Это новое исследование ставит под сомнение гипотезу мира РНК, которая предполагает, что самовоспроизводящиеся молекулы РНК были предшественниками всех современных форм жизни на Земле. Гипотеза мира РНК — Структура рибозима — молекулы РНК, выполняющей функцию катализа Мир РНК — гипотетический этап возникновения жизни на Земле, когда как функцию хранения генетической информации. Результаты исследования, которое фактически доказывает гипотезу существования РНК-мира, опубликованы в журнале Proceedings of the National Academy of Sciences (PNAS). Согласно гипотезе мира РНК, эта макромолекула изначально могла быть единственной ответственной за клеточную или доклеточную жизнь.
Найдено подтверждение гипотезы «РНК-мира»
Именно открытие рибозимов РНК-ферментов привело к созданию концепции «мира РНК» - мира, который, вероятно, возник и существовал задолго до оформления ныне существующего «ДНК-белкового мира». Вскоре после открытия рибозимов в одной из работ родоначальник и классик молекулярной биологии Ф. Крик писал: «Эти эксперименты по каталитической РНК поддерживают гипотезу, что биохимия РНК предшествовала традиционной биохимии, основанной на нуклеиновых кислотах и белках». Эта книга в последствие неоднократно переиздавалась. Авторы, среди которых был и Чек, обсуждали на страницах объёмистого тома эволюционные аспекты зарождения катализа, специфичность и функции макромолекул. В начале 1990-ых годов ещё никто не мог предполагать взрыва интереса к РНК, и книга пользовалась интересом главным образом среди теоретиков. Теперь же совсем другое дело. Можно только поразиться провидческой способности редакторов первого издания, которые предпослали книге подзаголовок: "Природа современной РНК предполагает её пребиотичность" [16]. Новый взгляд на происхождение жизни на планете Земля Проблема происхождения жизни приобрела неодолимое очарование для всего человечества. Она не только привлекает к себе пристальное внимание учёных разных стран и специальностей, но интересует вообще всех людей мира. В конце 60-ых годов XX века известный английский учёный Джон Бернал в своей монографии «Возникновение жизни» 1967 писал: «Гипотеза Уотсона и Крика, предложенная ими в 1953 году, произвела полный переворот в биологии, да и, можно сказать, в науке вообще.
Возможность приложения этой гипотезы к проблеме возникновения жизни очевидна, хотя и не осознаётся ещё должным образом даже её авторами.... Успехи, достигнутые молекулярной биологией, заставили нас пересмотреть многое из того, что прежде считалось очевидным... Лишь после работ Уотсона, Крика и Ниренберга, раскрывших всю сложность процесса белкового синтеза, нам стало ясно, что здесь мы имеем дело с тончайшим механизмом воспроизведения - воспроизведения не столько самих организмов, сколько составляющих его молекул» [3]. Однако до 80-ых годов XX века, ввиду отсутствия экспериментально мотивированного ответа на вопрос о том, как сформировались в эволюции системы декодирования генетической информации нуклеиновых кислот в структурные параметры белков, проблема возникновения организмов, одновременно обладавших каталитическим и генетическим аппаратом, казалось неразрешимой. Возможность решения этой проблемы открывалась, если предположить, что на начальных этапах эволюции обе функции могли быть объединены, в каком-либо одном классе биополимеров. Следует сказать, что, несмотря на экспериментальные свидетельства абиотической конденсации аминокислот в каталитически активные полимеры, неспособность полипептидов в отличие от полинуклеотидов реплицироваться с образованием комплементарных последовательностей не позволяла рассматривать белки в качестве хранителя и переносчика генетической информации. Сценарий развития жизни преобразовался. Вначале, по новой гипотезе, в условиях молодой Земли спонтанно появились короткие цепочки молекул РНК. Некоторые из них, опять же спонтанно, приобретали способность к катализу реакции собственного воспроизведения репликации. Из-за ошибок при репликации некоторые из дочерних молекул отличались от материнских и обладали новыми свойствами, например, могли катализировать другие реакции.
