Новости отросток нервной клетки 5

Отросток нейрона Последняя бука буква "н" Ответ на вопрос "Отросток нейрона ", 5 букв: аксон Альтернативные вопросы в кроссвордах для слова аксон. Формируют оболочки отростков нервных клеток в нервных волокнах периферической нервной системы.

Мышечная и нервная ткани

Рецепция а Прежде всего, нейроны принимают рецептируют поступающие сигналы. Возбуждение или торможение В ответ на сигнал, воспринявший его участок нейрона приходит в одно из двух состояний: возбуждения что обычно выражается в деполяризации плазматической мембраны или торможения гиперполяризация плазмалеммы. Передача сигнала Наконец, возбуждающий или тормозящий сигнал передаётся нейроном точнее, его отростком другим объектам: очередному нейрону или.

Установите соответствие между характеристикой ткани человека и ее типом: 1 эпителиальная, 2 соединительная.

А состоит из плотно прилегающих друг к другу клеток Б содержит много межклеточного вещества В образует потовые железы Д образует поверхностный слой кожи Е выполняет опорную и механическую функции Ответ 4. А состоит из плотно прилегающих друг к другу клеток Б состоит из рыхло расположенных клеток В содержит жидкое или твердое межклеточное вещество Г образует ногти и волосы Д обеспечивает связь между органами Ответ 5. А транспорт веществ в организме Б плотное прилегание клеток друг к другу В обилие межклеточного вещества Г выделение ферментов и гормонов Д участие в образовании кожных покровов Ответ 21211 6.

Установите соответствие между особенностями ткани человека и её видом: 1 Эпителиальная, 2 Соединительная. А клетки плотно прилегают друг к другу Б клетки могут быть плоскими, кубическими, цилиндрическими В ткань бывает реснитчатой, железистой, ороговевающей Г ткань имеет мезодермальное происхождение Д ткань бывает жидкой и твёрдой Е межклеточное вещество хорошо развито Ответ 111222 7.

Нервные импульсы имеют электрическую природу и распространяются по отросткам нейронов. Клетки спутники выполняют питательную, опорную и защитную функции, способствуя росту и развитию нервных клеток. Строение нейрона Нейрон — основная структурная и функциональная единица нервной системы. Структурно-функциональной единицей нервной системы является нервная клетка — нейрон. Его основными свойствами являются возбудимость и проводимость. Нейрон состоит из тела и отростков. Короткие, сильно ветвящиеся отростки — дендриты, по ним нервные импульсы поступают к телу нервной клетки. Дендритов может быть один или несколько.

Таким образом, по миелинизированным волокнам импульс проводится приблизительно в 5 — 10 раз быстрее, чем по безмиелиновым. Благодаря наличию миелиновой оболочки и совершенству метаболизма на всем протяжении мембраны в покое поддерживается одинаковый заряд, который быстро восстанавливается после прохождения возбуждения. Цвет миелинизированных нейронов белый, отсюда название «белого вещества» мозга. Безмиелиновые волокна изолированы по другой схеме. Несколько аксонов частично погружены в изолирующую шванновскую клетку, которая не смыкается вокруг них до конца.

Возбуждение постепенно охватывает соседние участки мембраны и так распространяется до конца аксона с постепенным ослаблением т. Свернуть Место нейрона, от которого начинается аксон, называется аксонным холмиком. Здесь генерируется потенциал действия — специфический электрический ответ возбудившейся нервной клетки. Аксон, выходя из сомы клетки, постепенно утончается и может давать ответвления — коллатерали. Функция аксона — передача нервного импульса к аксонным терминалиям.

В месте отхождения коллатерали импульс «дублируется» и распространяется как по основному ходу — аксону, так и по коллатералям. В конце аксона имеются синаптичекие окончания — аксонные терминалии. В цитоплазме аксона отсутствует ЭПС и аппарат Гольджи. Нейрофиламенты и микротрубочки располагаются вдоль аксона и обеспечивают транспорт белков и других веществ. Серое вещество мозга состоит из тел нейронов и дендритов.

Белое вещество мозга состоит из аксонов. В аксонном холмике происходит генерация потенциала действия нервный импульс.

Навигация по записям

  • Навигация по записям
  • Мы в соцсетях
  • Как называются отростки нейронов
  • Опыт других людей
  • Нейрон 5 букв

2.3. Отростки нейрона

От тела нейрона отходит один аксон – отросток, по которому электрические сигналы (нервные импульсы, или потенциалы действия) передаются от тела нейрона. Нейрит, отросток нервной клетки. Нейрит, отросток нервной клетки. А. Основные клетки нервной ткани – нейроны – состоят из тела и отростков. Нейрон — основная клетка нервной ткани.

Нейрит, отросток нервной клетки

отросток нервной клетки — ответ на кроссворд / сканворд, слово из 5 (пяти) букв. Ответ на вопрос "Отросток нервной клетки ", 5 (пять) букв: аксон. Какие нервные импульсы передаются от одной нервной клетки к другой. отросток нервной клетки — ответ на кроссворд / сканворд, слово из 5 (пяти) букв.

Нейрит, отросток нервной клетки

В эпиневрии и в наружной части периневрия содержатся артериолы и венулы, а также лимфатические сосуды. В эндоневрии проходят кровеносные капилляры. Периферический нерв иннервирован — имеет специальные нервные волокна. Тема 5. Нервные сети.

Соединение нервов между собой синапсы. Нейроны, как отдельные единицы нервной системы, функционируют не изолированно. Они соединены между собой и образуют единую сеть, которая передает возбуждение от рецепторов в ЦНС и от нее в различные органы рис. Специализированные контакты нейронов между собой, а также нейронов с клетками исполнительных органов, называются синапсами.

