Наибольшей наглядностью обладают следующие формы записи алгоритмов. 2. Наибольшее распространение благодаря своей наглядности получил графический способ записи алгоритмов.
Как называется свойство алгоритма. Основные свойства алгоритма
Построчная запись. Кроме слов естественного языка предписания могут содержать математические выражения и формулы. Пример 2. Построчная запись алгоритма Евклида. Обозначить первое из заданных чисел X, второе обозначить Y. Заменить X на X - Y. Перейти к п. Заменить Y на Y - X. Считать X искомым результатом.
Построчная запись алгоритма позволяет избежать ряда неопределённостей; её восприятие не требует дополнительных знаний. Вместе с тем использование построчной записи требует от человека большого внимания.
Наибольшее распространение благодаря своей наглядности получил графический способ записи алгоритмов. При графическом представлении алгоритм изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий. Такое графическое представление называется схемой алгоритма или блок-схемой. В блок-схеме каждому типу действий вводу исходных данных, вычислению значений выражений, проверке условий, управлению повторением действий, окончанию обработки и т. Блочные символы соединяются линиями переходов, определяющими очередность выполнения действий. В таблице приведены наиболее часто употребляемые символы. Блок "процесс" применяется для обозначения действия или последовательности действий, изменяющих значение, форму представления или размещения данных.
Посмотрите на еще один актуальный план действий плакат отсюда , который тоже подходит под критерии, описанные выше: Давайте рассмотрим простую инструкцию «Как сварить макароны»: Взять подходящую кастрюлю размер выбрать в зависимости от количества макарон.
Налить в нее воду по ручки. Включить плиту зажечь газ на газовой, повернуть ручку на электрической. Поставить на включенную конфорку кастрюлю с водой. Добавить в воду чайную ложку соли. Когда вода закипит, добавить макароны, перемешать их. Дать макаронам покипеть 3 минуты смотреть инструкцию на упаковке или попробовать, готова ли макаронина. Слить макароны через дуршлаг промыть холодной водой, если макароны с мягких сортов пшеницы. Является ли эта инструкция алгоритмом? Какими свойствами обладает? Однозначны ли указания, поделены на элементарные шаги дискретность?
Все этапы простые и понятные детерминированность?
Блок-схема алгоритма Рис. Однако, эта наглядность быстро теряется при изображении очень большого алгоритма, т. Псевдокод — это язык записи структурированных алгоритмов, состоит из смеси языка высокого уровня и фраз родного языка исполнителя.
Тест на тему: «Алгоритмизация»
Но зато спустя десять лет, в третьем издании Большой советской энциклопедии 1969 год алгоритм уже характеризуется как одна из основных категорий математики, «не обладающих формальным определением в терминах более простых понятий, и абстрагируемых непосредственно из опыта». Как мы видим, отличие даже от трактовки первым изданием БСЭ разительное! За сорок лет алгоритм превратился в одно из ключевых понятий математики, и признанием этого стало включение слова уже не в энциклопедии, а в словари. Например, оно присутствует в академическом «Словаре русского языка» 1981 г.
Одновременно с развитием понятия алгоритма постепенно происходила и его экспансия из чистой математики в другие сферы. И начало ей положило появление компьютеров, благодаря которому слово «алгоритм» вошло в 1985 году во все школьные учебники информатики и обрело новую жизнь. Вообще можно сказать, что его сегодняшняя известность напрямую связана со степенью распространения компьютеров.
Например, в третьем томе «Детской энциклопедии» 1959 г. Соответственно и алгоритмы ни разу не упоминаются на её страницах. Но уже в начале 70-х гг.
Это чутко фиксируют энциклопедические издания. В « Энциклопедии кибернетики » 1974 год в статье «Алгоритм» он уже связывается с реализацией на вычислительных машинах, а в «Советской военной энциклопедии» 1976 г. За последние полтора-два десятилетия компьютер стал неотъемлемым атрибутом нашей жизни, компьютерная лексика становится всё более привычной.
Слово «алгоритм» в наши дни известно, вероятно, каждому. Оно уверенно шагнуло даже в разговорную речь, и сегодня мы нередко встречаем в газетах и слышим в выступлениях политиков выражения вроде «алгоритм поведения», «алгоритм успеха» или даже «алгоритм предательства». Академик Н.