Еще одно важнейшее свидетельство того, что "вначале была РНК", принесли исследования рибосом. Рибосомы - структуры в цитоплазме клетки, состоящие из РНК и белков и отвечающие за синтез клеточных протеинов. В результате их изучения было выявлено, что у всех организмов именно РНК, находящаяся в каталитическом центре рибосом, отвечает за главный этап в сборке белков - соединение аминокислот между собой. Открытие этого факта еще более упрочило позиции сторонников РНК-мира. Действительно, если спроецировать современную картину жизни на ее возможное начало, разумно предположить, что рибосомы -структуры, специально существующие в клетке, чтобы "расшифровывать" код нуклеиновых кислот и производить белок, - появились когда-то как комплексы РНК, способные к соединению аминокислот в одну цепочку. Так на основе мира РНК мог появиться мир белков. Таким образом, имеется много достаточно веских теоретических доводов, чтобы считать молекулу РНК основоположницей жизни на Земле. В 1989 году нобелевский лауреат по химии Уолтер Гилберт, придумавший на основании идеи российских академиков Е. Свердлова и А. Мирзабекова, один из первых методов секвенирования ДНК, ввел в оборот выражение "мир РНК", имея в виду полноценный, самостоятельный и способный к эволюции мир доклеточной жизни.
Эти результаты не замедлили сказаться на теории происхождения жизни: "фаворитом" стала молекула РНК. В самом деле, была обнаружена молекула, способная нести генетическую информацию и вдобавок к этому катализировать химические реакции! Более подходящего кандидата для зарождения доклеточной жизни трудно было представить [4]. Плодотворной оказалась идея, высказанная К. Вузом и несколько позже Л. Оргелем и окончательно сформулированная В. Гилбертом уже в 80-е годы. Согласно этой идее наличие каталитической функции у полинуклеотидов могло привести к формированию своеобразного «мира РНК» как основы эволюции первичной биосферы. Представления о существовании мира РНК исходят из предположения, что именно полинуклеотиды составляют химическую основу древнейших организмов, то есть молекулы РНК функционировали как генетический материал и одновременно выполняли каталитические функции в присутствии генетически упорядоченных белков [30]. При наличии активированных аминокислот синтез пептидов не представляется трудной задачей.
Активированные аминокислоты конденсируются даже в водных растворах с образованием коротких пептидов, а цепи длиной до 50 аминокислот образуются на минеральных поверхностях. Абстрактная схема биосинтеза белка в примитивных системах с участием каталитических РНК представлялась следующим образом. Примитивные РНК, аминоацилирующие сами себя активированными аминокислотами по аутокаталитическому механизму, могут выступать донорами и акцепторами аминокислот в реакциях переноса ацильных групп, катализируемых рибозимами [16]. Для признания РНК в качестве молекул, осуществляющих в примитивных системах синтез белков, показана возможность выполнение ими следующих функций: узнавание аминокислот, аминоацилирование тРНК, перенос ацильных групп, активация аминокислот и синтез пептидов. Рибозимы способны катализировать и некоторые другие химические реакции, характерные для обмена веществ. Сегодня развиваются представления о том, что каталитический потенциал примитивных РНК мог быть существенно расширен за счет присоединения к их молекулам коферментных групп [7]. Дальнейшие исследования этой же группы исследователей показали, что молекулы РНК при столкновении в водной среде могут спонтанно обмениваться частями, то есть, обладают способностью к неэнзиматической рекомбинации. Возможность легкого распространения молекул РНК через среду, в том числе атмосферную, также было продемонстрирована в прямых экспериментах [32, 36, 37]. В теоретическом отношении это открытие в контексте мировой научной концепции о рибозимах "РНК-мир" способствует возможности в корне пересмотреть теорию происхождения жизни на Земле. Смешанные колонии РНК на твёрдых или полутвёрдых носителях могли быть первыми эволюционизирующими бесклеточными ансамблями, где одни молекулы выполняли генетические функции репликацию молекул РНК всего ансамбля , а другие формировали необходимые для успешного существования структуры например, такие, которые адсорбировали нужные вещества из окружающей среды или были рибозимами, ответственными за синтез и подготовку субстратов для синтеза РНК.
