за-писи алгоритмов; самый распространённый среди них — блок-схема.
Формы записи алгоритмов
Для ввода значений переменных в Паскале используется оператор Итоговая тестовая работа по информатике 8 класс 2 вариант на выполнение работы отводится 45 минут 1. Если количественный эквивалент цифры в числе не зависит от её положения в записи числа, то такая система счисления называется?
Он позволяет программисту пользоваться текстовыми мнемоническими то есть легко запоминаемыми человеком кодами, по своему усмотрению присваивать символические имена регистрам компьютера и памяти, а также задавать удобные для себя способы адресации. Кроме того, он позволяет использовать различные системы счисления например, десятичную или шестнадцатеричную для представления числовых констант, использовать в программе комментарии и др. Перевод программы с языка ассемблера на машинный язык осуществляется специальной программой, которая также называется ассемблером и является, по сути, простейшим транслятором. В чем преимущества алгоритмических языков перед машинными? Основные преимущества таковы: алфавит алгоритмического языка значительно шире алфавита машинного языка, что существенно повы шает наглядность текста программы; набор операций, допустимых для использования, не зависит от набора машинных операций, а выбирается из соображений удобства формулирования алгоритмов решения задач определенного класса; формат предложений достаточно гибок и удобен для использования, что позволяет с помощью одного пред ложения задать достаточно содержательный этап обра ботки данных; требуемые операции задаются с помощью общепринятых математических обозначений; данным в алгоритмических языках присваиваются индивидуальные имена, выбираемые программистом; в языке может быть предусмотрен значительно более широкий набор типов данных по сравнению с набором машинных типов данных. Таким образом, алгоритмические языки в значительной мере являются машинно-независимыми. Они облегчают работу программиста и повышают надежность создаваемых программ.
Какие компоненты образуют алгоритмический язык? Алгоритмический язык как и любой другой язык образуют три его составляющие: алфавит, синтаксис и семантика. Точнее говоря, синтаксис языка представляет собой набор правил, устанавливающих, какие комбинации символов являются осмысленными предложениями на этом языке. Семантика определяет смысловое значение предложений языка. Являясь системой правил истолкования отдельных языковых конструкций, семантика устанавливает, какие последовательности действий описываются теми или иными фразами языка и, в конечном итоге, какой алгоритм определен данным текстом на алгоритмическом языке. Какие понятия используют алгоритмические языки? Каждое понятие алгоритмического языка подразумевает некоторую синтаксическую единицу конструкцию и определяемые ею свойства программных объектов или процесса обработки данных. Понятие языка определяется во взаимодействии синтаксических и семантических правил.
Синтаксические правила показывают, как образуется данное понятие из других понятий и букв алфавита, а семантические правила определяют свойства данного понятия Основными понятиями в алгоритмических языках обычно являются следующие. Имеется тpи основных вида данных: константы, пеpеменные и массивы. Пеpеменные обозначаются именами и могут изменять свои значения в ходе выполнения пpогpаммы. Пеpеменные бывают целые, вещественные, логические, символьные и литерные. Положение элемента в массиве однозначно определяется его индексами одним, в случае одномерного массива, или несколькими, если массив многомерный.
Сначала вычисляется длина исходной цепочки символов; если она чётна, то удаляется первый символ цепочки, а если нечётна, то в конец цепочки добавляется символ М. В полученной цепочке символов каждая буква заменяется буквой, следующей за ней в русском алфавите А — на Б, Б — на В и т. Получившаяся таким образом цепочка является результатом работы алгоритма. Дана цепочка символов СЛОТ.