Моисеев назвал свою книгу «Алгоритмы развития», а известный врач Н. Амосов — «Алгоритм здоровья» и «Алгоритмы разума». А это означает, что слово живёт, обогащаясь всё новыми значениями и смысловыми оттенками.
Свойства алгоритмов[ править править код ] Различные определения алгоритма в явной или неявной форме содержат следующий ряд общих требований: Дискретность — алгоритм должен представлять процесс решения задачи как упорядоченное выполнение некоторых простых шагов. При этом для выполнения каждого шага алгоритма требуется конечный отрезок времени, то есть преобразование исходных данных в результат осуществляется во времени дискретно. Детерминированность определённость.
В каждый момент времени следующий шаг работы однозначно определяется состоянием системы. Таким образом, алгоритм выдаёт один и тот же результат ответ для одних и тех же исходных данных. В современной трактовке у разных реализаций одного и того же алгоритма должен быть изоморфный граф.
С другой стороны, существуют вероятностные алгоритмы, в которых следующий шаг работы зависит от текущего состояния системы и генерируемого случайного числа. Однако при включении метода генерации случайных чисел в список «исходных данных» вероятностный алгоритм становится подвидом обычного. Понятность — алгоритм должен включать только те команды, которые доступны исполнителю и входят в его систему команд.
Завершаемость конечность — в более узком понимании алгоритма как математической функции, при правильно заданных начальных данных алгоритм должен завершать работу и выдавать результат за определённое число шагов. Дональд Кнут называет процедуру, которая удовлетворяет всем свойствам алгоритма, кроме, возможно, конечности, методом вычисления англ. Однако довольно часто определение алгоритма не включает завершаемость за конечное время [5].
В этом случае алгоритм метод вычисления определяет частичную функцию [en]. Для вероятностных алгоритмов завершаемость как правило означает, что алгоритм выдаёт результат с вероятностью 1 для любых правильно заданных начальных данных то есть может в некоторых случаях не завершиться, но вероятность этого должна быть равна 0. Массовость универсальность.
Алгоритм должен быть применим к разным наборам начальных данных. Результативность — завершение алгоритма определёнными результатами. Формальное определение[ править править код ] Разнообразные теоретические проблемы математики и ускорение развития физики и техники поставили на повестку дня точное определение понятия алгоритма.
Марков , Алонзо Чёрч. Было разработано несколько определений понятия алгоритма, но впоследствии было выяснено, что все они определяют одно и то же понятие см. Успенский считал, что понятие алгоритма впервые появилось у Эмиля Бореля в 1912 году, в статье об определённом интеграле.
Там он написал о «вычислениях, которые можно реально осуществить», подчеркивая при этом: «Я намеренно оставляю в стороне большую или меньшую практическую деятельность; суть здесь та, что каждая из этих операций осуществима в конечное время при помощи достоверного и недвусмысленного метода» [7]. Основная статья: Машина Тьюринга Схематическая иллюстрация работы машины Тьюринга. Основная идея, лежащая в основе машины Тьюринга, очень проста.
Стандартов на псевдокод нет, существует он как средство разработки программ. По сравнению со словесным алгоритмом псевдокод ближе программным конструкциям. Основное достоинство псевдокода — он позволяет пользователю легко разобраться в самом длинном и сложном алгоритме, поэтому чаще всего псевдокод используется для документирования программ.
Он позволяет описывать алгоритмы в более структурированной и понятной форме, используя ключевые слова, операторы и конструкции, которые знакомы программистам. Псевдокод обычно не зависит от конкретного языка программирования, поэтому его легко читать и понимать даже тем, кто не знаком с определенным языком программирования.