Эта коммунальная форма существования мира РНК должна была очень быстро эволюционировать. Что же стало с РНК после распада коммуны? Хотя коммуна распалась, мир РНК сохранился в каждой клетке каждого живого организма. В качестве центрального звена этого процесса биосинтеза белков выступает совокупность взаимодействующих друг с другом молекул РНК различных типов, прежде всего рибосомной РНК, формирующей аппарат белкового синтеза, тРНК, доставляющей в рибосому активированные аминокислоты для построения полипептидных цепей белков, и мРНК, несущей в своей нуклеотидной последовательности программу для синтеза белка. Оказалось, что нкРНК выполняют множество функций с использованием не известных ранее механизмов: нкРНК участвуют в регуляции транскрипции генов, сплайсинге и регуляции деградации РНК. Они вовлечены в трансляцию и её регуляцию, в процессинг и модификацию рибосомной РНК, в защиту от вирусных инфекций и мутагенной активности мобильных генетических элементов, а также в ряд других процессов. РНК явно потеснили белки на пьедестале главных молекул, обеспечивающих жизнедеятельность клеток [16, 25]. Все рассмотренные аргументы подчёркивают важную, если не исключительную, роль РНК в происхождении жизни на земле. Исследования продолжаются. Современная жизнь - это РНК, передавшая часть свих генетических функций рождённому ею же полимеру - ДНК и синтезирующая белки для всеобъемлющего эффективного функционирования содержащих её компонентов - клеток и многоклеточных организмов [27-29].
Необычные древние особенности РНК нашли в последнее время эффективные практические приложения. Так как практически каждая наноколония происходит из одной матричной молекулы, с помощью наноколоний можно обнаружить и идентифировать одиночные молекулы ДНК и РНК, в том числе - с диагностическими целями. В настоящее время наноколонии применяются в нашей стране и за рубежом для различных научных и прикладных задач. Важнейшим направлением исследований является разработка ранней диагностики онколологических заболеваний. В России от разных видов рака умирает около 300 000 человек в год, что представляет большую демографическую, экономическую социальную проблему. Лечение осложняется тем, что у большинства больных болезнь диагностируется уже на поздних стадиях. С развитием экономики проблема может только усугубляться, так как частота онкологических заболеваний растёт по мере ухудшения экологической обстановки и увеличения продолжительности жизни населения.
Эту гипотезу, предложенную в 1960-х и прозванную " миром РНК " двумя десятками лет позднее, сейчас рассматривают, как наиболее вероятное объяснение начала жизни. Хватает и альтернативных «миров», но они обычно считаются резервными теориями, иллюзорными полётами воображения и причудливыми мысленными экспериментами. В основном потому, что гипотеза мира РНК подкрепляется большим числом экспериментальных свидетельств, чем набрали её конкуренты. В прошлом месяце мы уже сообщали об альтернативной теории , согласно которой похожие на белки молекулы могли стать первыми самовоспроизводящимися молекулами вместо РНК. Но эти находки были чисто вычислительными — тогда исследователи только начинали эксперименты в поисках свидетельств в пользу их заявлений. Теперь же парочка исследователей выдвинула другую теорию — на этот раз включающую совместную эволюцию РНК и пептидов — которая, как они надеются, сможет поколебать основы мира РНК. Почему РНК не хватало Недавние работы, опубликованные в журналах Biosystems и Molecular Biology and Evolution , схематически описывают свидетельства того, что гипотеза мира РНК не обеспечивает достаточных оснований для последовавших эволюционных событий. Вместо этого, говорит Чарльз Картер , структурный биолог из Университета в Северной Каролине, один из авторов работ, их модель делает подходящее предложение. Чарльз Картер, структурный биолог из Университета в Северной Каролине И этот единственный полимер никак не мог быть РНК, согласно исследованиям, проведённым его командой. Основным возражением против этой молекулы служит катализ : некоторые исследования показали, что для того, чтобы жизнь начала функционировать, загадочному полимеру необходимо было суметь координировать скорость химических реакций, которые могут идти со скоростями, различающимися по величине на 20 порядков. Когда планета начала охлаждаться, РНК, как заявляет Картер, не смогла бы эволюционировать и поддерживать синхронизацию и далее. Симфония химических реакций вскоре должна была развалиться. Что, возможно, важнее всего, мир с одной лишь РНК не объясняет появление генетического кода, который подавляющее большинство живых организмов использует сегодня для передачи генетической информации в белки. Код берёт каждую из 64-х возможных трёхнуклеотидных РНК-последовательностей, и совмещает их с одной из 20 аминокислот, использующихся для создания протеинов. На то, чтобы подобрать набор правил, достаточно надёжных для выполнения такой задачи, должно было уйти слишком много времени у одной только РНК, говорит Питер Уиллс, соавтор Картера из Оклендского университета в Новой Зеландии — если мир РНК мог бы дойти до такого состояния, что ему кажется маловероятным.
