Новости распад ложного вакуума

Ученые наглядно показали, как распад ложного вакуума может уничтожить Вселенную. Однако количественный анализ распада ложного вакуума сопряжен с большой неопределенностью. Пузырь истинного вакуума расширяется внутри пузыря ложного вакуума в соответствии со специальной теорией относительности, не быстрее скорости света, и уничтожает всю материю первоначального мира.

Как распад вакуума может уничтожить Вселенную

3. Vacuum Catastrophe (распад ложного вакуума). Вполне возможно, что наш вакуум — ложный, то есть наша пустота не является низшим состоянием вакуума (в энергетическом смысле). Фото из открытых источников Англо-итальянская команда учёных достигла значительного прогресса в изучении явления распада ложного вакуума. На канале Kurzgesagt видеохостинга YouTube появился ролик, на котором ученые рассказали о возможном механизме уничтожения Вселенной, которое может произойти в результате распада ложного вакуума, передает Ученые показали возможный механизм смерти Вселенной в результате распада ложного вакуума. Подробнее про распад ложного вакуума можно прочитать в материале "Из пустого в порожнее", а также в новостях "Излучение Хокинга спасло Вселенную от распада ложного вакуума" и "Физик уточнил скорость распада ложного вакуума". В этом видео поговорим о космической пустоте, о распаде ложного вакуума, о том насколько такое событие вероятно, и как это может произойти.

Ученые предрекли гибель Вселенной и в доказательство представили видеоролик

Исследователи отмечают, что поле Хиггса, в том числе, даёт массу частицам. Если однажды некоторое квантовое событие заставит поле Хиггса устремиться к стабильному состоянию, это может привести к необратимому цепному процессу — вакуумному распаду, сообщают учёные. Это, в свою очередь, приведёт к тому, что по космосу с огромной скоростью начнёт распространяться сфера так называемого «истинного вакуума», внутри которой не будут работать даже привычные нам законы физики из-за нарушения Стандартной модели. Гипотетически такое поле могло бы уничтожить Землю за долю секунды, и предотвратить это было бы невозможно.

То есть, уничтожив, в частности, все свое содержимое. Нашу маленькую планетку в том числе. Но не волнуйтесь. Даже если мы живем в ложном вакууме обидно конечно, но что поделать , и он вот-вот преобразуется в истинный — это самое "вот-вот" — миллионы или миллиард лет, так что нынешней человеческой цивилизации эта проблема угрожает не слишком сильно. Новости Владивостока в Telegram - постоянно в течение дня.

Видеоролик, доступно объясняющий этот процесс, опубликован на канале Kurzgesagt хостинга YouTube. Распад ложного вакуума Ученые предполагают, что наблюдаемый нами мир находится в состоянии истинного или ложного вакуума.

Во втором случае велики шансы перехода в истинный вакуум, при котором произойдет разрушение всей материи во Вселенной.

Для прочих любых новостей, связанных с комиксами но не сами вебкомиксы , есть свои группы. Показать полностью Правила сообщества 1. Никаких глупых срачей. Переводчик может ошибиться. Скажите, где он ошибся и как надо перевести лучше.

Что произошло в мире науки. Вечерний дайджест

Ложный вакуум - это состояние с низкой энергией, стабильное и считающееся прочным. Однако переход в состояние минимальной энергии, или истинного вакуума, затруднен из-за высокой энергетической плотности. Проведя серию экспериментов, исследователи наблюдали образование небольших пузырьков истинного вакуума в квантовой системе, состоящей из переохлажденного газа из натрия-23. Эта среда обладает свойствами сверхтекучей жидкости и была охлаждена до температуры менее одного микрокельвина.

Международная группа ученых опубликовала свои новейшие и важные открытия, которые подтверждают распад ложного вакуума Источник фото: Фото редакции Ложный вакуум - это состояние с низкой энергией, которое считается стабильным, но может преобразоваться в состояние с минимальной энергией, известное как истинный вакуум. Однако такой переход затруднен из-за высокого барьера энергии. В результате проведенных экспериментов ученые обнаружили образование маленьких пузырьков истинного вакуума в переохлажденном газе из изотопов натрия-23.