Очевидно, понимание такого образа требовало соответствующей подготовки слушателей, а это означает, что новая система счисления уже была им достаточно хорошо известна. Многие века абак был фактически единственным средством для практичных вычислений, им пользовались и купцы, и менялы, и учёные. Достоинства вычислений на счётной доске разъяснял в своих сочинениях такой выдающийся мыслитель, как Герберт Аврилакский 938—1003 , ставший в 999 году папой римским под именем Сильвестра II. Новое с огромным трудом пробивало себе дорогу, и в историю математики вошло упорное противостояние лагерей алгорисмиков и абацистов иногда называемых гербекистами , которые пропагандировали использование для вычислений абака вместо арабских цифр. Интересно, что известный французский математик Николя Шюке Nicolas Chuquet, 1445—1488 в реестр налогоплательщиков города Лиона был вписан как алгорисмик algoriste. Но прошло не одно столетие, прежде чем новый способ счёта окончательно утвердился, столько времени потребовалось, чтобы выработать общепризнанные обозначения, усовершенствовать и приспособить к записи на бумаге методы вычислений. В Западной Европе учителей арифметики вплоть до XVII века продолжали называть «магистрами абака», как, например, математика Никколо Тарталью 1500—1557. Итак, сочинения по искусству счёта назывались Алгоритмами. Из многих сотен можно выделить и такие необычные, как написанный в стихах трактат Carmen de Algorismo латинское carmen и означает стихи Александра де Вилла Деи Alexander de Villa Dei, ум. Постепенно значение слова расширялось. Учёные начинали применять его не только к сугубо вычислительным, но и к другим математическим процедурам. Например, около 1360 г. Когда же на смену абаку пришёл так называемый счёт на линиях, многочисленные руководства по нему стали называть Algorithmus linealis, то есть правила счёта на линиях. Можно обратить внимание на то, что первоначальная форма algorismi спустя какое-то время потеряла последнюю букву, и слово приобрело более удобное для европейского произношения вид algorism. Позднее и оно, в свою очередь, подверглось искажению, скорее всего, связанному со словом arithmetic. В 1684 году Готфрид Лейбниц в сочинении Nova Methodvs pro maximis et minimis, itemque tangentibus… впервые использовал слово «алгоритм» Algorithmo в ещё более широком смысле: как систематический способ решения проблем дифференциального исчисления. В XVIII веке в одном из германских математических словарей, Vollstandiges mathematisches Lexicon изданном в Лейпциге в 1747 году , термин algorithmus всё ещё объясняется как понятие о четырёх арифметических операциях. Но такое значение не было единственным, ведь терминология математической науки в те времена ещё только формировалась. В частности, выражение algorithmus infinitesimalis применялось к способам выполнения действий с бесконечно малыми величинами. Пользовался словом алгоритм и Леонард Эйлер , одна из работ которого так и называется — «Использование нового алгоритма для решения проблемы Пелля» De usu novi algorithmi in problemate Pelliano solvendo. Мы видим, что понимание Эйлером алгоритма как синонима способа решения задачи уже очень близко к современному. Однако потребовалось ещё почти два столетия, чтобы все старинные значения слова вышли из употребления. Этот процесс можно проследить на примере проникновения слова «алгоритм» в русский язык. Историки датируют 1691 годом один из списков древнерусского учебника арифметики, известного как «Счётная мудрость». Это сочинение известно во многих вариантах самые ранние из них почти на сто лет старше и восходит к ещё более древним рукописям XVI веке По ним можно проследить, как знание арабских цифр и правил действий с ними постепенно распространялось на Руси. Полное название этого учебника — «Сия книга, глаголемая по-еллински и по-гречески арифметика, а по-немецки алгоризма, а по-русски цифирная счётная мудрость». Таким образом, слово «алгоритм» понималось первыми русскими математиками так же, как и в Западной Европе. Однако его не было ни в знаменитом словаре В. Даля , ни спустя сто лет в «Толковом словаре русского языка» под редакцией Д. Ушакова 1935 г. Зато слово «алгорифм» можно найти и в популярном дореволюционном Энциклопедическом словаре братьев Гранат , и в первом издании Большой советской энциклопедии БСЭ , изданном в 1926 г. И там, и там оно трактуется одинаково: как правило, по которому выполняется то или иное из четырёх арифметических действий в десятичной системе счисления. Однако к началу XX в. Алгоритмы становились предметом всё более пристального внимания учёных, и постепенно это понятие заняло одно из центральных мест в современной математике. Что же касается людей, от математики далёких, то к началу сороковых годов это слово они могли услышать разве что во время учёбы в школе, в сочетании «алгоритм Евклида». Несмотря на это, алгоритм всё ещё воспринимался как термин сугубо специальный, что подтверждается отсутствием соответствующих статей в менее объёмных изданиях. В частности, его нет даже в десятитомной Малой советской энциклопедии 1957 г. Но зато спустя десять лет, в третьем издании Большой советской энциклопедии 1969 год алгоритм уже характеризуется как одна из основных категорий математики, «не обладающих формальным определением в терминах более простых понятий, и абстрагируемых непосредственно из опыта». Как мы видим, отличие даже от трактовки первым изданием БСЭ разительное! За сорок лет алгоритм превратился в одно из ключевых понятий математики, и признанием этого стало включение слова уже не в энциклопедии, а в словари. Например, оно присутствует в академическом «Словаре русского языка» 1981 г. Одновременно с развитием понятия алгоритма постепенно происходила и его экспансия из чистой математики в другие сферы. И начало ей положило появление компьютеров, благодаря которому слово «алгоритм» вошло в 1985 году во все школьные учебники информатики и обрело новую жизнь.
