Конструкция ствола пушки. Лафет станок артиллерийского орудия.
КАК УСТРОЕНО ОРУДИЕ
Головой на лук похож. Если только пожуёшь Даже маленькую дольку — Будет пахнуть очень долго. Стены позолочены, Ставни заколочены.
Семья одобрила - почему нет. Мой дед воевал, в Харькове погиб. Я его внук, тоже должен деда не посрамить», - говорит он. Специалисты-ремонтники возвращают в бой бронетехнику, автотранспорт, системы залпового огня, буксируемые артиллерийские орудия. Если модуль слишком серьезно поврежден, его сразу меняют на новый - прямо с завода.
Соколов и А. Модернизированный пулемёт был принят на вооружение в 1946 г. Пулемёт получил такое же аббревиатурное сокращение, как и вариант пулемёта ДШК, созданный в конце 1930-х гг. Необходимость модернизации пулемёта ДШК заключалась в том, что он имел сложную и нетехнологичную конструкцию системы питания барабанного типа. Это значительно усложняло производство пулемётов. Кроме того, подача патронов в пулемёте ДШК осуществлялась только слева, что вызывало значительные трудности в конструировании спаренных зенитных пулемётных установок и установку пулемёта в боевом отделении танка справа от пушки. В результате модернизации для пулемёта ДШКМ был разработан приёмник ползункового типа с двусторонним питанием. Была изменена конструкция дульного тормоза и ряда других основных деталей и механизмов пулемёта. Внешне пулемёт ДШКМ отличается от предшественника конструкцией дульного тормоза и крышки приёмника.
В станковом варианте пулемёт ДШКМ устанавливался на универсальный станок образца 1938 г. Колесникова с отделяемым колёсным ходом и раскладной треногой, обеспечивающей стрельбу по наземным и воздушным целям. Расчёт пулемёта составлял 2 человека — наводчик и второй номер. Для переноски или перевозки пулемёта на поле боя им помогал водитель автомобиля или командир пулемётного отделения, которые становились третьим номером расчёта. В качестве зенитного вооружения пулемёт ДШКМ на специальной тумбовой установке использовался на кораблях и судах Военно-морского флота. ДШКМ предназначен для поражения легкобронированных целей на дальности до 1 тыс.
Однако, она является очень важной, и даже незаменимой частью подготовки артиллерийского расчета. Так как зачастую в образовательных целях достаточно всего лишь имитации полноценного выстрела. Мосинка привязанная к стволу. Я говорил именно об этом фото. Фото в свободном доступе. Имитация требуется, в первую очередь, из соображений экономии. Здесь есть два важнейших основных момента. Первый из них - достаточно очевидный: артиллерийские снаряды, хотя и производятся на предприятиях ВПК сотнями тысяч, всё-таки стоят немалых денег. Второй момент — немного менее очевидный для людей, далёких от военного дела и артиллерии. Он состоит в том, что дороговизна боеприпасов даже меркнет на фоне дороговизны самого ствола артиллерийского орудия. Каждый боевой выстрел приводит к его изнашиванию на несколько процентов. В дальнейшем, из-за неизбежного износа канала ствола, начинают падать показатели как дальности, так и точности стрельбы. Из-за этого во время полномасштабной войны серьёзной проблемой становится не только своевременный подвоз снарядов, но ещё и своевременные обслуживание и замена пушечных стволов. При этом, стоимость техобслуживания сухопутных артиллерийских систем меркнет на фоне стоимости обслуживания орудий флотских. Там вообще огромные издержки. Поэтому в артиллерии экономия исключительно важна. И стволиковая стрельба — простой и реальный способ данной экономии добиться.
Станок, на котором закрепляется ствол артиллерийского орудия WOW Guru Подсказки
Устанавливают заготовку казенной частью в патроне 3 вертлюжной бабки, дульной частью в кольцевом люнете 4. У дульной части на станине станка на штативах устанавливают два индикатора часового типа, у казенной части - один индикатор. Медленно вращают заготовку вокруг оси, измеряют биение канала у торцев и смещают кулачки патрона 3 и кулачки люнета 4 до получения наименьшего биения канала у торцев заготовки. Закрепляют заготовку патроном 2. Поворачивают заготовку предварительной разметкой вниз. В осевое отверстие задней стойки станка устанавливают центр. Разжимают кулачки люнета 4, к дульной части станка подводят заднюю стойку станка и, смещая кулачки патрона 2 без вращения заготовки, совмещают ось канала заготовки в дульном сечении с центром задней стойки в отверстие задней стойки устанавливают приспособление - центр , после чего отводят заднюю стойку, закрепляют дульную часть заготовки кольцевым люнетом 4. По двум индикаторам, установленными на штативах на станине станка в дульной части заготовки и размещенным в вертикальной и горизонтальной плоскостях, проверяют, чтобы при закреплении не было деформации заготовки. В другом варианте осуществления способа заготовку 1 устанавливают казенной частью в кольцевой люнет 4 расточного станка типа РТ-401. Заготовку устанавливают так, чтобы патрон 3 вертлюжной бабки находился у дульного торца, а патрон 2 был удален от торца на расстояние, равное 10. Устанавливают на станину станка индикаторы часового типа на штативах.