В результате в ложном вакууме создаются небольшие пузырьки истинного вакуума. Физики впервые наблюдали, как эти пузырьки образуются в квантовой системе, представляющей собой переохлажденный газ, состоящий из изотопов натрия-23 и обладающим свойством сверхтекучей жидкости, при температуре менее одного микрокельвина.

Ложный и истинный вакуум в эксперименте представляли собой локальный и глобальный минимумы энергии ферромагнитного атомного конденсата Бозе-Эйнштейна. Результаты наблюдений согласовывались с численными моделями, которые подтверждают квантово-механическую природу распада, что делает атомные сверхтекучие жидкости идеальной платформой для исследования явлений неравновесного квантового поля.

Мерило этой энергии — высота. Гиря, выпущенная из рук, приходит в состояние наименьшей энергии, то есть падает на пол. Но если дело происходит на третьем этаже, есть нюанс. Уровень, в котором оказалась гиря — отнюдь не самый низкий в доме. Просто она не смогла пробить пол и добраться до второго этажа, не говоря уж о первом. Самый глубокий минимум энергии поля называется истинным вакуумом. В нашей аналогии это уровень земли.

Все остальные минимумы, если они есть пол на верхних этажах — ложные вакуумы. До поры до времени ложный вакуум ведет себя как истинный. Жить на третьем этаже так же комфортно, как и на первом.

Распад ложного вакуума: вводный обзор

Точнее, есть бесконечный ложный вакуум, который расширяется с бесконечно огромной скоростью, и в нем возникают зоны распада, где формируются вселенные, как пузырьки углекислоты в открытой бутылке газировки. Самым невероятным концом света стало бы уничтожение мира в результате распада ложного вакуума. Недавно некоторые СМИ сообщили, что ученые впервые наблюдали распад ложного вакуума. Международная группа ученых продемонстрировала первые экспериментальные доказательства распада ложного вакуума, используя квантовомеханическую систему, состоящую из сверхохлажденного газа изотопов натрия-23. Для ложного вакуума существует вероятность перехода в более глубокое вакуумное состояние, в том числе в истинный вакуум. Гибель Вселенной может наступить из-за распада так называемого ложного вакуума, гласит одна из научных теорий.

Ученые показали на видео процесс разрушения Вселенной из-за распада вакуума

Физики измеряли профили намагниченности системы в зависимости от времени и наблюдали ее пузырьковообразный переход в глобальный минимум по энергии. Времена распадов ложного вакуума в сравнении с теорией инстантонов. Компьютерное моделирование совпало с экспериментальными результатами, что по мнению ученых доказывает наблюдение распада ложного вакуума в истинный.

Физики впервые наблюдали, как эти пузырьки образуются в квантовой системе, представляющей собой переохлажденный газ, состоящий из изотопов натрия-23 и обладающим свойством сверхтекучей жидкости, при температуре менее одного микрокельвина. Ложный и истинный вакуум в эксперименте представляли собой локальный и глобальный минимумы энергии ферромагнитного атомного конденсата Бозе-Эйнштейна. Результаты наблюдений согласовывались с численными моделями, которые подтверждают квантово-механическую природу распада, что делает атомные сверхтекучие жидкости идеальной платформой для исследования явлений неравновесного квантового поля. Бозе-конденсат — это состояние материи, которое возникает, когда частицы или атомы, относящиеся к бозонам, охлаждают почти до абсолютного нуля, в данном случае до нескольких десятков нанокельвинов.

Пробный потенциал, сконструированный Брауном, и зависимость поля от расстояния до центра пузырька в таком потенциале. D Кроме того, теоретик обобщил эти результаты, включив в рассмотрение гравитацию, то есть предполагая, что энергия поля искривляет пространство-время. В этом случае скорость распада зависит не от разности уровней ложного и истинного вакуума, но от каждого из значений по отдельности. Доказательство в данном случае также разбивается на рассмотрение двух частных случаев, в одном из которых изменение энергии при образовании пузырька неограниченно растет при увеличении радиуса пузырька, а в другом — неограниченно снижается. Изменение действия при создании пузырька в зависимости от его радиуса: два принципиально различных случая. Зависимость для изменения энергии выглядит аналогично. D Все рассуждения в данной работе выполнялись в предположении пустого пространства, однако присутствие сингулярностей в виде черных дыр, особенно черных дыр малой массы, могло бы изменить скорость распада ложного вакуума. Тем не менее, в ноябре прошлого года японские физики-теоретики показали , что существенного увеличения скорости перехода и метастабильного состояния в стабильное рядом с черными дырами наблюдаться не должно — черные дыры обязательно окружены температурным фоном частиц из-за излучения Хокинга, который необходимо учитывать при расчете вероятности образования пузырька истинного вакуума. Из-за этого фона скорость образования пузырьков почти не меняется даже около небольших черных дыр. Подробнее узнать, что такое распад ложного вакуума и чем он грозит нашей, можно в нашем материале «Из пустого в порожнее» , подготовленном вместе с физиком-теоретиком Филиппом Бурдой.