Несмотря на разнообразие синапсов, в их строении имеются общие черты. В синапсе выделяют пресинаптическую и постсинаптическую мембраны и пространство между ними - синаптическую щель шириной от 2 до 30 нм. Толщина каждой мембраны не превышает 5-6 нм. Пресинаптическая мембрана является продолжением поверхностной мембраны аксонального окончания.

Она не сплошная, в ней имеются отверстия, через которые цитоплазма аксонального окончания сообщается с синаптическим пространством. Постсинаптическая мембрана менее плотная, в ней отсутствуют отверстия. Синаптические входы нейрона. Синаптические бляшки окончаний пресинаптичесиих аксонов образуют соединения на дендритах и теле соме - постсинаптического нейрона.

Схема выброски медиатора и процессов, происходящих в гипотетическом центральном синапсе. Конечные участки аксонов и дендритов в области синапса не имеют мякотной оболочки и расширены в пресинаптический мешочек. Мешочек характерен для синаптических пузырьков, имеющих диаметр 40-59 нм. В них содержится медиатор.

В зависимости от типа выделяемого медиатора различают синапсы: а холинэргические — выделяют ацетилхолин; б адренэргические — выделяют норадреналин, дофамин катехоламины ; в серотонинэргические — выделяют серотонин; г пептидэргические — выделяют пептиды эндорфины, энкефалины и аминокислоты глицин, глутамат, ГАМК. В таких синапсах передача нервного импульса осуществляется при помощи химического вещества — медиатора. Такие синапсы называются синапсами с химической передачей. При изменении мембранного потенциала в терминалях нейромедиаторы выходят в синаптическую щель через поры диаметром 4-5 нм, имеющиеся в пресинаптической мембране экзоцитоз и связываются со своими рецепторами в постсинаптической мембране, вызывая изменение мембранного потенциала постсинаптического нейрона.

Основными медиаторами являются: 1. Ацетилхолин — один из первых выявленных медиатора. Он известен как «вещество блуждающего нерва» из-за своего воздействия на сердечную деятельность. Представляет собой наиболее распространенный медиатор ЦНС.

Аминокислота глицин, оказывающая тормозное действие на мотонейроны. Кислая аминокислота глутамат, является самым распространенным возбуждающим медиатором ЦНС. Адреналин, норадреналин и дофамин — представляют собой семейство медиаторов, передающих возбуждение или торможение в ЦНС, так и в периферической нервной системе. В пресинаптической части расположены синаптические пузырьки и митохондрии.

Синаптические пузырьки содержат нейромедиатор. Постсинаптическая мембрана располагает рецепторами нейромедиатора и ионными каналами. Синаптическая передача — сложный каскад событий. Она возможна при реализации ряда последовательных процессов: синтез нейромедиатора, его накопление и хранение в синаптических пузырьках вблизи пресинаптической мембраны, высвобождение нейромедиатора из нервной терминали, кратковременное взаимодействие нейромедиатора с рецептором, встроенным в постсинаптическую мембрану, разрушение нейромедиатора или захват его нервной терминалью.

Многие неврологические и психические заболевания сопровождаются нарушениями синаптической передачи. Медиаторы связываются со специфическими рецепторами постсинаптической мембраны. Вокруг рецептора формируется область высокой концентрации вещества того или иного медиатора. Соответственно повышается или понижается вероятность открывания ионного канала, так как изменяется его проводимость.

В синапсах возбуждение проводится только в одном направлении, но гораздо медленней, чем по нервному волокну. Однако передача информации осуществляется исключительно точно. В некоторых синапсах синаптическая щель отсутствует и его структурной основой является плотный контакт. В таком синапсе возбуждение может передаваться без участия медиатора, так как мембраны клеток соприкасаются.

Эти синапсы называются синапсами с электрической передачей. В синапсах такого строения пресинаптическая мембрана также имеет поры, но они в 5 раз меньше, чем в синапсах с химической передачей возбуждения. Поры электрических синапсов являются межклеточными диффузионными каналами, соединяющими соприкасающиеся клетки. По структуре и локализации синапсы подразделяются на 3 группы: межнейронные, рецепторно — нейрональные и нейроэффкторные.

Межнейронные синапсы подразделяются на аксодендритические, аксосоматические и аксо-аксональные. Межнейронные синапсы являются синапсами между двумя нейронами. Если аксон одного нейрона контактирует с дендритом другого постсинаптического нейрона, то такие синапсы называются аксодендритическими. Аксодендрическая связь представлена синапсами двух типов.

Один тип — это синапсы с широкой синаптической щелью и сами мембраны более утолщены. Такие синапсы характерны для возбуждающих нейронов. Другие синапсы принадлежат тормозным нейронам. Если аксон одного нейрона контактирует с перикарионом другого постсинаптического нейрона, то такой синапс называется аксосоматическим.

Если же аксон одного нейрона контактирует с аксоном другого постсинаптического нейрона, то такой синапс называется аксо-аксональным. Межнейронные синапсы очень многочисленны. На поверхности перикариона и отростков одного пирамидного нейрона в коре больших полушарий головного мозга имеется около 104 синапсов. Рецепторно — нейрональные рецепторно - дендритные синапсы являются синапсами между рецепторными клетками, сходными с нейронами, специализированными эпителиальными, нейроглиальными клетками, с одной стороны, и дендритами чувствительных нейронов — с другой.