Медленно вращают заготовку вокруг оси, измеряют биение канала у торцев заготовки, смещают кулачки патрона 3 и люнета 4 до получения наименьшего биения канала у торцев заготовки, закрепляют заготовку кулачками патрона 2 вертлюжной бабки. Поворачивают заготовку предварительной разметкой вверх. Выдвигают стебель расточной головки, подводят его к торцу заготовки. На стебле вместо расточной головки может быть установлено специальное приспособление типа центра. Слегка отводят кулачки патрона 3, смещают кулачки патрона 2 до совмещения центра отверстия в дульном торце заготовки с осью стебля расточной головки станка, без деформации заготовки закрепляют ее патроном 3 вертлюжной бабки у дульного торца и растачивают канал ствола. Растачивают канал ствола. Снимают заготовку со станка, измеряют отклонение оси расточенного канала от прямолинейности. По расчетным зависимостям, приведенным в формуле изобретения, определяют положение опорных поясков 6 и 7 для установки заготовки на точение наружной поверхности. Расчеты проводят на компьютере по специальной программе, вводя исходные данные с клавиатуры или аппаратурно через порт компьютера от прибора, измеряющего отклонение оси от прямолинейности. На токарном станке, например, РТ-648, по технологии, соответствующей, например, способу, принятому за прототип, точат два опорных пояска 7 и 8 с постоянной по окружности толщиной стенки, то есть соосных каналу.
Устанавливают заготовку поясками 7 и 8 в роликовые люнеты токарного станка, например, станка РТ-648 или РТ-711Ф3, закрепляют в патроне с установленным в нем центром 5 и центре 6 задней бабки то есть торцевые сечения устанавливаются тоже так, чтобы центры отверстия совпадали с осью станка и точат наружную поверхность детали. Ствол, изготовленный по предложенному способу, устанавливают в орудие в том же положении, в котором его фиксировали для растачивания при креплении казенной частью в приводном вертлюжном люнете казенной частью заготовки, или после поворота вокруг оси на полоборота, если заготовку фиксировали для растачивания в вертлюжной бабке дульной частью. Пример 1. Моделировался технологический процесс изготовления стволов с растачиванием в станке заготовки, установленной казенной частью в вертлюжной бабке.
Обе имели щит и были примерно одного веса, но более новый образец был скорострельнее 5—6 выстрелов в минуту против двух. Есть мнение, что французские гаубицы появились в России благодаря любовнице великого князя Сергея Михайловича Романова — Матильде Кшесинской о ней сняли скандальный фильм «Матильда». Как писал публицист Александр Широкорад в книге «Артиллерия в Великой Отечественной войне» , князь занимал пост генерала-инспектора артиллерии, а его пассия якобы была в сговоре с компанией Шнейдера и правлением частного Путиловского завода. В открытом конкурсе победили немецкие орудия, но князь приказал принять на вооружение ещё и орудие системы Шнейдера. Обе гаубицы в итоге пригодились, их использовали и позднее — во Второй мировой войне, после их модернизации.
Калибр современных гаубиц составляет 105—203 мм, дальность стрельбы — 15—25 км. Гаубицы могут быть буксируемыми массой до 7 тонн и самоходными. Основные модели гаубиц Во время ВОВ Красная армия вовсю использовала вышеупомянутые царские орудия, но могла похвастаться и советскими разработками. Большое значение для войск имела 122-мм гаубица образца 1938 года — М-30. Их серийно выпускали с 1939 по 1955 годы. М-30 использовалась практически во всех значимых вооружённых конфликтах середины и конца XX века, а в странах третьего мира их можно встретить по сей день. В боевом положении гаубица весила 2,5 тонны, стреляла 5—6 раз в минуту на 10—12 км. Орудие оказалось настолько удачным, что маршал артиллерии Георгий Одинцов дал М-30 такую оценку: «Лучше её уже ничего не может быть». Интересно, что стволы с этих гаубиц монтировали также на самоходно-артиллерийские установки СУ-122.
Царские 152-миллиметровые гаубицы образцов 1909 и 1910 годов также устарели к началу 1930-х даже в модернизированном виде, и руководство Красной армии сначала закупало такие орудия у Германии, а затем поручило спроектировать своё. Так появилась М-10 — гаубица 152 мм образца 1938 года. Она весила 4,5 тонны и стреляла 3—4 раза в минуту практически всем ассортиментом 152-мм гаубичных снарядов. В начале войны множество этих орудий захватил вермахт, а советские заводы в то время уже производили другие орудия.
Гаубицы входят в состав войсковой артиллерии , имеют калибр размер снарядов от 100 мм и выше, относительно короткий ствол в сравнении с пушками, высокую скорострельность и большую дальность стрельбы — до 40 км.
У них более длинный в сравнении с гаубицами ствол, а также выше начальная скорость снаряда и его дальнобойность. Но пушка не способна стрелять под высоким углом, она создавалась именно для стрельбы прямой наводкой. Некоторые специалисты отдельно выделяют гаубицы-пушки. Но такое обозначение довольно условно: сейчас любая гаубица способна стрелять как пушка — остальные постепенно исчезли за ненадобностью. Дело в том, что ещё до появления гаубиц для навесной стрельбы использовались мортиры — из них стреляли таким образом.