По данной гипотезе, первые репликаторы на Земле представляли собой РНК-молекулы, способные размножаться без участия белковых ферментов. Исследователи столкнулись с проблемой - как такая молекула могла появиться из предшественников, не обладающих каталитической активностью. Источник фото: Фото редакции Однако было установлено, что рибозим, способный расщеплять другие молекулы, может возникнуть спонтанно благодаря нескольким консервативным элементам. Чтобы понять, как эта функция сохранилась в процессе эволюции, исследователи разработали модель, имитирующую случайные разрывы в простых молекулах РНК.
В этом случае для появления сложных биомолекул не требуется ни молний, ни ультрафиолета, как в экспериментах Миллера — Юри. А значит, мы можем избавиться от вредных аспектов их действия. Молодая Земля не была защищена от вредных — и даже смертельно опасных — компонентов солнечного излучения. Даже современные, испытанные эволюцией организмы были бы неспособны выдержать этого жесткого ультрафиолета — притом что само Солнце было значительно моложе и не давало достаточно тепла планете. Из этого возникла гипотеза о том, что в эпоху, когда творилось чудо зарождения жизни, вся Земля могла быть покрыта толстым — в сотни метров — слоем льда; и это к лучшему. Скрываясь под этим ледяным щитом, жизнь могла чувствовать себя вполне в безопасности и от ультрафиолета, и от частых метеоритных ударов, грозивших погубить ее еще в зародыше. Относительно прохладная среда могла также стабилизировать структуру первых макромолекул. Научно: Черные курильщики В самом деле, ультрафиолетовое излучение на молодой Земле, атмосфера которой еще не содержала кислорода и не имела такой замечательной штуки, как озоновый слой, должно было быть убийственным для любой зарождающейся жизни. Из этого выросло предположение о том, что хрупкие предки живых организмов были вынуждены существовать где-то, скрываясь от непрерывного потока стерилизующих все и вся лучей. Например, глубоко под водой — конечно, там, где имеется достаточно минеральных веществ, перемешивания, тепла и энергии для химических реакций. И такие места нашлись. Ближе к концу ХХ века стало ясно, что океанское дно никак не может быть пристанищем средневековых монстров: условия здесь слишком тяжелые, температура невелика, излучения нет, а редкая органика способна разве что оседать с поверхности. Фактически это обширнейшие полупустыни — за некоторыми примечательными исключениями: тут же, глубоко под водой, поблизости от выходов геотермальных источников, жизнь буквально бьет ключом. Насыщенная сульфидами черная вода горяча, активно перемешивается и содержит массу минералов. Черные курильщики океана — весьма богатые и самобытные экосистемы: питающиеся на них бактерии используют железосерные реакции, о которых мы уже говорили. Они являются основой для вполне цветущей жизни, включая массу уникальных червей и креветок. Возможно, они были основой и зарождения жизни на планете: по крайней мере, теоретически такие системы несут в себе все необходимое для этого. И в этих фантазиях можно лишь позавидовать воображению древних авторов: по вопросу о том, из чего, как и почему возник космос, откуда и каким образом появилась жизнь — и люди, — версии звучали самые разные и почти всегда красивые. Растения, рыбы и звери вылавливались с морского дна громадным вороном, люди выползали червями из тела первопредка Паньгу, лепились из глины и пепла, рождались от браков богов и чудовищ. Все это удивительно поэтично, но к науке, конечно, не имеет никакого отношения. Научно: Мир РНК В соответствии с принципами диалектического материализма жизнь — это «единство и борьба» двух начал: изменяющейся и передающейся по наследству информации, с одной стороны, и биохимических, структурных функций — с другой. Одно без другого невозможно — и вопрос о том, с чего жизнь началась, с информации и нуклеиновых кислот или с функций и белков, остается одним из самых сложных. А одним из известных решений этой парадоксальной задачи является гипотеза «мира РНК», появившаяся еще в конце 1960-х и окончательно оформившаяся в конце 1980-х. РНК — макромолекулы, в хранении и передаче информации не столь эффективные, как ДНК, а в выполнении ферментативных функций — не столь впечатляющие, как белки. Зато молекулы РНК способны и на то, и на другое, и до сих пор они служат передаточным звеном в информационном обмене клетки, и катализируют целый ряд реакций в ней.