Поэтому и говорят о возможной гибели наблюдаемой Вселенной. Однако количественный анализ распада ложного вакуума сопряжен с большой неопределенностью. Есть два основных подхода, позволяющих максимально упростить задачу и получить явные выражения для вероятности перехода — приближения тонкой и толстой стенок. В качестве базового объекта выступает потенциал Хиггса иначе — Гинзбурга-Ландау Стандартной модели — современной концепции физики элементарных частиц. В нем присутствует поле Хиггса, ответственное за возникновение у частиц инертной массы.

Vista по теме

  • Физики показали гибель Вселенной вследствие распада вакуума - ГТРК Удмуртия
  • Распад нестабильного вакуума
  • Исследователи изучают пузыри ничего, которые могли бы уничтожить Вселенную
  • Ученые показали на видео процесс разрушения Вселенной из-за распада вакуума
  • Ученые показали на видео, как распад вакуума уничтожает Вселенную — 25.10.2016 — В мире на РЕН ТВ
  • Журнал Forbes Kazakhstan

Распад вакуума уничтожит Вселенную

Результаты наблюдений согласовывались с численными моделями, которые подтверждают квантово-механическую природу распада, что делает атомные сверхтекучие жидкости идеальной платформой для исследования явлений неравновесного квантового поля. Бозе-конденсат — это состояние материи, которое возникает, когда частицы или атомы, относящиеся к бозонам, охлаждают почти до абсолютного нуля, в данном случае до нескольких десятков нанокельвинов. Бозоны способны находиться в одном и том же основном квантовом состоянии грубо говоря, их принципиально нельзя отличить одну от другой и ведут себя подобно одной «размытой» частице, что создает квантовые эффекты, видимые невооруженным глазом. Одним из таких эффектов является сверхтекучесть — способность жидкости обтекать узкие барьеры без трения.

Был ли этот эксперимент оправдан, учитывая потенциальные риски? Физиков нельзя назвать самыми осторожными людьми, однако изучение сценариев типа «что, если» — это наш хлеб насущный, кроме того, возможность глубоко подумать о реальной физике, стоящей за гипотетической вероятностью всеобщего уничтожения, было бы очень жаль упускать. RHIC The Relativistic Heavy Ion Collider — это релятивистский коллайдер тяжелых ионов, предшественник БАК, расположенный в Брукхейвенской национальной лаборатории, который был предназначен для столкновения ядер тяжелых элементов вроде золота при высоких энергиях.

Сам по себе этот новаторский эксперимент вызывал беспокойство по поводу непредвиденных последствий, которые могли представлять угрозу существованию планеты или Вселенной , и цель написания этой статьи заключалась в том, чтобы полностью исследовать и по возможности развеять эти опасения. Полученные результаты были обнадеживающими. Основываясь на теоретических соображениях, исследователи оценили возможность создания странной материи или черных дыр как крайне маловероятную. Кроме того, их выводы подкреплялись и экспериментальными данными, а именно существованием Луны. Аргументация в пользу любого потенциально разрушительного явления, порожденного коллайдером, основывается на идее о том, что столкновения частиц такой высокой энергии настолько беспрецедентны, что мы не можем предугадать их последствий. Однако при этом игнорируется важный факт: несмотря на то что уровни энергии, достигаемые на RHIC и БАК, непривычны для нас, жалких людишек, космические лучи, путешествующие по Вселенной, постоянно их достигают и сталкиваются между собой и с другими объектами.