У мортир в сравнении с гаубицами был более короткий и широкий ствол. Они вышли из использования после Второй мировой войны — другие орудия гаубицы, миномёты, системы залпового огня полностью заменили мортиры. Гаубицы сохранились до наших дней благодаря своей универсальности — они стреляли и гранатами, и ядрами, и картечью, а в мортиры, например, можно было заряжать только большие гранаты или бомбы. Кроме того, миномёт стреляет быстрее, а снаряды летят по более крутой траектории. Существуют орудия-гибриды — гаубицы-миномёты и даже пушки-гаубицы-миномёты.
Как, например, 120-миллиметровая 2А51, стреляющая как артиллерийскими минами, так и осколочно-фугасными, кумулятивными, кассетными и термобарическими боеприпасами.
Пушка Единорог 1812 года русская. Полупудовый Единорог 1812 года. Ствол корабельной пушки. Корабельные пушки 17 века. Корабельная трёх-ствольная пушка. Пушка в Санкт-Петербурге.
Пушки в Питере. Артиллерийская пушка Питер. Пушка Пищаль Андрей Чохов. Пищаль Скоропея. Чохов царь пушка. Царь-пушка Андрея Чохова. Шуваловская гаубица.
Секретная гаубица Шувалова. Пушка Единорог Шувалова. Полковая трехфунтовая пушка 1812. Французские пушки системы Грибоваля. Пушки 19 века в Кронштадте. Старинная пушка. Старинное артиллерийское орудие.
Корабельная дульнозарядная пушка 19 века. Артиллерия 19 век. Русская артиллерия 19 века. Пушка-гаубица 19 века. Французская 12-фунтовая пушка системы Грибоваля. Корабельная пушка 17 века чертёж. Лафет пушки 17 века.
Пушки 19 века сбоку. Лафеты для пушек чертежи. Затвор танковой пушки 2а46м. Казенник 2а46м. Пушка 2а46м чертеж. Ствол 2а46 Voyager. Гаубицы м-46.
Пушка м-46 калибра 130. Пушка м-47. Лафет орудия 1812. Корабельная пушка 1812 года. Лафет пушки 1812 года чертежи. Лафет артиллерийского орудия Бородино. Лафет пушки Бородино.
Пушка Круппа 1870. Артиллерийский музей бронзовые пушки. Царь пушка-мортира. Пищаль Нерчинск 17 век музей артиллерии. Пушка 2а46м устройство. Танковая пушка 2а46м казенник. Пушка 2а82-1м.
Танковая пушка 2а46 устройство. Корабельная мортира. Пушки Петропавловской крепости в Санкт-Петербурге. Оружие Победы артиллерия. Скульптура пушка гаубица Пермь. Короткоствольное артиллерийское орудие. Гаубица Победы.
Артиллерийский музей ствольная пушка. Древняя пушка. Пушка Артиллерийская старинная. Пушка Грабина ЗИС-3. Противотанковая пушка 76мм ЗИС-3. Полевая лёгкая пушка обр 1877. Артиллерия второй половины 19 века.
Пушка Круппа 1873. Казнозарядные пушки Ивана Грозного.
Станок где укрепляется ствол артиллерийского орудия
Ствол орудия будет расположен параллельно диаметру буссоли, на одном конце которого стоит цифра «30», а на другом «О» (рис. 246). Ствол орудия будет расположен параллельно диаметру буссоли, на одном конце которого стоит цифра «30», а на другом «О» (рис. 246). В Харьковской области уничтожаются артиллерийские силы ВСУ: «Ланцетом» поражено очередное артиллерийское орудие украинской армии. Лафет — станок, на котором закрепляется ствол артиллерийского орудия. Предназначен для придания стволу вертикальных и горизонтальных углов (с помощью механизмов наводки), поглощения энергии отдачи при выстреле (противооткатными устройствами).
станок, на котором устанавливается и закрепляется ствол артиллерийского орудия
Ответ на вопрос: Станок, на котором устанавливается и закрепляется ствол артиллерийского орудия. Лафетом называют часть артиллерийского орудия, на которой закрепляется ствол. Механизмы лафета обеспечивают придание стволу требуемого положения в пространстве и передают на грунт возникающие при выстреле усилия. Внутри корпуса артиллерийской установки находятся ствол орудия и противооткатные устройства, размещенные в качающейся части, которая закреплена на верхнем станке.
Фундамент артиллерийского орудия 5 букв
Винтовка на стволе — это именно такой кустарный тренажёр, придуманный для подготовки наводчиков. Мосинка не просто так к стволу привязана, а выравнена с прицелом орудия, и её крючок спусковой - соединен проволокой со спусковым механизмом орудия. И сама винтовка заряжена трассирующими патронами. Служит этот тренажёр для того, чтобы артиллеристы упражнялись в прицеливании и стреляли вместо артиллерийских снарядов - винтовочными патронами.
Смысл - в экономии и безопасности. Когда курсант уже несколько раз умел уверенно и правильно послать в цель трассирующий патрон из винтовки - ему давали выпустить из большого калибра настоящий снаряд. Трассирующие патроны в данных ситуациях и нужны были для того, чтобы и курсант, и его наставник хорошо видели, куда полетел выстрел, и могли судить о результативности ведения огня.
Разумеется, стволиковая стрельба — это вовсе не то же самое, что полноценный выстрел. Однако, она является очень важной, и даже незаменимой частью подготовки артиллерийского расчета. Так как зачастую в образовательных целях достаточно всего лишь имитации полноценного выстрела.