Рассмотрим хорошо известный со школы алгоритм Евклида нахождения наибольшего общего делителя двух натуральных чисел a и b ; его пошагово-словесное описание выглядит следующим образом: 1. Эта форма записи алгоритмов широко используется для представления различных учебных алгоритмов. Словесно-формульная форма представления алгоритмов является логическим развитием пошагово-словесной формы. Такая форма записи предполагает использование различных математических соотношений, записанных в виде формул. Формула — строчная запись действий, обеспечивающих обработку числовых, символьных или логических данных. Формулы, предназначенные для исполнителя «человек», не обязательно могут быть строчными — это приводит к некоторой неоднозначности порядка действий, не сказывающейся, однако, на результате вычислений вследствие дистрибутивного и сочетательного законов. Графическая форма записи алгоритмаполучила наиболее широкое распространение в информатике. Графическое изображение алгоритма, предназначенного для выполнения на ЭВМ, называется схемой программы.
Тест с ответами: «Основы алгоритмизации»
Схемы алгоритмов обладают большей наглядностью, чем словесная запись алгоритма. #17. Наибольшей наглядностью обладают такие формы записи алгоритмов. наибольшей наглядностью обладает следующая форма записи алгоритмов: а)словесная б)рекурсивная в)графическая г)построчная. Created by sulbank1410. informatika-ru. Нарисовать блок схему алгоритма вывода сообщения на экран. Напишите программу, которая вычисляет сумму двух введённых чисел типа Integer и переводит. При записи алгоритма в словесной форме, в виде блок-схемы или на псевдокоде допускается определенный произвол при изображении команд.
Тест Основы алгоритмизации 8 класс ФГОС
Поэтому алгоритм должен быть записан на языке, понятном компьютеру с абсолютно точной и однозначной записью команд. Таким образом, алгоритм должен быть записан на каком-то промежуточном языке, с точными и однозначными правилами и отличном от естественного языка и языка блок-схем, но понятном компьютеру. Такой язык принято называть языком программирования. Программный способ записи алгоритма — это запись алгоритма на языке программирования, позволяющем на основе строго определенных правил формировать последовательность предписаний, однозначно отражающих смысл и содержание алгоритма, с целью его последующего исполнения на компьютере.
Следовательно, алгоритм рассчитан начисто механическое исполнение.
Именноопределенность алгоритма дает возможность поручить его исполнениеавтомату. Каждый шаг алгоритма должен быть выполнен точно и за конечное время. В этом смысле говорят, что алгоритм должен быть эффективным , то есть действия исполнителя на каждом шаге исполнения алгоритма должны быть достаточно простыми, чтобы их можно было выполнить точно и за конечное время. Обычно отдельные указания исполнителю, содержащиеся в каждом шаге алгоритма, называюткомандами.
Таким образом, эффективность алгоритма связана с возможностью выполнения каждой команды за конечное время. Совокупность команд, которые могут быть выполнены конкретным исполнителем, называетсясистемой команд исполнителя. Следовательно, алгоритм должен быть сформулирован так, чтобы содержать только те команды, которые входят в систему команд исполнителя. Кроме того, эффективность означает, что алгоритм может быть выполнен не просто за конечное, а за разумно конечное время.
Приведенные выше комментарии поясняют интуитивное понятие алгоритма , но само это понятие не становится от этого более четким и строгим. Тем не менее, в математике долгое время использовали это понятие. Лишь с выявлением алгоритмически неразрешимых задач, то есть задач, для решения которых невозможно построить алгоритм, появилась настоятельная потребность в построении формального определения алгоритма, соответствующего известному интуитивному понятию. Интуитивное понятие алгоритма в силу своей неопределенности не может быть объектом математического изучения, поэтому для доказательства существования или несуществования алгоритма решения задачи было необходимо строгое формальное определение алгоритма.
Построение такого формального определения было начато с формализации объектов операндов алгоритма, так как в интуитивном понятии алгоритма его объекты могут иметь произвольную природу. Ими могут быть, например, числа, показания датчиков, фиксирующих параметры производственного процесса, шахматные фигуры и позиции и т. Однако предполагая, что алгоритм имеет дело не с самими реальными объектами, а с их изображениями, можно считать, что операнды алгоритма - слова в произвольном алфавите. Тогда получается, что алгоритм преобразует слова в произвольном алфавите в слова того же алфавита.