Блок-схема
- Алгоритм — Википедия
- Наибольшей наглядностью обладает следующая форма записи... -
- Задания итогового теста "Основы алгоритмизации" скачать
- Другие вопросы:
Ответы к тесту Способы записи алгоритмов
Наибольшей наглядностью обладает следующая форма записи алгоритмов. При записи алгоритма в словесной форме, в виде блок-схемы или на псевдокоде допускается определенный произвол при изображении команд. Какими особенностями обладает воздушная среда обитания и как человек воздействует.
Тест с ответами на тему: “Основы алгоритмизации”
Понятность - доступность выполнения исполнителем любой команды алгоритма. Определенность - отсутствие неоднозначных толкований в алгоритме. Конечность - завершение алгоритма за конечное число шагов. Под шагом понимают выполнение одной команды алгоритма.
Результативность - обязательное получение результата после завершения исполнения алгоритма. Однозначность - получение одинаковых результатов при одинаковых исходных данных, независимо от числа решений этого алгоритма и его исполнителя. По виду алгоритмы бывают: линейными, разветвляющимися, циклическими и смешанными.
Линейным называется алгоритм, команды которого выполняются последовательно обна за другой один раз. Разветвляющимся называется алгоритм, в котором в зависимости в зависимости от выполнения поставленного условия или его невыполнения, исполняются разные последовательности команд, называемые ветвями. Циклическим называется алгоритм, в котором некоторая последовательность команд, называемая циклом, повторяется заданное число раз.
После этого продолжается последовательное исполнение алгоритма. Смешанным называется алгоритм, в котором присутствуют циклы и ветви. Алгоритмы, которыми пользуется человек могут быть записаны словесно в виде текстов, на специальном алгоритмическом языке или в виде блок-схем.
Наибольшей наглядностью обладают следующие формы записи алгоритмов: графические и словесные. Графические формы записи алгоритмов используют специальные символы и связи между ними для изображения последовательности действий. Словесные формы записи алгоритмов описывают действия с помощью естественного или искусственного языка.
Свойство результативности содержит в себе свойство конечности - завершение работы алгоритма за конечное число шагов. Массовость - алгоритм пригоден для решения любой задачи из некоторого класса задач, то есть алгоритм правильно работает на некотором множестве исходных данных, которое называется областью применимости алгоритма.
Свойство массовости определяет скорее качество алгоритма, а не относится к обязательным свойствам как дискретность, понятность и пр. Существуют алгоритмы, область применимости которых ограничивается единственным набором входных данных или даже отсутствием таковых например, получение фиксированного числа верных цифр числа p. Правильнее говорить о том, что алгоритм должен быть применим к любым данным из своей области определения, и слово массовость не всегда подходит для описания такого свойства. Понятие алгоритма Обобщив вышесказанное, сформулируем следующее понятие алгоритма. Алгоритм - понятное и точное предписание исполнителю на выполнение конечной последовательности действий, приводящей от исходных данных к искомому результату.