Мосинка привязанная к стволу. Я говорил именно об этом фото. Фото в свободном доступе.
Имитация требуется, в первую очередь, из соображений экономии. Здесь есть два важнейших основных момента. Первый из них - достаточно очевидный: артиллерийские снаряды, хотя и производятся на предприятиях ВПК сотнями тысяч, всё-таки стоят немалых денег.
Второй момент — немного менее очевидный для людей, далёких от военного дела и артиллерии.
График весового прогиба данного типоразмера труб после установки их в орудие легко получить, установив какую-либо трубу данного типоразмера на опорах, положение которых соответствует положению опор трубы при установке ее в орудие, измерить положение оси канала этой трубы в вертикальной плоскости, после чего повернуть измеренную трубу на 180 градусов, снова измерить положение оси канала этой трубы в вертикальной плоскости и рассчитать в каждом измеренном сечении среднее значение этих измерений. Возможен и другой вариант, например, измеряют положение оси канала заготовки в горизонтальном положении, после чего поворачивают заготовку на 90 градусов и снова измеряют положение оси канала заготовки в горизонтальном положении. После наложения этих графиков рассчитывают необходимую величину смещения оси растачиваемого отверстия относительно оси канала заготовки как требуемую величину амплитуды смещения резцового блока относительно оси канала заготовки то есть относительно корпуса расточной головки, так как расточная головка всегда центрируется по поверхности канала заготовки и требуемый угол смещения оси растачиваемого отверстия относительно горизонтальной плоскости измерений заготовки прямая Г.
Для определения необходимого угла смещения оси растачиваемого отверстия относительно горизонтальной плоскости измерений заготовки принимаем, что плоскость весового прогиба измеренной трубы должна находиться в плоскости расположения максимальной величины H положения оси канала заготовки пунктирная линия. Это позволит изготовлять трубы с отклонением от прямолинейности, равным весовому прогибу трубы которое, впоследствии, при установке ствола в орудие, позволит получать прямолинейный канал ствола , при этом растачивание трубы будет происходить в более легких условиях, так как имеющееся отклонение от прямолинейности оси канала заготовки будет располагаться в плоскости требуемой величины весового прогиба растачиваемой трубы. Таким образом, угол расположения оси растачиваемого отверстия относительно горизонтальной плоскости измерений заготовки определяется по положению максимальной величины канала заготовки как где: и - вертикальная и горизонтальная проекция отклонения от прямолинейности в сечении, в котором находится максимальной величина отклонения от прямолинейности оси канала заготовки; Для расчета требуемой величины смещения резцового блока относительно корпуса расточной головки в процессе растачивания необходимо учитывать, что положение горизонтальной оси канала заготовки при ее измерении, постоянно меняется, так как она вращается во время растачивания. В общем случае эта величина определяется как горизонтальная проекция расстояния между осями заготовки и требуемой осью канала расточенного ствола по формуле: где: n — число оборотов в минуту расточного станка в процессе растачивания заготовки.
Величину смещения резцового блока относительно корпуса расточной головки рассчитывают для каждого сечения растачиваемой трубы, например, через каждые 5 мм по всей длине растачиваемой заготовки и запоминают в компьютере. После определения этих параметров, заготовку устанавливают в расточной станок, при этом устанавливают ее в положение, при котором производились измерения этой заготовки, заводят через канал заготовки расточную головку со снятым резцовым блоком, как показано на фиг. После прохода расточной головки в нее устанавливают сменный резцовый блок, включают вращение заготовки, и начинают растачивание, опираясь направляющими расточной головки на поверхность заготовки и смещая резцовый блок относительно корпуса расточной головки с помощью клина, входящего в обойму резцового блока, при этом за каждый оборот заготовки резцовый блок смещается на требуемую величину. Для реализации предложенного способа, т.
В данном приводе толкатель клина 5 расточной головки установлен в направляющей втулке задней бабки станка, а палец этого толкателя 6 постоянно находится в пазу шатуна 7, один конец которого находится в подшипниковой обойме 8, а другой непрерывно совершает синусоидальные покачивания от эксцентрика 9, установленного на валу шагового двигателя 10.
Если только пожуёшь Даже маленькую дольку — Будет пахнуть очень долго. Стены позолочены, Ставни заколочены. Ходит дом ходуном На столбе золотом.
Интересные факты. Царь-пушка — это артиллерийское орудие периода Русского Царства между 1547 и 1721 годами. Это одна их самых больших пушек в мире, наиболее значительное произведение русских оружейников. Царь-пушка отлита по приказу царя Фёдора Ивановича инициатор — Борис Годунов. Пука изначально была задумана как экспонат, демонстрирующий мастерство литейщиков. Пушка ни разу не стреляла. Всего один раз её привели в боевую готовность в 1591 году, когда к Москве приблизились войска крымского хана Казы-Гирея. Сначала её установили у Лобного места. Лобное место расположено в Москве, на Красной площади.