На протяжении миллиардов лет по всей Вселенной происходили столкновения при гораздо более высоких энергиях, чем может обеспечить любой из наших коллайдеров, и если бы они могли привести к разрушению космоса, мы бы наверняка это заметили. Что если по всему космосу разбросаны скопления странной материи, а мы просто этого не знаем? Несмотря на то что в большинстве случаев частицы, произведенные в коллайдере, по нашему мнению, обладают остаточным импульсом, который позволяет им покинуть лабораторию сразу после возникновения, в ходе экспериментов мы вполне можем получить нечто опасное, способное задержаться в детекторе. Что тогда? К счастью, для исследования этих эффектов мы можем использовать Луну. Данные, полученные от наземных детекторов и космических телескопов, говорят о том, что высокоэнергетические космические лучи бомбардируют Луну постоянно.

На самом деле, благодаря радиотелескопам мы можем использовать Луну даже в качестве детектора нейтрино, что само по себе довольно здорово. Если бы столкновения частиц высоких энергий могли превратить обычное вещество в странную материю, это уже давно произошло бы на Луне, и сейчас в небе мы бы видели совершенно другой объект. Если бы на Луне образовалась крошечная черная дыра и поглотила ее, это также повлияло бы на вид ночного неба. Не говоря уже о том, что люди были на Луне, гуляли по поверхности, играли в гольф и привезли оттуда образцы грунта. Судя по всему, Луна прекрасно себя чувствует, поэтому авторы работы, посвященной RHIC, были уверены, что ускоритель не представляет для нас опасности. Правда, странная материя и черные дыры были не единственными сценариями апокалипсиса.

Еще одно опасение, которое также удалось развеять путем наблюдения за высокоэнергетическими космическими лучами, заключалось в том, что столкновения частиц высоких энергий могут вызвать разрушительное для Вселенной квантовое событие под названием «распад вакуума». Эта идея основывается на гипотезе о том, что нашей Вселенной присуща некая фатальная нестабильность. Несмотря на то что такой сценарий может показаться пугающим, каким бы маловероятным он ни был, на момент ввода RHIC в эксплуатацию реальные доказательства существования такой нестабильности отсутствовали, поэтому данная возможность не рассматривалась всерьез. Однако все изменилось в 2012 году, когда с помощью ускорителя БАК был обнаружен бозон Хиггса. Состояние Вселенной Вернейший способ заставить специалиста по физике элементарных частиц поморщиться — это назвать бозон Хиггса «частицей бога», как он известен широкой публике. Недовольство ученых по поводу этого высокопарного прозвища вызвано не только смешением науки и религии хотя некоторых именно это раздражает больше всего.

Дело в том, что название «частица бога» ужасно неточное и, надо сказать, довольно дерзкое. Это не отменяет огромной важности бозона Хиггса для Стандартной модели физики элементарных частиц. Можно даже утверждать, что именно он является ключом к объединению всего остального. Однако центральную роль в работе физики элементарных частиц и в природе космоса играет поле Хиггса, а не частица. Если коротко, поле Хиггса представляет собой пронизывающее все пространство энергетическое поле, при взаимодействии с которым другие частицы обретают массу. Бозон Хиггса имеет такое же отношение к полю Хиггса, как фотон, переносчик электромагнитного взаимодействия и света , к электромагнитному полю, — это локализованное «возбуждение» чего-то, что пронизывает обширное пространство.

Более длинная версия этой истории имеет отношение к электрослабой теории, которая объединяет слабое взаимодействие с электричеством и магнетизмом, а также к разделению этих сил вследствие так называемого спонтанного нарушения симметрии. Здесь я вынуждена совершить над собой героическое усилие и вместо подробного описания квантовой теории поля ограничиться обсуждением нескольких ключевых вопросов. Однако имейте в виду, что если вы решите изучить математику, стоящую за всем этим, вы увидите, что все намного круче. Физика работает по-разному в зависимости от уровня энергии. Например, электромагнетизм и слабое взаимодействие проявляются как совершенно независимые феномены на тех уровнях энергии, с которыми мы имеем дело в повседневной жизни, однако в ранней Вселенной, для которой были характерны очень высокие уровни энергии, эти силы представляли собой аспекты одного и того же явления. Поле Хиггса играло важную роль во время этого переходного периода.