Примером синапсов такого типа у позвоночных являются синапсы вкусовых сосочков, боковой линии рыб, внутреннего уха, кожи, соединительной ткани. Нейроэффкторные аксоэффекторные синапсы являются контактами между аксоном двигательных эффекторных нейронов и клетками, не принадлежащими к нервной системе. У человека и млекопитающих хорошо изучены двигательные и секреторные нейроэффекторные синапсы, или эффекторные нервные окончания. Первые представляют собой синаптические соединения между аксоном двигательного нейрона и поперечнополосатыми мышечными волокнами, поперечнополосатыми и гладкомышечными клетками, а вторые — между аксонами двигательного нейрона с секреторными клетками.

Существуют многочисленные синапсы между аксоном эфферентного нейрона и другими клетками — жировыми, ресничными и др. Для того чтобы мозг нормально функционировал, потоки нервных сигналов должны находить надлежащие пути среди клеток различных функциональных систем и межрегиональных объединений. Однако до сих пор остается загадкой, каким образом аксоны и дендриты той или иной нервной клетки растут именно в том направлении, чтобы создавались специфические связи, необходимые для ее функционирования. Высокая специфичность структуры мозга имеет важное значение.

Общий диапазон связей для большинства нервных клеток, по-видимому, предопределен заранее, причем эта предопределенность касается тех клеточных свойств, которые ученые считают генетически контролируемыми. Набор генов, предназначенных для проявления в развивающейся нервной клетке, каким-то еще до конца не установленным образом определяет как будущий тип каждой нервной клетки, так и принадлежность ее к той или иной сети. Концепция генетической детерминированности приложима и ко всем остальным особенностям данного нейрона, например к используемому им медиатору, к размерам и форме клетки. Как внутриклеточные процессы, так и межнейронные взаимодействия определяются генетической специализацией клетки.

Типы нервных сетей. Существуют три генетически детерминированных типа нервных сетей. Чтобы сделать концепцию генетической детерминации нейронных сетей более понятной, давайте уменьшим их число и представим себе, что наша нервная система состоит всего лишь из 9 клеток см. Это абсурдное упрощение поможет нам проявляется в наличии трех основных типов сетей, которые встречаются повсюду, — иерархические, локальные и дивергентные с одним входом.

Иерархические сети. Наиболее распространенный тип межнейронных связей встречаются в главных сенсорных и двигательных путях. В сенсорных системах иерархическая организация носит восходящий характер. В нее включаются различные клеточные уровни, по которым информация поступает в высшие центры — от первичных рецепторов к вторичным вставочным нейронам, затем к третичным и т.

Двигательные системы организованы по принципу нисходящей иерархии, где команды «спускаются» от нервной системы к мышцам: клетки, расположенные, фигурально говоря, «наверху», передают информацию специфическим моторным клеткам спинного мозга, а те в свою очередь — определенным группам мышечных клеток. Иерархические системы обеспечивают очень точную передачу информации. В результате конвергенции когда несколько нейронов одного уровня контактируют с меньшим числом нейронов следующего уровня или дивергенции когда контакты устанавливаются с большим числом клеток следующего уровня информация фильтруется и происходит усиление сигналов. Но, подобно любой цепи, иерархическая система не может быть сильнее своего самого слабого звена.

Инактивация любого уровня, вызванная ранением, заболеванием, инсультом или опухолью, может вывести из строя всю систему. Конвергенция и дивергенция, однако, оставляют цепям некоторый шанс уцелеть даже при их серьезном повреждении. Если нейроны одного уровня будут частично уничтожены, сохранившиеся клетки смогут все-таки поддерживать функционирование сети. Локальные сети.

Нейроны локальных сетей действуют как фильтры, удерживая поток информации в пределах какого-то одного иерархического уровня. Они, по всей видимости, широко распространены во всех мозговых сетях. Локальные сети могут оказывать на нейроны-мишени возбуждающее или тормозящее действие. Сочетание этих особенностей с дивергентным или конвергентным типом передачи на данном иерархическом уровне может еще более расширять, сужать или снова фокусировать поток информации.

Дивергентные сети с одним входом. В некоторых нервных сетях имеются скопления или слои нейронов, в которых один нейрон образует выходные связи с очень большим числом других клеток в таких сетях дивергенция доведена до крайних пределов. Изучение сетей такого типа начато лишь недавно, и единственные места, где они встречаются насколько нам сейчас известно , — это некоторые части среднего мозга и ствола мозга. Преимущества подобной системы в том, что она может оказывать влияние на множество нейронов сразу и иногда осуществлять связь со всеми иерархическими уровнями, нередко выходя за пределы специфических сенсорных, двигательных и других функциональных объединений.

Сфера воздействия таких сетей не ограничена какой-либо системой с определенными функциями. Дивергирующие пути этих сетей иногда называют неспецифическими и поэтому такие сети могут влиять на самые различные уровни и функции. Они играют большую роль в интеграции многих видов деятельности нервной системы. Кроме того, медиаторы, используемые в дивергентных системах с одним входом, — это медиаторы с «условным» действием: их эффект зависит от условий, в которых он осуществляется.

Подобные воздействия весьма важны и для интегративных механизмов. Однако дивергентные сети такого типа составляют лишь небольшую часть всех нервных сетей. Тема 6. Концевые нервные аппараты и их классификация.

Рефлекторная дуга и динамическая поляризация нейронов Связь нейронов с различными тканями и органами устанавливается при помощи нервных волокон, которые образуют в них концевые нервные аппараты нервные окончания. Окончания аксонов периферических нервов подразделяют на чувствительные афферентные и двигательные эфферентные. Приспособления, которые воспринимают раздражения, называются рецепторными аппаратами, или чувствительными нервными окончаниями, а нервы, проводящие возбуждение — чувствительными. Реализация нервных импульсов осуществляется эффекторными аппаратами двигательными нервным окончаниями , а проведения возбуждения к ним происходит по двигательным нервам.