Станок, на котором устанавливается и закрепляется ствол артиллерийского орудия
– вид артиллерии, вооруженный артиллерийскими орудиями и установками на самоходной базе (боевые машины артиллерии). Новая версия орудия получила удлиненный на 2 метра ствол и новое название М777ER (Extended Range). Сейчас дальнобойная артиллерия незаменима. Разбить узлы снабжения, места дислокации личного состава ВСУ, уничтожить тяжелую технику противника. станок, на котором устанавливается и закрепляется ствол артиллерийского орудия. Разрабатывались и совершенно новые виды артиллерийских установок: тяжелая артиллерия особого назначения, горные и противотанковые пушки, зенитные орудия и, разумеется, реактивная артиллерия. Изобретение относится к военной технике, в частности к устройствам для досылания выстрелов в канал ствола артиллерийского орудия.
станок, на котором устанавливается и закрепляется ствол артиллерийского орудия
При этом, стоимость техобслуживания сухопутных артиллерийских систем меркнет на фоне стоимости обслуживания орудий флотских. Там вообще огромные издержки. Поэтому в артиллерии экономия исключительно важна. И стволиковая стрельба — простой и реальный способ данной экономии добиться. Примечательно, что подобного рода тренажёры для обучения артиллеристов использовались и после войны.
Применяются они и сегодня. Приспособления для стволиковых стрельб могут иметь разные форматы. Не обязательно это именно мосинка на орудийном стволе. Часто на специальный или самодельный кронштейн к стволу артиллерийского орудия крепят какое-нибудь ручное огнестрельное оружие - например, не винтовку, а автомат.
Спусковой крючок стрелкового оружия и артиллерийского орудия соединяют при помощи проволоки. Выстрел, как и у наших дедов, производится трассирующим патроном. Существуют также ещё и специальные устройства-тренажёры для стволиковой стрельбы. Приспособление для учебной стрельбы ПУС-7.
Чаще всего, это ствол-вкладыш доттер значительно меньшего калибра, который вкладывается вовнутрь ствола боевого орудия, и позволяет совершить как безопасный, так и экономичный выстрел. Используются тренажёры не только в артиллерии. К примеру, подобное специальное приспособление имеется и для гранатомётов. Внешне оно похоже на гранату.
Пацаны уже смотрят». Но сейчас, чтобы достать до узлов снабжения противника, все равно приходится подкатываться ближе к передовой. Ахмед — старший наводчик. Самый молодой в экипаже. Пришел сюда добровольцем сразу после срочной службы. Говорит, это личное. Позывной Ахмед, старший наводчик: «У меня дядька погиб здесь. Я подошел к командиру, сказал, что мне туда надо».
Возьмем плоское резиновое кольцо рис. Опыт с резиновым кольцом. Если в канал кольца будем вдвигать деревянный конус, то легко заметим, что диаметры окружностей, прилегающих к каналу, увеличатся в значительно большей степени, чем диаметры окружностей, начерченных ближе к наружной поверхности. Если мы будем продолжать вдвигать конус, то сначала начнут рваться внутренние слои, а уже после них — наружные. Этот опыт наглядно показывает, что слои принимают не одинаковое участие в сопротивлении растяжению: внутренние — больше, наружные — меньше. При достаточной толщине кольца возможно, что внутренний слой разорвется, а наружный слой не разорвется. Ствол, в котором произойдет разрыв внутреннего слоя, уже не годится для дальнейшей стрельбы. Подобные явления происходят и в стенках ствола орудия.
Таким образом, вопрос увеличения сопротивления ствола продольному разрыву не мог быть разрешен только путем увеличения толщины стенок ствола. Необходимо было создать такую конструкцию ствола, при которой все слои металла были бы равномерно напряжены, а напряжения, возникающие на его внутренней поверхности уменьшены. Этого можно достигнуть, составляя ствол из отдельных слоев. Такие стволы называются скрепленными. Процесс скрепления состоит в следующем: берут две трубы со стенками равной толщины рис. Идея скрепления ствола. Внутренний диаметр одной трубы несколько меньше наружного диаметра другой. Нагреем большую трубу до температуры 400—450 градусов, наденем ее на меньшую трубу и дадим остыть составной трубе- При остывании наружная труба будет стремиться принять свои первоначальные размеры, то есть она начнет сжиматься.
Ее внутренний диаметр будет уменьшаться и сжимать внутреннюю трубу. Но так как внутренняя труба будет оказывать сопротивление, то наружная не примет своих первоначальных размеров. Таким образом, после охлаждения до нормальной температуры наружная труба окажется несколько растянутой, а внутренняя — сжатой. Такое состояние смежных слоев, где внутренний слой сжат наружным, называется взаимным натяжением. До выстрела в наружной трубе наиболее растянутыми будут внутренние слои, а наименее — наружные. Что касается внутренней трубы, то ее слои будут находиться в сжатом состоянии, при этом наружные слои будут менее сжаты, а внутренние — более сжаты. При выстреле под давлением пороховых газов внутренняя труба вначале приходит в нормальное состояние, а затем начинает растягиваться вместе с наружной трубой. С этого момента внутренняя и наружная трубы сильнее сопротивляются давлению пороховых газов.