Когда условия изменились, то же произошло и с законами физики. Во многом именно для этого мы и создаем ускорители частиц: чтобы воссоздать в небольшом пространстве внутри детекторов экстремальные условия, характерные для начальных стадий развития Вселенной, с помощью которых мы могли бы лучше понять основополагающие физические принципы, сводящие всё воедино. Основная идея заключается в существовании некой всеобъемлющей математической теории, описывающей взаимодействия частиц при всех возможных условиях, и последовательное проведение их столкновений позволяет нам получить более полное представление об этой всеобъемлющей структуре. В качестве аналогии можно привести воду. На самом фундаментальном уровне она представляет собой набор молекул, состоящих из определенным образом связанных атомов водорода и кислорода. Но в повседневной жизни мы воспринимаем воду в качестве однородной бесцветной жидкости, кристаллического твердого вещества, а в особенно тяжелые времена — в качестве удушающего влажного тумана, который заставляет вас мечтать об одежде, сшитой из полотенец.

Изучая поведение воды в этих различных состояниях, мы можем сделать выводы о том, что она на самом деле собой представляет, даже если у нас под рукой нет мощных микроскопов, позволяющих рассмотреть отдельные атомы. Например, форма снежинки может многое рассказать нам о форме молекул, если мы посмотрим, как они организуются в кристаллы. То, как вода испаряется, кое-что говорит нам о связях, которые удерживают молекулы вместе. Если бы мы имели дело с водой лишь в одном из ее агрегатных состояний, мы не смогли бы составить о ней полного впечатления. Точно так же наше представление о взаимодействиях субатомных частиц меняется в зависимости от уровня энергии или температуры во время эксперимента, варьирование которых позволяет нам лучше понять, что с ними на самом деле происходит. В физике элементарных частиц нас интересует, как частицы взаимодействуют друг с другом и чем обусловлены их фундаментальные свойства, такие как масса.

Характерная особенность любой частицы, обладающей массой, состоит в том, что она не может ускориться без применения силы и не способна достичь скорости света. На самых ранних этапах существования Вселенной поле Хиггса подверглось изменению, в результате которого электрослабое взаимодействие разделилось на электромагнетизм и слабое ядерное взаимодействие, и некоторые частицы правда, не фотон и не глюон получили возможность взаимодействовать с самим полем Хиггса. Интенсивность этого взаимодействия определяет массу частицы. Фотон продолжает путешествовать в пространстве со скоростью света, а частицы, обладающие массой, движутся тем медленнее, чем более сильное воздействие они испытывают со стороны поля Хиггса. Сравнивать поведение частиц в условиях ранней Вселенной с их текущим поведением все равно что сравнивать собственное взаимодействие с паром и жидкой водой. Представьте, что пар — это поле Хиггса, то есть энергетическое поле, присутствующее в каждой точке пространства.

А теперь представьте, что в какой-то момент поле Хиггса претерпело изменение, подобное конденсации пара в жидкую воду. Если вы привыкли иметь дело лишь с влажным воздухом, то пребывание в бассейне с водой станет для вас совершенно новым опытом. В результате внезапного изменения поля Хиггса сами законы физики как бы приобрели совершенно иную форму. Внезапно частицы, которые до этого могли беспрепятственно перемещаться в пространстве со скоростью света, замедлились под действием поля Хиггса, то есть обрели массу. Этот процесс получил название «нарушение электрослабой симметрии». Пугливая симметрия Симметрия — это тонкое, абстрактное понятие, чрезвычайно трудно объяснимое без уравнений, но настолько важное для физики, что я не могу просто отмахнуться от него.

Симметрия имеет ключевое значение как для описания существующих, так и для разработки новых теорий природы. Если в ходе размышлений о мире вы привыкли использовать управляющие им математические уравнения, вас, вероятно, не удивит идея описания теорий в терминах симметрий, которым они подчиняются. В противном случае все это может показаться вам сущей тарабарщиной. Итак, давайте сделаем небольшой экскурс в эту тему, поскольку симметрия представляет собой нечто невероятно красивое, и как только вы узнаете о ней подробнее, вы начнете замечать ее повсюду. Симметрия не сводится к зеркальному отражению чего бы то ни было. В физике огромную роль играют закономерности и то, как они позволяют нам получить более глубокое понимание некоторой основополагающей структуры.