Концевые нервные аппараты — сложные образования. В их состав входят не только нервные волокна, но и ткани, в которых они оканчиваются. Структура концевых аппаратов разнообразна, меняется в зависимости от условий, в которой они находятся. Эффекторный аппарат хорошо представлен на двигательной бляшке.

Он располагается на поперечнополосатом мышечном волокне в виде разветвления осевого цилиндра мякотного нервного волокна которое теряет миелин. По данным электронной микроскопии, для двигательной бляшки характерно отчетливое разграничение нервной и мышечной частей. В гладких мышцах двигательная иннервация осуществляется безмякотными нервными окончаниями. Секреторные окончания эффекторных нейронов представлены аксонами, выступающими в Синаптический контакт с железистыми клетками.

Концевые разветвления аксона либо подходят вплотную к секреторной клетке, либо глубоко вдавливаются в нее. Нейролемма аксона и плазмалемма секреторной клетки образуют соответственно пресинаптическую и постсинаптическую мембраны, разделенные узкой синаптической щелью. Холинрецепторы присутствуют также в мембране мышечного волокна вне синапса, но здесь их концентрация на порядок меньше, чем в постсинаптической мембране и обозначаются они как холинрецепторы. Рецепторные аппараты рецепторные нервные окончания.

Рецепторные воспринимающие нервные окончания у позвоночных представляют собой концевые аппараты дендритов чувствительных нейронов, тела которых располагаются чаше всего в спинальных ганглиях и их аналогах — черепномозговых чувствительных узлах или в периферических вегетативных ганглиях. В зависимости от того, откуда они воспринимают раздражение, различают экстерорецепторы и интерорецепторы. Первые воспринимают раздражения из внешней среды, вторые — из внутренних органов. Кроме того, с учетом специфичности раздражителя различают тактильные, холодовые, тепловые, болевые рецепторы, барорецепторы, хеморецепторы, механорецепторы.

По морфологическим особенностям рецепторные окончания могут быть свободными, располагающимися между клетками иннервируемой ткани, и несвободными, инкапсулированными заключенными в особые соединительнотканные капсулы. Свободные нервные окончания — наиболее распространенный тип сенсорных рецепторов. Большинство свободных нервных окончаний — механорецепторы. Распространены в прослойках соединительной ткани внутренних органов, а также в соединительнотканной основе кожи.

Свободные нервные окончания эпидермиса расположены в базальном и шиповатом слоях. В области кожи с высокой тактильной чувствительностью пальцы рук терминали достигают зернистого слоя. Некоторые окончания в эпидермисе специализированы для регистрации изменений температуры. Свободные нервные окончания имеются и в других органах чувств слуха, равновесия, вкуса , закладывающихся из эктодермы.

В многослойном эпителии локализованы чувствительные осязательные клетки Меркеля, имеющие округлую или удлиненную форму. Они соединены с эпителиоцитами при помощи десмосом и формируют контакт с нервными терминалями. В клетках Меркеля обнаружены пептиды и нейроспецифические вещества, что свидетельствует об их эндокринной функции. Это позволяет рассматривать их как компонент диффузной нейроэндокринной системы.

Капсулированные чувствительные нервные окончания построены по единому плану и наблюдаются в соединительной и мышечной тканях. Эти рецепторные нервные окончания имеют соединительнотканные капсулы различного строения. К капсулированным рецепторам мышечной ткани относятся нервно-мышечные веретена и капсулированные кустики. Они являются специфическими рецепторами соматической мускулатуры, воспринимающие ощущение растяжения мышечного волокна.

Одним концом они прикреплены к перимизию мышечного волокна, а другим - к сухожилию. В гладкой мускулатуре внутренних органов находятся кустиковидные свободные рецепторные окончания. Строение инкапсулированных рецепторных окончаний изучены на примере осязательных телец телец Мейсснера и пластинчатых телец телец Фатер - Пачини. Осязательные тельца расположены в сосочковом слое кожи и являются механорецепторами.

Тельце имеет удлиненную форму. Внутренняя часть тельца состоит из уплощенных нейроглиальных клеток, окружающих дендрит и образующих вместе внутреннюю колбу тельца. С внешней стороны тельце покрыто соединительнотканной капсулой и образует наружную колбу. В теле человека наиболее распространены пластинчатые тельца, или тельца Фатер — Пачини, которые являются механорецепторами.

Они встречаются в глубоких слоях кожи, на брыжейке, в молочной железе, кишечнике, поджелудочной железе, соединительной ткани внутренних органов, около кровеносных сосудов.

У большинства аксонов миелиновая оболочка имеется. Миелиновая оболочка Миелиновая оболочка — электроизолирующая оболочка, покрывающая аксоны многих нейронов. Миелиновая оболочка формируется из плоского выроста тела глиальной клетки, многократно оборачивающего аксон подобно изоляционной ленте.

В периферической нервной системе миелиновую оболочку аксонов образуют шванновские клетки несколько шванновских клеток на один аксон. В ЦНС один олигодендроцит образует миелиновую оболочку нескольким нервным клеткам. Образование миелиновой оболочки в ЦНС Цитоплазма шванновской клетки вытесняется из пространства между спиральными витками и остается только на внутренней и наружной поверхностях миелиновой оболочки, в результате чего миелиновая оболочка представляет собой, по сути, множество слоев клеточной мембраны. Такое высокое содержание липидов отличает миелин от других биологических мембран.