Ясно, что при этом в канале такого ствола может быть допущено большее давление, чем в сплошном стволе той же толщины. Такое расположение слоев металла позволяет увеличить допустимое давление в канале ствола по сравнению с нескрепленным стволом. Составив ствол орудия не из двух, а из четырех, пяти или более слоев, мы можем при заданном допускаемом давлении уменьшить вес ствола или при данном весе — увеличить допускаемое давление в канале ствола. Следовательно, при данной толщине ствола сопротивление его давлению пороховых газов растет с увеличением числа скрепляющих слоев; скрепленные стволы, имеющие такое же сопротивление, как и однослойные, будут иметь значительно меньшую толщину стенок, и из двух скрепленных стволов с одинаковой толщиной стенок будет больше сопротивляться давлению пороховых газов тот, который имеет большее число скрепляющих слоев. Вследствие того, что во время выстрела давление пороховых газов по длине ствола неодинаково, скрепление распространяется на ту часть ствола, в которой ожидается наибольшее давление. Начиная с сечения ствола, в котором должно находиться дно снаряда в момент конца горения порохового заряда, и далее до дула число скрепляющих слоев можно уменьшить. Скрепление орудийных стволов может быть произведено при помощи колец, проволоки, кожуха, путем самоскрепления автофретирование и смешанным способом. Увеличение прочности ствола не устраняет все же быстрого износа поверхности канала ствола.
Износ поверхности канала ствола влечет за собой потерю боевых качеств всего орудия, хотя остальные механизмы и агрегаты его еще совершенно не изношены. Для того, чтобы отремонтировать или сменить ствол, необходимо целиком все орудие отправлять на завод, и, таким образом, орудие надолго выбывает из строя. Здесь возникает важный и интересный вопрос: какова же общая продолжительность жизни орудия? После определенного числа выстрелов ствол приходит в состояние, при котором дальнейшее его боевое использование невозможно. Для орудий крупных калибров это состояние наступает уже после 150—200 выстрелов, а для орудий средних и малых калибров — после 10—15 тысяч выстрелов. Кроме того, необходимо иметь в виду, что переплавка стволов, изготовленных из дорогостоящей стали, невыгодна экономически. Поэтому возникла мысль обновлять орудия, заменяя не весь ствол, а лишь тонкий внутренний слой металла. Для осуществления этой операции растачивают канал ствола.
Вместо расточенной части вставляют тонкостенную трубу, называемую лейнером. Впервые эта идея была осуществлена в 8-дюймовой и 9-дюймовой русских гаубицах, которые участвовали в русско-турецкой войне 1877—1878 гг. В современных орудиях применяются два вида лейнеров: скрепленные лейнеры и свободные лейнеры. Скрепленные лейнеры обычно вставляются с очень малым натяжением. В этом случае натяжение создается не столько для скрепления, сколько для обеспечения плотного соприкосновения наружной поверхности лейнера с внутренней поверхностью ствола. Смену скрепленных лейнеров нельзя производить на огневой позиции; для этого орудие нужно отправлять в мастерскую. Для того, чтобы лейнер можно было заменить на огневой позиции, его обычно вставляют в ствол с зазором рис. Ствол со свободным лейнером.
Наружный диаметр свободного лейнера должен быть меньше внутреннего диаметра ствола. При этом образуется зазор, равный 0,1—0,3 миллиметра. При выстреле лейнер прижимается плотно к внутренней поверхности ствола, который при этом тоже сопротивляется давлению пороховых газов. После выстрела зазор между свободным лейнером и стволом должен быть равен первоначальному зазору. Поэтому свободные лейнеры изготавливаются всегда из высококачественных легированных сталей. Лейнеры изготавливаются цилиндрической и конической формы. Цилиндрические лейнеры могут быть вставлены в ствол и с дульной части, и с казенной. Конические лейнеры вставляются в ствол только с казенной части.
От перемещения в стволе лейнер удерживается специальными приспособлениями. Так, например, для того, чтобы цилиндрический лейнер, вставленный в ствол с дульной части, не вращался, ставится шпонка, одна часть которой находится в теле ствола, а другая в лейнере. От продольного перемещения назад лейнер удерживается кольцевым уступом ствола в казенной части, а от перемещения вперед — дульной гайкой и т. Кроме лейнеров, в современных артиллерийских орудиях широко применяются так называемые свободные трубы рис. Ствол со свободной трубой. Свободная труба, в отличие от свободного лейнера, имеет более толстые стенки и вставляется в ствол с большим зазором. Свободную трубу вставляют в ствол с казенной части до упора в кольцевой уступ ствола, затем ее зажимают казенником. Таким образом, исключается возможность перемещения ее в продольном направлении.
Вращение трубы в стволе предотвращается шпонкой. Применение свободной трубы дает возможность использовать менее дорогую сталь, вследствие большей толщины ее стенок; кроме того, не требуется большой точности обработки наружной поверхности трубы. Основным недостатком свободной трубы по сравнению со свободным лейнером можно считать ее большой вес, затрудняющий перевозку запасных труб. Следовательно, по характеру устройства стволы делятся на нескрепленные, скрепленные, стволы со свободным лейнером и стволы со свободной трубой. По наружному устройству ствол обычно состоит из казенника, цилиндрической и конической частей. Для соединения с лафетом стволы старых систем снабжались цапфами. В современных артиллерийских орудиях устройство частей, служащих для соединения ствола с лафетом, зависит от конструкции и расположения противооткатных устройств. Говоря о канале ствола, мы имели в виду пока лишь цилиндрическую его форму.