Возьмем, к примеру, периодическую таблицу элементов. Почему элементы организованы в строки и столбцы? Если вы изучали химию, вы знаете, что в столбцах сгруппированы элементы, имеющие общие свойства. Например, благородные газы, перечисленные в крайнем правом столбце, не склонны к участию в химических реакциях, тогда как находящиеся рядом с ними галогены отличаются высокой химической активностью. Эти закономерности обнаружились еще до того, как таблица была заполнена. На самом деле ее создатель Дмитрий Менделеев даже оставил пробелы для еще не открытых элементов, которые, как он знал, должны существовать, исходя из выявленных им закономерностей.

Закономерности в периодической таблице позволили теоретически обосновать заполнение электронных орбиталей, что привело к открытиям, имеющим отношение к фундаментальной природе субатомных частиц. Разработка теорий всегда начиналась с выявления закономерностей в результатах наблюдений, после чего ученые приступали к поиску скрытых свойств, способных объяснить наблюдаемое явление. Все мы постоянно это делаем, даже если не отдаем себе отчета. Понаблюдав за дорожным движением в течение дня, вы можете сделать выводы о стандартном рабочем графике. По выцветшим местам ковра вы можете судить о том, какие части комнаты получают больше всего солнечного света а также о том, как Земля ориентирована относительно Солнца. В случае с физикой элементарных частиц использование симметрии во многом напоминает создание периодических таблиц, но для более мелких компонентов природы.

Сходство между частицами, например, в плане заряда, массы или спина, может многое рассказать нам об особенностях их формирования и связях с фундаментальными взаимодействиями. Организация частиц с учетом их сходства позволяет физикам выявлять симметрии, которые могут оказаться основополагающими для целых теорий. Иногда эти закономерности легче всего представить математически. Если вы обнаружите, что в уравнении, описывающем некий физический процесс, можно поменять местами несколько переменных, не повлияв на описываемое явление, значит, вы обнаружили математическую симметрию.

Как такое может быть Чтобы понять, что такое распад вакуума, сначала следует разобраться, что такое вакуумное состояние. У большинства людей слово «вакуум» ассоциируется с открытым космосом и другими областями, в которых нет материи. Однако открытый космос, на самом деле, не пустой.

Напротив, в нем есть флуктуирующие квантовые поля, производящие частицы, которые отвечают за фундаментальные законы физики во Вселенной. Когда это пространство достигает минимального энергетического уровня, говорят, что оно находится в вакуумном состоянии. Тем не менее эти квантовые поля, несмотря ни на что, продолжают работу, удерживая таким образом ткань реальности от разрушения. Нам известны 17 частиц, которые появляются при возмущении квантовых полей — или, другими словами, когда квантовое поле получает энергию. Одна из таких частиц — фотон, который мы воспринимаем как свет и который отвечает за электромагнитные излучения вроде рентгеновского и микроволнового среди прочих. Также есть кварки, которые собираются в протоны и нейтроны в атомных ядрах. Другие частицы — частицы взаимодействий — вроде сильного и слабого, — которые в итоге диктуют, как работает Вселенная.

На этом графике показаны энергетические состояния гипотетического квантового поля. Исходя из определения, вакуумное состояние не может терять энергию, так как, если бы было справедливо обратное, работа фундаментальных частиц также была бы иной, а значит, и Вселенная перестала бы работать так, как она это делает сейчас. Большинство квантовых полей, судя по всему, находятся в своих квантовых состояниях, а значит, стабильны, а мы — в безопасности. Однако измерить эти вещи крайне сложно.

Согласно лучшим моделям эволюции Вселенной, наиболее вероятным сценарием является то, что называется Большой заморозкой. Если расширение не прекратится в течение многих лет, то все объекты будут находиться слишком далеко друг от друга. Процесс этот растянется на триллионы лет. На одном из финальных этапов в космосе останутся только чёрные дыры, но и они не вечны. Рано или поздно даже частицы перестанут взаимодействовать друг с другом, а материя и свет уйдут в прошлое.