Японские ученые впервые доказали способность РНК эволюционировать
Как сообщает портал Planet Today , согласно этой гипотезе, первые формы жизни состояли из молекул РНК, способных к самовоспроизведению без участия белковых ферментов. Однако возникал вопрос, как такие активные молекулы могли возникнуть из неактивных предшественников? Исследователи предложили возможный путь, по которому набор пребиотических олигомеров коротких полимерных цепочек , несущих информацию, мог приобрести ранние каталитические функции, такие как специфическое расщепление.
Однако точность синтеза РНК оставалась недостаточно высокой, и лишь незначительная доля молекул лигазы, которые они синтезировали, обладала каталитической активностью. Авторы отмечали, что понадобится более строгий отбор, чтобы получить РНК-полимеразы с высокой точностью, которые смогли бы синтезировать более длинные молекулы.
В новой работе Джойс и соавторы получили РНК-полимеразы, способные синтезировать целую молекулу РНК-лигазы с достаточно низким уровнем ошибок. Стратегия эволюции, которая использовалась в эксперименте, аналогична вышеописанной. В этот раз РНК-полимераза синтезировала на матрице РНК-лигазу, а затем подвергалась обратной транскрипции, причем оставалась связанной со своим продуктом. Если РНК-лигаза, которую синтезировал данный вариант РНК-полимеразы, была функциональна, то она сшивала разрыв, и вся конструкция могла быть выделена с помощью бусин со стрептавидином.
К сожалению, мы не можем показать эту иллюстрацию, так как статья закрытая. В итоге удалось получить рибозимы, обладающие необходимой — беспрецедентно высокой, подчеркивают авторы — точностью. Лучше всего показал себя рибозим, отличающийся от ранее полученного варианта десятью точечными мутациями и обозначенный 71-89 для его получения потребовался в общей сложности 71 раунд эволюции.