Миелин прерывается только в области перехватов Ранвье, которые встречаются через правильные промежутки длиной примерно 1 мм расстояние между перехватами Ранвье прямо пропорционально толщине аксона. В связи с тем что ионные токи не могут проходить сквозь миелин, вход и выход ионов осуществляется лишь в области перехватов. Это ведет к увеличению скорости проведения нервного импульса. Таким образом, по миелинизированным волокнам импульс проводится приблизительно в 5 — 10 раз быстрее, чем по безмиелиновым.

Благодаря наличию миелиновой оболочки и совершенству метаболизма на всем протяжении мембраны в покое поддерживается одинаковый заряд, который быстро восстанавливается после прохождения возбуждения. Цвет миелинизированных нейронов белый, отсюда название «белого вещества» мозга. Безмиелиновые волокна изолированы по другой схеме. Несколько аксонов частично погружены в изолирующую шванновскую клетку, которая не смыкается вокруг них до конца.

Возбуждение постепенно охватывает соседние участки мембраны и так распространяется до конца аксона с постепенным ослаблением т. Свернуть Место нейрона, от которого начинается аксон, называется аксонным холмиком.

Установите соответствие между характеристикой ткани человека и ее типом: 1 эпителиальная, 2 соединительная. А состоит из плотно прилегающих друг к другу клеток Б содержит много межклеточного вещества В образует потовые железы Д образует поверхностный слой кожи Е выполняет опорную и механическую функции Ответ 4. А состоит из плотно прилегающих друг к другу клеток Б состоит из рыхло расположенных клеток В содержит жидкое или твердое межклеточное вещество Г образует ногти и волосы Д обеспечивает связь между органами Ответ 5. А транспорт веществ в организме Б плотное прилегание клеток друг к другу В обилие межклеточного вещества Г выделение ферментов и гормонов Д участие в образовании кожных покровов Ответ 21211 6. Установите соответствие между особенностями ткани человека и её видом: 1 Эпителиальная, 2 Соединительная. А клетки плотно прилегают друг к другу Б клетки могут быть плоскими, кубическими, цилиндрическими В ткань бывает реснитчатой, железистой, ороговевающей Г ткань имеет мезодермальное происхождение Д ткань бывает жидкой и твёрдой Е межклеточное вещество хорошо развито Ответ 111222 7.

Запишите цифры 1, 2 и 3 в правильном порядке. Установите соответствие между характеристиками и типами ткани человека: 1 эпителиальная, 2 соединительная, 3 нервная. А обладает проводимостью Б выполняет функцию опоры и питания В образует наружный покров кожи Г вырабатывает антитела Д состоит из тесно прилегающих клеток Е образует серое вещество спинного мозга Ответ 321213 2. Установите соответствие между характеристикой ткани человека и ее типом: 1 эпителиальная, 2 соединительная, 3 нервная. А регуляция движений тела Б отложение питательных веществ в запас В передвижение веществ в организме Г защита от химических воздействий Д выделение пота.

Отросток нейрона 5 букв - 81 фото

Все ответы для определения Отросток нервной клетки в кроссвордах и сканвордах вы найдете на этой странице. окружают отростки нейроцитов и входят в состав безмиелиновых и миелиновых нервных волокон. Нейрон — основная клетка нервной ткани.

Функции и особенности строения нервной ткани

Каждая нервная клетка имеет один длинный отросток — аксон, по которому импульсы направляются от тела клетки. Длина аксона может достигать нескольких десятков сантиметров. Объединяясь в пучки, аксоны образуют нервы. Длинные отростки нервной клетки аксоны покрыты миелиновой оболочкой.

Скопления таких отростков, покрытых миелином жироподобным веществом белого цвета , в центральной нервной системе образуют белое вещество головного и спинного мозга. Короткие отростки дендриты и тела нейронов не имеют миелиновой оболочки, поэтому они серого цвета. Их скопления образуют серое вещество мозга.

Синапс Нейроны соединяются друг с другом таким образом: аксон одного нейрона присоединяется к телу, дендритам или аксону другого нейрона.

В конце 1980-х годов нейрогенез был также обнаружен у взрослых амфибий в лаборатории ленинградского ученого профессора А. Откуда берутся новые нейроны, если нервные клетки не делятся?

Источником новых нейронов и у птиц, и у амфибий оказались нейрональные стволовые клетки стенки желудочков мозга. Во время развития зародыша именно из этих клеток образуются клетки нервной системы: нейроны и клетки глии. Но не все стволовые клетки превращаются в клетки нервной системы - часть из них "затаивается" и ждет своего часа.

Новые нейроны появляются из стволовых клеток взрослого организма и у низших позвоночных. Аналогичный процесс происходит и в нервной системе млекопитающих рис. Основные пути дифференцировки клеток ганглионарной пластинки и нервной трубки Развитие нейробиологии в начале 1990-х годов привело к обнаружению "новорожденных" нейронов в головном мозге взрослых крыс и мышей.

Их находили большей частью в эволюционно древних отделах головного мозга: обонятельных луковицах и коре гиппокампа, которые отвечают главным образом за эмоциональное поведение, реакцию на стресс и регуляцию половых функций млекопитающих. Так же, как у птиц и низших позвоночных, у млекопитающих нейрональные стволовые клетки располагаются поблизости от боковых желудочков мозга. Их перерождение в нейроны идет очень интенсивно.