Большой разрыв. Похожий сценарий приводит к гораздо более драматичной смерти, причём гораздо раньше.

Распад нестабильного вакуума

Подробнее про распад ложного вакуума можно прочитать в материале "Из пустого в порожнее", а также в новостях "Излучение Хокинга спасло Вселенную от распада ложного вакуума" и "Физик уточнил скорость распада ложного вакуума". На канале Kurzgesagt ученые рассказали о возможном механизме уничтожения Вселенной, которое может произойти в результате распада ложного вакуума. Результаты экспериментов соответствовали численным моделям и подтверждали, что распад ложного вакуума имеет квантово-механическую природу.

Пузыри смерти или Когда распад ложного вакуума уничтожит Вселенную

Гибель Вселенной может наступить из-за распада ложного вакуума, об этом гласит одна из научных теорий. На канале Kurzgesagt видеохостинга YouTube появился ролик, на котором ученые рассказали о возможном механизме уничтожения Вселенной, которое может произойти в результате распада ложного вакуума, передает со ссылкой на Для ложного вакуума существует вероятность перехода в более глубокое вакуумное состояние, в том числе в истинный вакуум. Распад существовавшего тогда ложного вакуума привел к быстро расширяющемуся пространству, заполненному раскаленной материей.

Впервые получены доказательства распада ложного вакуума

Вакуум же не имеет более низких энергетических состояний, до которых можно продолжать распасться, и поэтому существует в стабильном состоянии. Однако в теоретической физике подобным предположениям не место. В начале 1970-х годов несколько российских физиков по отдельности исследовали идею о том, что между устойчивым вакуумом и нестабильным невакуумом есть нечто среднее: вакуумоподобное состояние, которое кажется стабильным из-за очень длительного периода существования до распада. Этот «ложный вакуум» помогает устранить несоответствия в теориях о ранних условиях во Вселенной. Хотя концепция ложного вакуума была предложена для описания только переходного периода до Большого взрыва, недавние исследования в области поля Хиггса квантовое силовое поле, обнаруживаемое ускорителем частиц ЦЕРН предполагают, что мы все еще можем жить в ложном вакууме: то, что раньше считалось стабильным с наименьшей энергией состоянием поля Хиггса, может не являться состоянием с самой низкой энергией. Один из ответов — из-за «пузыря ничего». Пузырь из ничего — один из примеров «пузыря пространства-времени», где пространство-время обладает различными свойствами внутри и за пределами пузыря. Если в пространстве ложного вакуума спонтанно образуется пузырь из ничего, то он будет расти, и в конечном итоге поглотит всю Вселенную.

Согласно квантовой теории поля, ложным вакуумом называют состояние с малым значением энергии, которое является относительно стабильным метастабильным , но может переходить в состояние с минимальной возможной энергией, называемое истинным вакуумом. Переход между ложным вакуумом и истинным затруднен из-за высокого энергетического барьера, однако может происходить квантовомеханическое туннелирование из одного состояния в другое. В результате в ложном вакууме создаются небольшие пузырьки истинного вакуума. Физики впервые наблюдали, как эти пузырьки образуются в квантовой системе, представляющей собой переохлажденный газ, состоящий из изотопов натрия-23 и обладающим свойством сверхтекучей жидкости, при температуре менее одного микрокельвина.

Предполагается, что именно в таком особом состоянии энергии может пребывать наша Вселенная. Подробности приводит пресс-служба Кембриджского университета. Вокруг этого вопроса проводилось множество опытов, которые должны помочь космологам проверить множество теорий, связанных с формированием Вселенной. В частности, данная работа позволит в дальнейшем изучать роль квантовых флуктуаций.

В результате в ложном вакууме создаются небольшие пузырьки истинного вакуума. Материалы по теме: Игрушка дьяволаНовая частица из коллайдера грозит уничтожить всю физику2 ноября 2018 На Большом адронном коллайдере открыли новую форму материи. Почему ученые не понимают, с чем они столкнулись? Ложный и истинный вакуум в эксперименте представляли собой локальный и глобальный минимумы энергии ферромагнитного атомного конденсата Бозе-Эйнштейна.

Похожие новости:

Оцените статью
Добавить комментарий