Последнего универсального общего предка не следует путать с первым живым организмом на Земле. Считается, что LUCA жил 3,5—3,8 миллиарда лет назад в палеоархейскую эру или 4,5 млрд лет назад. Окаменелых останков... Экзонуклеазы — белки из группы нуклеаз, отщепляющие концевые мононуклеотиды от полинуклеотидной цепи путём гидролиза фосфодиэфирных связей между нуклеотидами. Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении. Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии, которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки. Однако в 1970 году Темин... Третичная структура или трёхмерная структура — пространственное строение включая конформацию всей молекулы белка или другой макромолекулы, состоящей из единственной цепи. Химическая эволюция или пребиотическая эволюция — этап, предшествовавший появлению жизни, в ходе которого органические, пребиотические вещества возникли из неорганических молекул под влиянием внешних энергетических и селекционных факторов и в силу развертывания процессов самоорганизации, свойственных всем относительно сложным системам, которыми, бесспорно, являются все углеродосодержащие молекулы. Первичная структура англ. Для стандартного биополимера, в молекуле которого нет разветвлений и перекрестных связей например, ДНК, РНК или белков понятие первичной структуры является синонимом последовательности остатков мономеров нуклеотидов или аминокислот. Считается, что термин «первичная структура» был впервые употреблён Линнерстрёмом-Лангом... Для сокращенного обозначения пользуются большими латинскими буквами. Аденин и гуанин являются производными пурина, а цитозин, урацил и тимин — производными пиримидина. Рибонуклеазы классифицируют на эндорибонуклеазы и экзорибонуклеазы. К рибонуклеазам относят некоторые подклассы КФ 2. Остаток в биохимии и молекулярной биологии — структурная единица биополимера, состоящего из аминокислот и сахаров; часть мономера, которая остаётся неизменной после включения его в биополимер. Например, остатками принято называть аминокислотные звенья, входящие в состав пептида. Остатки уже не являются аминокислотами, так как в результате реакции конденсации, они утратили по одному атому водорода из аминогруппы и гидроксил, входящий в состав карбоксильной группы. Кроме того, остатками также считаются... История молекулярной биологии начинается в 1930-х годах с объединения ранее отдельных биологических дисциплин: биохимии, генетики, микробиологии и вирусологии. Кроме того, в надежде, что новая дисциплина откроет возможности понимания фундаментальных основ жизни, в неё пришли многие химики и физики.
Вторая модель предполагала добавление рибозимов, способных к спонтанному образованию и катализированию расщепления, к пулу полимерных РНК-цепочек, которые разрезались при столкновении. Этот процесс позволял созданию молекул РНК, действующих как рибозимы типа hammerhead, способных к саморасщеплению, и, таким образом, начиналось их самовоспроизводство. Репликация полимера осуществлялась за счет циклического изменения температуры между горячей и холодной фазами, что может указывать на то, что древние полимеры могли зависеть от таких циклов для своего размножения. Неорганические поверхности, вроде камней, также могли способствовать этому процессу размножения.
Происхождение жизни, часть 2: РНК-мир
Новости о недвижимости, экономики и финансах в России. Согласно гипотезе РНК-мира, молекула РНК играла ключевую роль в молекулярных процессах и биохимических реакциях, которые привели к появлению жизни на Земле. Новости Российского национального комитета мирового нефтяного совета. Ученые из Брукхейвенской национальной лаборатории провели исследования, которые проливают свет на гипотезу РНК-мира. В основном потому, что гипотеза мира РНК подкрепляется большим числом экспериментальных свидетельств, чем набрали её конкуренты. Ученые Брукхейвенской национальной лаборатории обнаружили новые доказательства гипотезы РНК-мира. Согласно гипотезе мира РНК, эта макромолекула изначально могла быть единственной ответственной за клеточную или доклеточную жизнь.
Моделирование происхождения жизни: Новые доказательства существования "мира РНК"
Дополнительным аргументом в пользу гипотезы существования древнего мира РНК стало обнаружение в 2019 году рибозы — сахара, входящего в состав РНК — в метеорите. Изотопный анализ показал внеземное происхождение этой рибозы. Авторы открытия предположили, что с помощью метеоритов рибоза могла попасть на раннюю Землю и послужить материалом для синтеза РНК.
Установите приложение "ЦСН" Ученые обнаружили способ самовоспроизводства молекул РНК В новом прорыве, который может кардинально изменить наше понимание происхождения жизни на Земле, исследователи из Брукхейвенской национальной лаборатории обнаружили свидетельства гипотезы РНК-мира. Согласно этой теории, первыми репликаторами на нашей планете были молекулы РНК, обладающие уникальной способностью к самовоспроизводству без участия белковых ферментов. Долгое время ученые ломали голову над вопросом, как могли возникнуть такие молекулы из более примитивных соединений. Исследование, опубликованное в журнале eLife, представляет собой модель, которая имитирует случайное разрушение простых РНК-молекул.