Продолжительность жизни таких нейронов очень высока - до 112 дней. Стволовые нейрональные клетки преодолевают длинный путь около 2 см. Они также способны мигрировать в обонятельную луковицу, превращаясь там в нейроны.

Стволовые клетки можно извлечь из мозга и пересадить в другой участок нервной системы, где они превратятся в нейроны. Профессор Гейдж с коллегами провел несколько подобных экспериментов, наиболее впечатляющим среди которых был следующий. Участок мозговой ткани, содержащий стволовые клетки, пересадили в разрушенную сетчатку глаза крысы.

Пересаженные стволовые клетки мозга превратились в нейроны сетчатки, их отростки достигли зрительного нерва, и крыса прозрела! Нейрогенез идет не только у грызунов, но и у человека. В этом убедились на основе анализа результатов эксперимента.

В одной из американских онкологических клиник группа больных, имеющих неизлечимые злокачественные новообразования, принимала химиотерапевтический препарат бромдиоксиуридин. У этого вещества есть важное свойство - способность накапливаться в делящихся клетках различных органов и тканей. Бромдиоксиуридин включается в ДНК материнской клетки и сохраняется в дочерних клетках после деления материнской.

Патологоанатомическое исследование показало, что нейроны, содержащие бромдиоксиуридин, обнаруживаются практически во всех отделах мозга, включая кору больших полушарий. Значит, эти нейроны были новыми клетками, возникшими при делении стволовых клеток. Находка безоговорочно подтвердила, что процесс нейрогенеза происходит и у взрослых людей.

Но если у грызунов нейрогенез идет только в гиппокампе, то у человека, вероятно, он может захватывать более обширные зоны головного мозга, включая кору больших полушарий. Исследования показали, что новые нейроны во взрослом мозге могут образовываться не только из нейрональных стволовых клеток, но и из стволовых клеток крови. Оказалось, что стволовые клетки действительно проникают в мозг, но они не превращаются в нейроны, а сливаются с ними, образую двуядерные клетки.

Затем «старое» ядро нейрона разрушается, а его замещает «новое» ядро стволовой клетки крови. Согласно одной из гипотез, стволовые клетки несут новый генетический материал, который, попадая в «старую» клетки мозжечка, продлевает его жизнь. Итак, новые нейроны могут возникать из стволовых клеток даже в мозге взрослого человека.

Этот феномен уже достаточно широко применяется для лечения различных нейродегенеративных заболеваний заболеваний, сопровождающихся гибелью нейронов головного мозга. Препараты стволовых клеток для трансплантации получают двумя способами. Первый - это использование нейрональных стволовых клеток, которые и у эмбриона, и у взрослого человека располагаются вокруг желудочков головного мозга.

Второй подход - использование эмбриональных стволовых клеток. Эти клетки располагаются во внутренней клеточной массе на ранней стадии формирования зародыша. Они способны превращаться практически в любые клетки организма.

Наибольшая сложность в работе с эмбриональными клетками — заставить их трансформироваться в нейроны. Новые технологии позволяют сделать это. Трансплантация стволовых клеток, несомненно, будет одним из главных подходов в терапии таких нейродегенеративных заболеваний, как болезни Альцгеймера и Паркинсона.

Термин «нейроглия» ввел в обиход немецкий патологоанатом Рудольф Вирхов для описания связывающих элементов между нейронами. Эти клетки составляют половину объема мозга. Нейроны — это высокоспециализированные клетки, существующие и функционирующие в строго определенной среде.

Такую среду им обеспечивает нейроглия. Нейроглия — вспомогательная и очень важная составная часть нервной ткани, связанная с нейронами. По мере специализации нейрона как индивидуальной клетки в процессе эволюции возникла организация более высокого порядка — межклеточное «сообщество» нейрона и нейроглии.

Нейроглия не принимает непосредственного участия генерации и проведении нервных импульсов и, тем не менее, нормальное функционирование нейрона невозможно в отсутствии или при повреждении глии. Нейроглия выполняет следующие функции: опорную, трофическую, разграничительную, поддержание постоянства среды вокруг нейронов, защитную, секреторную. Клетки нейроглии не образуют синапсов.

Различают глию центральной и периферической нервной системы. Клетки глии центральной нервной системы делятся на макроглию и микроглию. Макроглия развивается из глиобластов нервной трубки и включает: эпендиму, астроглию и олигодендроглию.

Эпендимоциты выстилают желудочки головного мозга и центральный канал спинного мозга. Эти клетки цилиндрической формы. Они образуют слой типа эпителия, носящий название эпендимы.

Между соседними клетками эпендимы имеются щелевидные соединения и пояски сцепления, но плотные соединения отсутствуют, так что цереброспинальная жидкость может проникать между эпендимоцитами в нервную ткань. Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости. Базальная поверхность большинства эпендимоцитов ровная, но некоторые клетки имеют длинный отросток, идущий глубоко в нервную ткань.

Такие клетки называются таницитами. Они многочисленны в дне III желудочка. Считается, что эти клетки передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза.

Эпендимный эпителий сосудистых сплетений желудочков продуцирует цереброспинальную жидкость ликвор. Астроглию образуют астроциты. Астроциты — клетки отростчатой формы, бедные органеллами.

Они выполняют в основном опорную и трофическую функции. Различают два типа астроцитов - протоплазматические и волокнистые. Протоплазматические астроциты локализуются в сером веществе центральной нервной системы, а волокнистые астроциты - преимущественно в белом веществе.