Дальнейшая формализация понятия алгоритма связана с формализацией действий над операндами и порядка этих действий. Одна из таких формализаций была предложена в 1936 году английским математиком А. Тьюрингом, который формально описал конструкцию некоторой абстрактной машины машины Тьюринга как исполнителя алгоритма и высказал основной тезис о том, что всякий алгоритм может быть реализован соответствующей машиной Тьюринга. Примерно в это же время американским математиком Э.
Постом была предложена другая алгоритмическая схема -машина Поста , а в 1954 году советским математиком А. Марковым была разработана теория классов алгоритмов, названных имнормальными алгорифмами , и высказан основной тезис о том, что всякий алгоритм нормализуем. Эти алгоритмические схемы эквиваленты в том смысле, что алгоритмы, описываемые в одной из схем, могут быть также описаны и в другой. В последнее время эти теории алгоритмов объединяют под названием логические.
Логические теории алгоритмов вполне пригодны для решения теоретических вопросов о существовании или несуществовании алгоритма, но они никак не помогают в случаях, когда требуется получить хороший алгоритм, годный для практических применений.
Можно обратить внимание на то, что первоначальная форма algorismi спустя какое-то время потеряла последнюю букву, и слово приобрело более удобное для европейского произношения вид algorism. Позднее и оно, в свою очередь, подверглось искажению, скорее всего, связанному со словом arithmetic. В 1684 году Готфрид Лейбниц в сочинении Nova Methodvs pro maximis et minimis, itemque tangentibus… впервые использовал слово «алгоритм» Algorithmo в ещё более широком смысле: как систематический способ решения проблем дифференциального исчисления. В XVIII веке в одном из германских математических словарей, Vollstandiges mathematisches Lexicon изданном в Лейпциге в 1747 году , термин algorithmus всё ещё объясняется как понятие о четырёх арифметических операциях. Но такое значение не было единственным, ведь терминология математической науки в те времена ещё только формировалась. В частности, выражение algorithmus infinitesimalis применялось к способам выполнения действий с бесконечно малыми величинами.
Пользовался словом алгоритм и Леонард Эйлер , одна из работ которого так и называется — «Использование нового алгоритма для решения проблемы Пелля» De usu novi algorithmi in problemate Pelliano solvendo. Мы видим, что понимание Эйлером алгоритма как синонима способа решения задачи уже очень близко к современному. Однако потребовалось ещё почти два столетия, чтобы все старинные значения слова вышли из употребления. Этот процесс можно проследить на примере проникновения слова «алгоритм» в русский язык. Историки датируют 1691 годом один из списков древнерусского учебника арифметики, известного как «Счётная мудрость». Это сочинение известно во многих вариантах самые ранние из них почти на сто лет старше и восходит к ещё более древним рукописям XVI веке По ним можно проследить, как знание арабских цифр и правил действий с ними постепенно распространялось на Руси. Полное название этого учебника — «Сия книга, глаголемая по-еллински и по-гречески арифметика, а по-немецки алгоризма, а по-русски цифирная счётная мудрость».
Таким образом, слово «алгоритм» понималось первыми русскими математиками так же, как и в Западной Европе. Однако его не было ни в знаменитом словаре В. Даля , ни спустя сто лет в «Толковом словаре русского языка» под редакцией Д. Ушакова 1935 г. Зато слово «алгорифм» можно найти и в популярном дореволюционном Энциклопедическом словаре братьев Гранат , и в первом издании Большой советской энциклопедии БСЭ , изданном в 1926 г. И там, и там оно трактуется одинаково: как правило, по которому выполняется то или иное из четырёх арифметических действий в десятичной системе счисления. Однако к началу XX в.