Но в настоящее время можно встретить орудия, стволы которых имеют канал конической формы рис. Ствол с коническим каналом. Кроме того, известны опыты по применению стволов с полигональными многоугольными каналами. В современной артиллерии преимущественно применяются стволы с цилиндрическим каналом. В этих стволах площадь поперечного сечения снаряда, на которую действует давление пороховых газов, постоянна на всем пути движения снаряда в канале ствола. Поэтому, для того, чтобы увеличить начальную скорость снаряда, нужно увеличить давление пороховых газов или удлинить путь, на котором пороховые газы действуют на снаряд. Увеличение давления производится путем увеличения веса заряда с одновременным увеличением объема зарядной каморы. Удлинение пути, на котором действуют пороховые газы, производится за счет удлинения ствола.
Эти методы широко применялись при модернизации артиллерийских орудий. Противотанковой и зенитной артиллерии необходимо было иметь орудия с большой начальной скоростью, но притом такие орудия, у которых с увеличением начальной скорости не увеличился бы вес орудий, а следовательно, не уменьшилась их подвижность. Это привело к применению стволов с коническим каналом. Благодаря сужению нарезной части к дулу начальная скорость увеличилась до 1500 метров в секунду. Для стрельбы из таких стволов применяются специальные снаряды с мягкой оболочкой; диаметр такого снаряда по мере приближения к дульной части уменьшается. За счет чего же увеличивается начальная скорость снаряда при стрельбе из орудия, ствол которого имеет конический канал? Возьмем для примера ствол, калибр которого в казенной части равен 75 миллиметрам, а в дульной — 55 миллиметрам. При стрельбе из такого ствола применяется заряд, соответствующий калибру казенной части, в результате чего давление пороховых газов в начальный момент будет равно давлению газов в стволе 75-миллиметрового орудия.
По мере продвижения снаряда по каналу ствола его поперечный размер площадь поперечного сечения будет уменьшаться и он приобретет большее ускорение. Но стрельба из такого орудия эффективна лишь на небольшие расстояния, так как легкий снаряд в результате большого сопротивления воздуха быстро теряет свою скорость. Конические стволы обычно состоят из трубы с цилиндрическим нарезным каналом и насадки с гладкими коническим и цилиндрическим участками, что облегчает их производство и улучшает качество рис. Ствол с цилиндро-коническим каналом. Насадка соединяется с трубой при помощи винтовой нарезки. Применение конического гладкостенного участка менее выгодно в отношении увеличения могущества орудия, чем применение нарезных цилиндрических каналов. Затвор Мы уже установили, что ствол современного орудия представляет собой трубу. Отверстие в дульной части остается всегда открытым.
Отверстие в казенной части должно быть открыто лишь при заряжании; при выстреле оно должно быть плотно закрыто. Это закрывание производится затвором. Затворами снабжаются стволы орудий, заряжающихся с казенной части. Во время выстрела они принимают на себя давление пороховых газов. Поэтому затвор должен плотно закрывать канал ствола, чтобы не допускать прорыва газов наружу. Кроме того, затвор должен надежно запирать канал ствола, то есть в момент выстрела затвор не должен самопроизвольно открываться. Надежно запирая канал ствола при выстреле, затвор должен просто и легко открываться после выстрела для нового заряжания орудия и легко и плотно закрываться после заряжания. При этом открывание и закрывание затвора должно производиться или простым движением руки без затраты большого усилия, или автоматически.
В орудиях крупного калибра для открывания и закрывания затворов используется энергия специальных двигателей, так как затворы имеют очень большой вес. Затвор предназначен не только для того, чтобы закрывать ствол. Он снабжен механизмами для производства выстрела и для выбрасывания гильзы после выстрела. Типы затворов весьма разнообразны. Наиболее широко применяются клиновые и поршневые затворы рис. Типы затворов: а — клиновой затвор с горизонтальным клиновым гнездом; б — клиновой затвор с вертикальным клиновым гнездом; в — поршневой затвор. Клиновой затвор имеет форму четырехгранной призмы. Передняя грань такой призмы перпендикулярна оси канала ствола, а задняя опорная грань наклонена по отношению к передней.
Это делается для того, чтобы облегчить открывание и закрывание затвора и обеспечить наиболее плотное закрывание ствола. Клиновым гнездом называется сквозная прорезь в затворной части орудия. Форма гнезда в казеннике соответствует форме клина. При выстреле клин опирается на грани пазов клинового гнезда. В зависимости от своего направления клиновое гнездо называется горизонтальным или вертикальным. В первом случае клин выдвигается в сторону, а во втором случае он движется сверху вниз. Горизонтальное движение клина выгодно, так как в этом случае усилие на открывание и закрывание распределяется равномерно, но при этом требуется место для выхода клина в сторону. У вертикально движущегося клина усилие на рукоятку очень неравномерно и при большом весе клина может оказаться непосильным для человека, поэтому у таких затворов вводятся специальные механизмы в виде пружин, которые взводятся при открывании затвора и уменьшают энергию падения клина, а при закрывании облегчают его подъем.