Протоплазматические астроциты характеризуются короткими сильно ветвящимися отростками и светлым сферическим ядром. Отростки астроцитов тянутся к базальным мембранам капилляров, к телам и дендритам нейронов, окружая синапсы и отделяя изолируя их друг от друга, а также к мягкой мозговой оболочке, образуя пиоглиальную мембрану, граничащую с субарахноидальным пространством. Подходя к капиллярам, их отростки образуют расширенные «ножки», полностью окружающие сосуд.

Астроциты накапливают и передают вещества от капилляров к нейронам, захватывают избыток экстрацеллюлярного калия и других веществ, таких как нейромедиаторы, из экстрацеллюлярного пространства после интенсивной нейрональной активности. Олигодендроглию образуют олигодендроциты. Олигодендроциты — имеют более мелкие по сравнению с астроцитами и более интенсивно окрашивающиеся ядра.

Их отростки немногочисленны. Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов.

В белом веществе их отростки образуют миелиновый слой в миелиновых нервных волокнах, причем, в противоположность аналогичным клеткам периферической нервной системы — нейролеммоцитам, один олигодендроглиоцит может участвовать в миелинизации сразу нескольких аксонов. Микроглия образуют микроглиоциты, которые представляют собой фагоцитирующие клетки, относящиеся к системе мононуклеарных фагоцитов и происходящие из стволовой кроветворной клетки возможно, из премоноцитов красного костного мозга. Функция микроглии — защита от инфекции и повреждения, и удаление продуктов разрушения нервной ткани.

Клетки микроглии характеризуются небольшими размерами, телами продолговатой формы. Их короткие отростки имеют на своей поверхности вторичные и третичные ответвления, что придает клеткам «колючий» вид. Описанная морфология характерна для типичной ветвистой, или покоящейся микроглии полностью сформированной центральной нервной системы.

Она обладает слабой фагоцитарной активностью. Ветвистая микроглия встречается как в сером, так и в белом веществе центральной нервной системы. В развивающемся мозгу млекопитающих обнаруживается временная форма микроглии — амебоидная микроглия.

Клетки амебоидной микроглии формируют выросты — филоподии и складки плазмолеммы. В их цитоплазме присутствуют многочисленные фаголизосомы и пластинчатые тельца. Амебоидные микроглиальные тельца отличаются высокой активностью лизосомальных ферментов.

Активно фагоцитирующая амебоидная микроглия необходима в раннем постнатальном периоде, когда гематоэнцефалический барьер еще не вполне развит и вещества из крови легко попадают в центральную нервную систему. Считают также, что она способствует удалению обломков клеток, появляющихся в результате запрограммированной гибели избыточных нейронов и их отростков в процессе дифференцировки нервной системы. Полагают, что, созревая, амебоидные микроглиальные клетки превращаются в ветвистую микроглию.

Реактивная микроглия появляется после травмы в любой области мозга. Она не имеет ветвящихся отростков, как покоящаяся микроглия, не имеет псевдоподий и филоподий, как амебоидная микроглия. В цитоплазме клеток реактивной микроглии присутствуют плотные тельца, липидные включения, лизосомы.

Есть данные о том, что реактивная микроглия формируется вследствие активации покоящейся микроглии при травмах центральной нервной системы. Рассмотренные выше глиальные элементы относятся к центральной нервной системе. Глия периферической нервной системы в отличие от макроглии центральной нервной системы происходит из нервного гребня.

К периферической нейроглии относятся: нейролеммоциты или шванновские клетки и глиоциты ганглиев или мантийные глиоциты. Нейролеммоциты и шванновские клетки формируют оболочки отростков нервных клеток в нервных волокнах периферической нервной системы. Мантийные глиоциты ганглиев окружают тела нейронов в нервных узлах и участвуют в обмене веществ этих нейронов.

В отличие от нейронов нейроглия содержит малодифференцированные клетки способные к регенерации, размножению и развитию в течении всей жизни. Тема 4. Нервные узлы.

Нервные волокна. Нервные стволы нервы Нервные узлы ганглии. Нервные узлы, или ганглии, это скопления нейронов вне центральной нервной системы.

Нервные узлы, расположенные в пределах центральной нервной системы, называются ядрами. Выделяют чувствительные и вегетативные нервные узлы. Чувствительные нервные узлы лежат по ходу задних корешков спинного мозга и по ходу черепно-мозговых нервов.

Афферентные нейроны в спиральном и вестибулярном ганглии являются биполярными, в остальных чувствительных ганглиях - псевдоуниполярными. Спинномозговой узел спинальный ганглий. Спинномозговой узел имеет веретеновидную форму, окружен капсулой из плотной соединительной ткани.

От капсулы в паренхиму узла проникают тонкие прослойки соединительной ткани, в которой расположены кровеносные сосуды. Нейроны спинномозгового узла характеризуются крупным сферическим телом и светлым ядром с хорошо заметным ядрышком. Клетки располагаются группами, преимущественно по периферии органа.

Центр спинномозгового узла состоит главным образом из отростков нейронов и тонких прослоек эндоневрия, несущих сосуды. Дендриты нервных клеток идут в составе чувствительной части смешанных спинномозговых нервов на периферию и заканчиваются там рецепторами. Аксоны в совокупности образуют задние корешки, несущие нервные импульсы в спинной мозг или продолговатый мозг.

Дендриты и аксоны клеток в узле и за его пределами покрыты миелиновыми оболочками из нейролеммоцитов. Тело каждой нервной клетки в спинномозговом узле окружено слоем уплощенных клеток олигодендроглии, которые здесь называются мантийными глиоцитами, или глиоцитами ганглия, или же клетками-сателлитами. Они расположены вокруг тела нейрона и имеют мелкие округлые ядра.