Приведенное определение не является определением в математическом смысле слова, то есть это не формальное определение формальное определение алгоритма см. Отметим, что для каждого исполнителя набор допустимых действий СКИ всегда ограничен - не может существовать исполнителя, для которого любое действие является допустимым. Перефразированное рассуждение И. Интересно, что существуют задачи, которые человек, вообще говоря, умеет решать, не зная при этом алгоритм ее решения. Например, перед человеком лежат фотографии кошек и собак.
Задача состоит в том, чтобы определить, кошка или собака изображена на конкретной фотографии. Человек решает эту задачу, но написать алгоритм решения этой задачи пока чрезвычайно сложно. С другой стороны, существуют задачи, для которых вообще невозможно построить процедуру решения. Причем данный факт можно строго доказать. Элементы теории алгоритмов Алгоритм - понятие, относящееся к фундаментальным основам информатики.
Оно возникло задолго до появления компьютеров и является одним из основных понятий математики. У понятия «алгоритм» нет четкого, однозначногоопределения в математическом смысле. Можно дать толькоописание пояснение этого понятия. Для пояснения понятия«алгоритм» большое значение имеет определение понятия«исполнитель алгоритма». Алгоритм формулируется в расчете на конкретного исполнителя.
Алгоритм - руководство к действию для исполнителя, поэтому значение слова «алгоритм» близко по смыслу к значению слов «указание» или «предписание». Алгоритм - понятное и точноепредписание указание исполнителю совершить определенную последовательность действий для достижения указанной цели или решения поставленной задачи. Алгоритм - точное предписание, которое задает вычислительный процесс, начинающийся с произвольного исходного данного из некоторой совокупности возможных для этого процесса данных, направленный на получение полностью определяемого этими исходными данными результата. Понятно, что сказанное не является определением в математическом смысле, а лишь отражает интуитивное понимание алгоритма в математике нет понятия «предписание», неясно, какова должна быть точность, что такое «понятность» и т.
И исполняла рыбка все его желания…» В повседневной своей деятельности мы с вами интуитивно понимаем, что только в сказках существуют такие замечательные универсальные исполнители, как «золотая рыбка», которые понимают все-все-все и могут все-все-все, да еще обладают телепатическими способностями догадываться, чего бы нам хотелось. Наверное, те из вас, кто с детства привык свои просьбы к родителям и бабушкам формулировать в пределах разумного и исполнимого или доступного, достиг большего удовлетворения, чем те, кто просил достать с неба звезду, купить живого розового слона и т. И поэтому решение задачи алгоритмизации будем строить на языке, понятном конкретному исполнителю, используя на каждом шаге алгоритма только те операции или команды, которые данный исполнитель способен выполнить. Итак, алгоритм — последовательность команд управления каким-либо объектом. Очевидно, что исполнителем алгоритма может быть как живое существо, так и машина. АЛГОРИТМ — понятное и точное предписание исполнителю выполнить конечную последовательность команд, приводящую от исходных данных к искомому результату.
Свойства алгоритмов требования к алгоритмам 1. Процесс решения задачи должен быть разбит на последовательность отдельных шагов. Таким образом, формируется упорядоченная совокупность отделенных друг от друга команд предписаний. Образованная структура алгоритма оказывается прерывной дискретной : только выполнив одну команду, исполнитель сможет приступить к выполнению следующей.
Задание МЭШ
Блок начала имеет только одну исходящую линию связи, а блок конца только входящие линии связи. Блок переработки имеет одну исходящую линию связи и хотя бы одну входящую. Блоки ввода и вывода информации или блок преобразования информации имеет форму параллелограмма. Внутри него записывается список переменных, значения которых необходимо ввести или вывести. В блок преобразования может входить не менее одной линии связи и выходить из него только одна линия связи. Блок перехода по условию имеет форму ромба.
Внутри него записывается условие на которое можно ответить да или нет. В зависимости от ответа на условие процесс исполнения алгоритма пойдет по соответствующей линии связи. Блок имеет одну или несколько входящих линий связи. Блок перехода по условию предназначен для организации разветвляющихся алгоритмов. Блок модификации предназначен для организации циклических алгоритмов и имеет форму шестиугольника.