При закрывании клин вдвигается в гнездо и скользит в нем по направляющим выступам, параллельным задней грани; передняя грань при этом, перемещаясь параллельно самой себе, приближается к заднему срезу ствола и досылает патрон до места. При открывании наклонные грани выступов позволяют легко выдвинуть клин и открыть канал даже при сильном нажатии дна гильзы на переднюю грань клина. При выстреле давление пороховых газов на переднюю грань клина через заднюю грань передается заклиновой части казенника. Растягивающее усилие может быть разложено на две составляющие: одна, направленная перпендикулярно задней грани, стремится оторвать заклиновую часть казенника, другая, направленная вдоль наклонной грани, вниз или вбок, стремится выбросить клин из его гнезда см. Чем больше угол наклона задней грани, тем усилие, стремящееся выбросить клин из его гнезда, больше. В современных орудиях этот угол близок к нулю, следовательно, близка к нулю и сила, действующая вдоль наклонной грани. Отрыву заклиновой части казенника препятствует сам казенник, а выбрасыванию клина из гнезда противодействует сила трения. Благодаря наличию клинового гнезда с пазами уменьшается длина затворной части орудия, что, несомненно, выгодно.
Однако эта конструкция менее прочна, так как щеки гнезда, не связанные сзади, могут разойтись. Такой тип клинового гнезда применяется преимущественно в орудиях малого калибра. Применение клинового гнезда с фигурными пазами исключает возможность расхождения щек. В современной артиллерии клиновые затворы, как правило, применяются в орудиях раздельного гильзового и патронного заряжания. В этих случаях обтюрация и предохранение от прорыва газов обеспечивается самой гильзой, которая, расширяясь под давлением пороховых газов, плотно прижимается наружной поверхностью к стенкам каморы, в результате чего устраняется прорыв газов наружу. Поэтому применение клинового затвора при раздельном гильзовом и патронном заряжании не требует применения каких-либо специальных обтюрирующих приспособлений. В старых системах клиновой затвор применялся в орудиях картузного заряжания. Обтюрация в этих орудиях обеспечивалась особым приспособлением — обтюратором.
Но применявшиеся обтюрирующие приспособления не давали хороших результатов. Поэтому клиновой затвор при картузном заряжании в современных артиллерийских орудиях не применяется. По сравнению с затворами других типов клиновой затвор имеет более простое устройство и надежно запирает канал ствола. Для закрывания и открывания клина требуется одно прямолинейное движение, обеспечивающее простоту и быстроту действия такого затвора, тем более, что углы возвышения не влияют на величину усилия, необходимого для открывания и закрывания, особенно в затворах с горизонтальным расположением клина. Это обстоятельство облегчает автоматизацию клиновых затворов. В современной артиллерии полуавтоматические затворы в большинстве случаев являются клиновыми. Вертикальные клиновые затворы обычно применяются в орудиях малого калибра, там, где вес клина мал и изменение усилий на рукоятки при открывании и закрывании ничтожно, а также в орудиях, где открывание и закрывание производится автоматически. Применение вертикальных клиновых затворов выгодно в тех случаях, в которых выдвижение клина вбок ограничивает угол горизонтального обстрела вследствие упора в станины лафета или другие части орудия.
Кроме клиновых затворов, действующих вручную, имеются еще полуавтоматические и автоматические. Полная или частичная автоматизация осуществляется за счет использования силы пороховых газов при отдаче. Полуавтоматические затворы за счет использования этой силы открываются, выбрасывают стреляную гильзу и закрываются. Заряжание и производство выстрела производится вручную. Большинство современных артиллерийских орудий малого и среднего калибров имеют полуавтоматический затвор. К таким орудиям относятся 45-миллиметровая противотанковая пушка обр. Встречаются затворы, у которых автоматизировано только закрывание 76-миллиметровая горная пушка обр.
Станкам под осадные и крепостные мортиры, стреляющие всегда под большими углами возвышения, было придано самое простое устройство: они без колес и опираются ребрами станин прямо на платформу так, что давление передавалось последней широкой и длинной поверхностью. Чтобы газы, выходящие из дула мортиры, расположенной позади бруствера, не разрушали бруствера, ось цапф мортиры относилась на 10 футов за гребень его; превышение оси цапф над горизонтом около 4 футов; откат уменьшается клиньями, лежащими на платформе, на них при откате взбегают катки, расположенные в лобовой части станка, хобот скользил по платформе. Станок черт. Для направления станка при откате, накатывании и откатывании без выстрела служит поворотный брус черт. При откате катки взбегали по клиньям, хобот скользил по платформе; для поворота станка в стороны вставлялся лом в прорезы железной полосы, расположенной под хоботом; между станинами имелись 4 катка черт. Для перевозки в гнезда лобовой части вставлялась походная ось черт. Ещё проще был железный станок под 5-пудовую и 2-пудовую гладкую мортиру, назначенную для стрельбы пульной и гранатной картечью и светящими ядрами. Лафеты полевой артиллерии[ править править код ] Главное требование от лафетов полевой артиллерии — подвижность, причем часто по пересечённой местности, без дорог; горная артиллерия ведёт бой в горах, сопровождает пехоту по узким и извилистым горным дорогам, следовательно — должна быть перевозимой на вьюках, причем предполагалось, что лошадь перевозит на вьюке груз не более 6 пудов. Пушечный полевой лафет черт. При выстреле станок двигается назад, ход стоит на месте, почему буфер сжимается до отказа, только тогда на ход подействует отдача и он станет откатываться — смягчен удар между С. Конный лафет отличается от описанного только отсутствием сидений для прислуги прислуга конная и мелкими деталями. Для увеличения скорости стрельбы в полевой артиллерии приняты лафеты с упругим сошником и поворотным механизмом черт.