Снаружи глиальная оболочка нейрона покрыта тонковолокнистой соединительнотканной оболочкой. Клетки этой оболочки отличаются овальной формой ядер. Нейроны спинномозговых узлов содержат такие нейромедиаторы, как ацетилхолин, глутаминовая кислота.

Автономные вегетативные узлы. Вегетативные нервные узлы располагаются следующим образом: вдоль позвоночника, впереди от позвоночника, в стенке органов - сердца, бронхов, пищеварительного тракта, вблизи поверхности этих органов. К вегетативным узлам подходят миелиновые преганглионарные волокна, содержащие отростки нейронов центральной нервной системы.

По функциональному признаку и локализации вегетативные нервные узлы разделяют на симпатические и парасимпатические. Большинство внутренних органов имеет двойную вегетативную иннервацию, то есть получает постганглионарные волокна от клеток, расположенных как в симпатических, так и в парасимпатических узлах. Реакции, опосредуемые их нейронами, часто имеют противоположную направленность так, например, симпатическая стимуляция усиливает сердечную деятельность, а парасимпатическая ее тормозит.

Общий план строения вегетативных узлов сходен. Снаружи узел покрыт тонкой соединительнотканной капсулой. Вегетативные узлы содержат мультиполярные нейроны, которые характеризуются неправильной формой, эксцентрично расположенным ядром.

Часто встречаются многоядерные и полиплоидные нейроны. Каждый нейрон и его отростки окружены оболочкой из глиальных клеток-сателлитов - мантийных глиоцитов. Наружная поверхность глиальной оболочки покрыта базальной мембраной, кнаружи от которой расположена тонкая соединительнотканная оболочка.

Нейроны вегетативных нервных ганглиев, как и спинномозговых узлов, имеют эктодермальное происхождение и развиваются из клеток нервного гребня. Тела нейронов образуют серое вещество головного и спинного мозга, а также нервные ганглии беспозвоночных и позвоночных животных. Связь ЦНС и ганглиев с органами осуществляется при помощи проводящих элементов — нервов, основу которых составляют нервные волокна.

Нервы, или нервные стволы, связывают нервные центры головного и спинного мозга с рецепторами и рабочими органами, или же с нервными узлами. Отростки нервных клеток, окруженные плазмалеммой олигодендроцитов или шванновских клеток, называются нервными волокнами рис. Отросток нервной клетки в составе нервного волокна называются осевым цилиндром, а глиальные клетки, формирующие оболочку волокна, называются леммоцитами, или шванновскими клетками.

Нервные волокна образуют в головном и спинном мозге проводящие пути, а на периферии — нервы. В пределах ЦНС нервные волокна входят в состав белого вещества мозга. По нервным волокнам осуществляется проведение нервных импульсов.

Толщина соматических нервных волокон равна 12-14 мкм, автономных - 5-7 мкм. В зависимости от строения покрывающих оболочек нервные волокна подразделяются на два вида: безмякотные немиелиновые и мякотные миелиновые рис. Безмякотные немиелиновые нервные волокна входят в состав периферических нервов, идущих к внутренним органам, но многие сенсорные волокна также являются безмякотными.

Они имеют несколько осевых цилиндров 3-5, иногда до 12 , окруженных шванновскими клетками.

Те олигодендроциты, которые находятся в сером веществе, располагаются, как правило, вокруг тел нейронов, плотно прилегая к ним. Поэтому их называют клетками-сателлитами.

Они характеризуются наличием коротких отростков. Клетки микроглии происходят из мезодермы. Они отличаются небольшими размерами.

Эти клетки могут активно передвигаться и выполнять фагоцитарные функции. Благодаря способности к активной миграции микроглия распределена по всей центральной нервной системе. Дорогина, О.

Схема биологического нейрона. Биологическая модель нейрона. Нейроны в нейронной сети схема. Искусственный Нейрон в биологии. Нервная система Нейрон. Нейрон клетка нервной системы.

Нейроны и синапсы головного мозга. Нейроцит и Нейрон. Строение нейрона неврология. Схема строения нейроцита. Строение нейрона гистология. Схема строения нейрона гистология.

Строение нейрона на английском. Строение нервной клетки гистология. Нейрон 3d. Нервная система. Нейроны решётки. Строение мультиполярного нейрона.

Ультрамикроскопическое строение нейрона. Аксон на клетке нейрона. Мультиполярный Нейрон рисунок. Биполярные клетки Нейроны. Биполярный Нейрон схема. Нейрон в нейронной сети.

Нейронная сеть нервная система. Нейронная сеть ученого. Нейроны человеческого мозга. Псевдоуниполярный Нерон строение. Псевдоуниполярный Нейрон строение. Классификация нейронов схема.

Строение униполярного нейрона. Униполярные биполярные и мультиполярные Нейроны. Униполярные, биполярные и мультиполярные. Классификация нейронов биполярный униполярный. Синапс место контакта между двумя нейронами. Передача нервного импульса.

Синаптическая передача. Процесс синаптической передачи импульса между нервными клетками. Строение нерва Аксон. Строение аксона нейрона. Нейрон схематично. Дендрит тело Аксон.

Строение нейрона на англ. Какой цифрой на рисунке обозначен Аксон. Тканина нервова языка. Myelin Sheath. Строение нейрона на латыни. Сома дендрит Аксон.

Нейронные отростки. Нейроны в организме человека. Взаимоотношения между нейронами. Сеть нейронов головного мозга. Нервная система человека Нейрон. Нейронная сеть мозга.

Нейронные связи головного мозга.

Похожие новости:

Оцените статью
Добавить комментарий