Алгоритмы становились предметом всё более пристального внимания учёных, и постепенно это понятие заняло одно из центральных мест в современной математике. Что же касается людей, от математики далёких, то к началу сороковых годов это слово они могли услышать разве что во время учёбы в школе, в сочетании «алгоритм Евклида». Несмотря на это, алгоритм всё ещё воспринимался как термин сугубо специальный, что подтверждается отсутствием соответствующих статей в менее объёмных изданиях. В частности, его нет даже в десятитомной Малой советской энциклопедии 1957 г. Но зато спустя десять лет, в третьем издании Большой советской энциклопедии 1969 год алгоритм уже характеризуется как одна из основных категорий математики, «не обладающих формальным определением в терминах более простых понятий, и абстрагируемых непосредственно из опыта». Как мы видим, отличие даже от трактовки первым изданием БСЭ разительное! За сорок лет алгоритм превратился в одно из ключевых понятий математики, и признанием этого стало включение слова уже не в энциклопедии, а в словари.
Например, оно присутствует в академическом «Словаре русского языка» 1981 г. Одновременно с развитием понятия алгоритма постепенно происходила и его экспансия из чистой математики в другие сферы. И начало ей положило появление компьютеров, благодаря которому слово «алгоритм» вошло в 1985 году во все школьные учебники информатики и обрело новую жизнь. Вообще можно сказать, что его сегодняшняя известность напрямую связана со степенью распространения компьютеров. Например, в третьем томе «Детской энциклопедии» 1959 г. Соответственно и алгоритмы ни разу не упоминаются на её страницах. Но уже в начале 70-х гг.
Это чутко фиксируют энциклопедические издания. В « Энциклопедии кибернетики » 1974 год в статье «Алгоритм» он уже связывается с реализацией на вычислительных машинах, а в «Советской военной энциклопедии» 1976 г. За последние полтора-два десятилетия компьютер стал неотъемлемым атрибутом нашей жизни, компьютерная лексика становится всё более привычной. Слово «алгоритм» в наши дни известно, вероятно, каждому. Оно уверенно шагнуло даже в разговорную речь, и сегодня мы нередко встречаем в газетах и слышим в выступлениях политиков выражения вроде «алгоритм поведения», «алгоритм успеха» или даже «алгоритм предательства». Академик Н. Моисеев назвал свою книгу «Алгоритмы развития», а известный врач Н.
Амосов — «Алгоритм здоровья» и «Алгоритмы разума». А это означает, что слово живёт, обогащаясь всё новыми значениями и смысловыми оттенками.
Однако довольно часто определение алгоритма не включает завершаемость за конечное время [5]. В этом случае алгоритм метод вычисления определяет частичную функцию [en]. Для вероятностных алгоритмов завершаемость как правило означает, что алгоритм выдаёт результат с вероятностью 1 для любых правильно заданных начальных данных то есть может в некоторых случаях не завершиться, но вероятность этого должна быть равна 0. Массовость универсальность.
Алгоритм должен быть применим к разным наборам начальных данных. Результативность — завершение алгоритма определёнными результатами. Формальное определение[ править править код ] Разнообразные теоретические проблемы математики и ускорение развития физики и техники поставили на повестку дня точное определение понятия алгоритма. Марков , Алонзо Чёрч. Было разработано несколько определений понятия алгоритма, но впоследствии было выяснено, что все они определяют одно и то же понятие см. Успенский считал, что понятие алгоритма впервые появилось у Эмиля Бореля в 1912 году, в статье об определённом интеграле.
Там он написал о «вычислениях, которые можно реально осуществить», подчеркивая при этом: «Я намеренно оставляю в стороне большую или меньшую практическую деятельность; суть здесь та, что каждая из этих операций осуществима в конечное время при помощи достоверного и недвусмысленного метода» [7]. Основная статья: Машина Тьюринга Схематическая иллюстрация работы машины Тьюринга. Основная идея, лежащая в основе машины Тьюринга, очень проста. Машина Тьюринга — это абстрактная машина автомат , работающая с лентой отдельных ячеек, в которых записаны символы. Машина также имеет головку для записи и чтения символов из ячеек, которая может двигаться вдоль ленты. На каждом шаге машина считывает символ из ячейки, на которую указывает головка, и, на основе считанного символа и внутреннего состояния, делает следующий шаг.