Об этом ТАСС сообщил директор по комплексной безопасности группы компаний… Устроивших массовую драку в Туапсе граждан Узбекистана выдворят из России Пятнадцать граждан Республики Узбекистан, устроивших в среду массовую драку в Туапсе, будут оштрафованы и выдворены из России, сообщили в прокуратуре Краснодарского края. Кадры массовой драки появились в сети ещё в… МИД Польши: Дуда не уполномочен обсуждать размещение ядерного оружия Президент Польши Анджей Дуда не уполномочен обсуждать возможность размещения ядерного оружия в стране. Хотя некоторым удается ограничиться незначительным увеличением, для большинства это становится серьезной проблемой.
В течение десятилетий химики проверяли теории о том, как началась жизнь на Земле. Одна гипотеза годами привлекала научное воображение: Мир РНК. Эта теория предполагает, что молекулы пребиотиков рано объединились, чтобы сформировать РНК, молекулы, которые несут инструкции от ДНК в организмах сегодня. Проблема в том, что ингредиенты, такие как ферменты, для работы Мира РНК просто не существовали на ранней Земле. Мир РНК породил идею, что если вы каким-то образом синтезируете РНК, которая может реплицировать и катализировать реакции, все остальное автоматически следует.
Ученые нашли новые доказательства РНК-мира
В рамках своего проекта ученые поставили под сомнение достоверность гипотезы РНК-мира. ELife: обнаружено случайное возникновение самовоспроизводящихся молекул Ученые из Брукхейвенской национальной лаборатории опубликовали статью в журнале eLife, в которой сообщили об обнаружении новых доказательств гипотезы РНК-мира. Хотя гипотеза мира РНК восторжествовала, некоторые ученые были с ней не согласны.
Исследователи смешивают РНК и ДНК, чтобы изучить, как началась жизнь на Земле
Об этом говорится в статье журнала eLife. Гипотеза РНК-мира заключается в том, что первые репликаторы на Земле представляли собой РНК-молекулы, которые могли инициировать собственное воспроизведение без помощи белковых ферментов. Но долгое время было неясно, как такая молекула может появиться из предшественников, которые не могут проявлять каталитической активности. Специалисты обнаружили, что рибозим, который помогает расщеплять другие молекулы, может появиться спонтанно, потому что для обеспечения его работы необходимы только несколько классических оснований.
Исследователи предложили возможный путь, по которому набор пребиотических олигомеров коротких полимерных цепочек , несущих информацию, мог приобрести ранние каталитические функции, такие как специфическое расщепление. Используя компьютерное моделирование на основе структуры фермента РНК, они показали, что даже спонтанное, неферментативное расщепление может способствовать размножению олигомеров за счет образования коротких фрагментов, выступающих в роли затравок для дальнейшего роста. Естественный отбор мог способствовать развитию каталитической эффективности этих молекул.
К сожалению, эта стройная гипотеза имеет свои недостатки. Ее противники указывали на то, что формирование рибонуклеотидов, при полимеризации которых образуется РНК, «традиционным» образом — из остатка фосфорной кислоты, сахара рибозы и азотистого основания — едва ли могло произойти в естественных условиях. Английские исследователи доказали, что синтез рибонуклеотидов можно провести и другим путем, без участия рибозы и оснований. Для осуществления реакции, предложенной учеными, требуются цианамид на схеме обозначен цифрой 4 , цианоацетилен 3 , гликолевый альдегид 7 , глицеральдегид 6 и неорганический фосфат 2 — молекулы, нахождение которых на первобытной Земле оценивается как весьма вероятное. В начале процесса гликолевый альдегид реагирует с цианамидом, образуя промежуточное соединение — 2-аминооксазол 5.