Внутри шестиугольника записывается слово ДЛЯ имя модифицируемой, то есть изменяемой по определенному закону, переменной. Обычно переменная изменяется от своего начального значения до конечного последовательно, путем прибавления к ней константы, называемой шагом.
Пример 2. Построчная запись алгоритма Евклида. Обозначить первое из заданных чисел X, второе обозначить Y. Заменить X на X - Y. Перейти к п.
Заменить Y на Y - X. Считать X искомым результатом. Построчная запись алгоритма позволяет избежать ряда неопределённостей; её восприятие не требует дополнительных знаний. Вместе с тем использование построчной записи требует от человека большого внимания. Блок-схемы Наилучшей наглядностью обладают графические способы записи алгоритмов; самый распространённый среди них — блок-схема. Блок-схема представляет собой графический документ, дающий представление о порядке работы алгоритма.
Он позволяет описывать алгоритмы в более структурированной и понятной форме, используя ключевые слова, операторы и конструкции, которые знакомы программистам. Псевдокод обычно не зависит от конкретного языка программирования, поэтому его легко читать и понимать даже тем, кто не знаком с определенным языком программирования.
Какая клавиша нажимается после набора последнего данного в операторе read: 20. Для ввода значений переменных в Паскале используется оператор Итоговая тестовая работа по информатике 8 класс 2 вариант на выполнение работы отводится 45 минут 1.
Глава 7. Алгоритмы. Алгоритмизация. Алгоритмические языки
11 ответов - 0 раз оказано помощи. Наибольшей наглядностью обладают4. графические. Наибольшей наглядностью обладают следующие формы записи алгоритмов: графические и словесные. Какими особенностями обладает воздушная среда обитания и как человек воздействует. Там мы даём ещё больше полезной информации для школьников!
Смотрите также
- 7.2. Что такое "Исполнитель алгоритма"?
- Понятие алгоритма
- Тест: Алгоритмизация - Информатика 9 класс
- Тестовые задания для самопроверки к главе 2 — ГДЗ по Информатике 8 класс Учебник Босова
Тест с ответами на тему: “Основы алгоритмизации”
Задачи на алгоритмы блок схемы. Блок-схема алгоритма Информатика 5 класс. Базовые алгометрические конструкции. Алгоритмические конструкции Информатика 8 класс. Основные базовые конструкции алгоритмов. Основные блок-схемы конструкций алгоритма. Блок схема циклического алгоритма с предусловием. Программирование циклических алгоритмов 9 класс. Циклические алгоритмы 8 класс Информатика.
Блок схема программирование алгоритмов циклической структуры. Алгоритм работы над задачей в начальной школе по ФГОС. Алгоритм решения задачи по математике 1 класс школа России. Алгоритм решения задач в начальной школе. Памятка алгоритм. Что такое алгоритм в математике. Учебные алгоритмы на уроках математики. Алгорифм математический.
Алгоритм начальная школа. Блок схема Информатика ветвление. Задачи на разветвляющиеся алгоритмы блок схемами. Блок схема алгоритма с ветвлением. Неполное ветвление блок схема. Блок-схемы трех основных алгоритмических конструкций.. Основные алгоритмические конструкции ветвление. Алгоритмические конструкции линейная ветвление циклы.
Алгоритмическая конструкция ветвление примеры. Способы записи алгоритма. Свойства алгоритма. Основные способы записи алгоритмов 8 класс. Способы записи алгоритмов в информатике 8 класс. Способы записи алгоритма в информатике 8 класс таблица. Ветвление разветвляющийся алгоритм. Разветвляющийся алгоритм это 2 класс.
Алгоритм с ветвлением примеры 4 класс. Ветвление разветвляющийся алгоритм пример. Способы написания алгоритмов. Формы записи алгоритма таблица. Перечислите способы записи алгоритмов Информатика. Табличная форма записи алгоритма. Алгоритм подготовки к уроку. Алгоритм урока.
Алгоритм готовности к уроку. Алгоритм подготовки ученика к уроку. Каковы формы представления вычислительного алгоритма?. Формы представления алгоритмов в информатике. Формы представления алгоритмов в информатике блок схемы. Графическая форма представления алгоритма примеры. Линейный разветвляющийся и циклический алгоритмы. Разветвляющийся алгоритм блок схема алгоритма.