При этом машина может изменить своё состояние, записать другой символ в ячейку или передвинуть головку на одну ячейку вправо или влево. Этот тезис является аксиомой, постулатом, и не может быть доказан математическими методами, поскольку алгоритм не является точным математическим понятием. Основная статья: Рекурсивная функция теория вычислимости С каждым алгоритмом можно сопоставить функцию, которую он вычисляет. Однако возникает вопрос, можно ли произвольной функции сопоставить машину Тьюринга, а если нет, то для каких функций существует алгоритм? Исследования этих вопросов привели к созданию в 1930-х годах теории рекурсивных функций [9]. Класс вычислимых функций был записан в образ, напоминающий построение некоторой аксиоматической теории на базе системы аксиом.
Сначала были выбраны простейшие функции, вычисление которых очевидно. Затем были сформулированы правила операторы построения новых функций на основе уже существующих. Необходимый класс функций состоит из всех функций, которые можно получить из простейших применением операторов. Подобно тезису Тьюринга в теории вычислимых функций была выдвинута гипотеза, которая называется тезис Чёрча : Числовая функция тогда и только тогда алгоритмически исчисляется, когда она частично рекурсивна. Доказательство того, что класс вычислимых функций совпадает с исчисляемыми по Тьюрингу, происходит в два шага: сначала доказывают вычисление простейших функций на машине Тьюринга, а затем — вычисление функций, полученных в результате применения операторов. Таким образом, неформально алгоритм можно определить как четкую систему инструкций, определяющих дискретный детерминированный процесс, который ведёт от начальных данных на входе к искомому результату на выходе , если он существует, за конечное число шагов; если искомого результата не существует, алгоритм или никогда не завершает работу, либо заходит в тупик.
Основная статья: Нормальный алгоритм Нормальный алгоритм алгорифм в авторском написании Маркова — это система последовательных применений подстановок, которые реализуют определённые процедуры получения новых слов из базовых, построенных из символов некоторого алфавита. Как и машина Тьюринга, нормальные алгоритмы не выполняют самих вычислений: они лишь выполняют преобразование слов путём замены букв по заданным правилам [10]. Нормально вычислимой называют функцию, которую можно реализовать нормальным алгоритмом. То есть алгоритмом, который каждое слово из множества допустимых данных функции превращает в её начальные значения [11].. Создатель теории нормальных алгоритмов А. Марков выдвинул гипотезу, которая получила название принцип нормализации Маркова: Для нахождения значений функции, заданной в некотором алфавите, тогда и только тогда существует некоторый алгоритм, когда функция нормально исчисляемая.
Подобно тезисам Тьюринга и Черча, принцип нормализации Маркова не может быть доказан математическими средствами. Стохастические алгоритмы[ править править код ] Однако приведённое выше формальное определение алгоритма в некоторых случаях может быть слишком строгим. Иногда возникает потребность в использовании случайных величин [12]. Алгоритм, работа которого определяется не только исходными данными, но и значениями, полученными из генератора случайных чисел , называют стохастическим или рандомизированным, от англ. Стохастические алгоритмы часто бывают эффективнее детерминированных, а в отдельных случаях — единственным способом решить задачу [12]. На практике вместо генератора случайных чисел используют генератор псевдослучайных чисел.
Однако следует отличать стохастические алгоритмы и методы, которые дают с высокой вероятностью правильный результат. В отличие от метода , алгоритм даёт корректные результаты даже после продолжительной работы. Некоторые исследователи допускают возможность того, что стохастический алгоритм даст с некоторой заранее известной вероятностью неправильный результат.