Тип алгоритма разветвляющийся блок схема. Циклическая блок схема примеры. Блок схема алгоритмической структуры полное ветвление. Разветвляющиеся алгоритмические структуры ветвления. Язык блок схем структура ветвление. Блок схема конструкции ветвления. Типы величин в алгоритме. Типы величин в информатике.
Виды величин в информатике. Объекты алгоритмов величины. Понятие алгоритма с ветвлением. Алгоритм с ветвлением 6 класс. Алгоритм с ветвлением , разветвляющимся алгоритмом.
Это более компактный и лаконичный метод, он нагляднее, но всё же строго формальным не является. Табличный способ В случае применения табличного метода алгоритм задаётся в виде входных данных: расчётных форм и таблиц. Способ широко применяется в экономических расчетах. Исходные данные, как и результаты, заносятся в заголовки столбцов используемой таблицы. Простейший пример такого способа представления — та же таблица умножения: 32 Графический способ Этот метод ещё называют способом блок-схем. В данной ситуации каждый этап прохождения алгоритма представляется в виде геометрических фигур — так называемых «блоков», причём конкретная форма фигур зависит от выполняемой операции. Существует стандарт, регламентирующий размеры используемых графических блоков, а также их отображение, функции, формы и взаимное расположение. Направление работы алгоритма показывают линии соединения блоков. Другое название способа — визуальное представление. Графический способ представления имеет практическое значение и используется не только в случае программирования.
Конец выполнения программы Для записи внутри блока команды используется естественный язык с элементами математической символики. Графические схемы алгоритмов обладают большей наглядностью по сравнению со словесной формой записи, однако это преимущество исчезает при записи сколько-нибудь большого алгоритма. Он занимает промежуточное положение между естественными и формальными языками.
Пример 1. Словесное описание алгоритма нахождения наибольшего общего делителя НОД пары натуральных чисел алгоритм Евклида. Запишите первое из заданных чисел в столбец X, а второе — в столбец У. Если данные числа не равны, замените большее из них на результат вычитания из большего числа меньшего. Повторяйте такие замены до тех пор, пока числа не окажутся равными, после чего число из столбца X считайте искомым результатом. Построчная запись. Кроме слов естественного языка предписания могут содержать математические выражения и формулы. Пример 2. Построчная запись алгоритма Евклида. Обозначить первое из заданных чисел X, второе обозначить Y. Заменить X на X - Y.
Навигация по записям
- Какая форма записи алгоритмов обладает наибольшей наглядностью? - Ответ найден!
- Тест с ответами: «Основы алгоритмизации» с ответами
- Тест с ответами на тему: “Основы алгоритмизации” - Ответы класс!
- Средства записи алгоритмов
- Популярно: Информатика
Наибольшей наглядностью обладают... фоомы записи алгоритмов? Ответы: 1)Построчные 2) словесные 3)
Формы записи алгоритмов. наибольшей наглядностью обладает следующая форма записи алгоритмов: а)словесная б)рекурсивная в)графическая г)построчная. Формы записи алгоритмов. Алгоритмы можно записывать разными способами. 1наибольшей наглядностью обладает следущая форма записи алгоритмов а. словесная б. рекурсивная в. графическая г. построчная. Наилучшей наглядностью обладают графические способы записи алгоритмов; самый распространённый среди них — блок-схема. Циклическим называется алгоритм, в котором: Выполнение операций зависит от услов.
Тест по информатике Основы алгоритмизации 8 класс
Укажите неверную запись в двоичной системе счисления: * 10001 1102. Наилучшей наглядностью обладают графические способы записи алгоритмов. Наилучшей наглядностью обладают графические способы записи алгоритмов; самый распространённый среди них — блок-схема.
Наибольшей наглядностью обладают алгоритмы
Там мы даём ещё больше полезной информации для школьников! Тест с ответами: «Алгоритмизация и программирование»: бесплатные материалы для тестирования от преподавателя. При записи алгоритмов для краткости указываются лишь номера команд. Пример — простейший алгоритм сложения 2-ч чисел, который записан средствами языка программирования Qbasic. Схемы алгоритмов обладают большей наглядностью, чем словесная запись алгоритма.