К началу нового века гипотеза РНК-мира сформировалась окончательно. Многократно самокопирующаяся РНК действительно могла породить всё живое на Земле, постепенно отграничив себя от пространства и сформировав протоклетку. Но, как это обычно случается в науке, возникли новые вопросы. В первую очередь ко второй части молекулярной догмы: как именно появилась крепкая связь между РНК и аминокислотами и как, наконец, появилась система синтеза белка? Предполагаемая схема «первоклетки» — РНК, окруженная билипидным мембранным слоем. Источник Но есть нюанс Гипотеза РНК имеет обширную доказательную базу и по праву считается одной из самых логичных и подходящих для объяснения формирования жизни. Но и у нее есть недостатки, или, вернее, вопросы, ответы на которые в рамках самой гипотезы найти сложно. Во-первых, РНК очень нестабильна, а время ее жизни крайне ограничено. Сложно представить себе «начало начал», способное распасться при малейших изменениях в окружающей среде. РНК нуждается в ионах двухвалентных металлов, в основном в магнии, но при этом распадается при их слишком большой концентрации. РНК любит кислую среду, но практически не выдерживает щелочной. Во-вторых, много вопросов и к самому «случайному» синтезу. Да, сахара действительно могли быть занесены извне, и да, протонуклеотиды действительно могли быть синтезированы из «того, что было». Но вот представить себе синтез итоговой молекулы РНК сложно — слишком много условий должно было совпасть для этого та же рибоза если и была занесена из космоса, то явно в очень малых количествах. Экспериментально, впрочем, возможность соединения сахара и нуклеотида уже была показана, но ведь есть и третий участник — остаток фосфорной кислоты, и о его ранней судьбе данных пока нет. Всё это привело к тому, что из гипотезы РНК-мира возникла подгипотеза — пре-РНК-мира: в начале появились первичные метаболические компартменты-протоклетки, а потом уже в них пошел синтез реплицирующихся молекул РНК, где возникали все возможные варианты соединения трех участников, пока не был найден единственный верный. В-третьих, возникает вопрос о формировании протоклетки. Да, мембрана очень полезна — она защищает хрупкую РНК, позволяя ей «жить» чуть дольше, чем просто в обычном растворе. Но точно так же она отделяет РНК от необходимых ей элементов — нуклеотидов и ионов. То есть для формирования первых бислоев с включенной в них РНК уже должны были появиться какие-то простые системы закачки или хотя бы связывания нужных элементов, своего рода первичные челночные системы. Даже это в целом представить можно, но каким образом РНК координировала их работу? Из предыдущего вопроса вполне логично вытекает следующий: каким образом эти белки оказались встроены в мембрану, а главное — как появился генетический код, позволяющий синтезировать эти белки? Есть предположения, основанные на данных эксперимента, что в самом начале РНК-мира транспортных РНК, которые доставляли аминокислоты к рибосоме, было всего две и синтез шел путем проб и ошибок. В любом случае вопросов всё еще много, но главный недостаток гипотезы РНК-мира — это, конечно, большое количество необходимых совпадений. Конкретных ответов на вопросы о связи РНК с белком и генетическим кодом до сих пор нет, хотя, учитывая скорость развития науки в целом и молекулярной биологии в частности, можно ожидать хоть каких-то проблесков в ближайшее время. В любом случае РНК-мир определенно предлагает относительно стройную гипотезу, в которую укладывается множество самых разных фактов. Человечество вряд ли когда-нибудь сможет со стопроцентной вероятностью сказать, как всё было «на самом деле» — слишком долгим, хаотичным и древним был этот процесс, но почему бы не попытаться?
Ученые нашли новые доказательства РНК-мира
Это предположение называется гипотезой РНК-мира и пользуется поддержкой среди современных учёных. Мир РНК — гипотетический этап возникновения жизни на Земле, когда как функцию хранения генетической информации, так и катализ химических реакций выполняли ансамбли молекул. Гипотеза РНК-мира заключается в том, что первые репликаторы на Земле представляли собой РНК-молекулы, которые могли инициировать собственное воспроизведение без помощи белковых ферментов. Результаты исследования, которое фактически доказывает гипотезу существования РНК-мира, опубликованы в журнале Proceedings of the National Academy of Sciences (PNAS). Они предложили гипотезу "мира РНК", которая предполагает, что возникновение жизни на Земле произошло путем усложнения РНК-молекул и их преобразования в молекулы ДНК и белки.
Как в мир РНК пришли белки
Амплификация может быть ответом клеток на селективное воздействие например, при действии метотрексата. Амплификация — один из механизмов активации онкогенов в процессе развития опухоли, например, онкогена N-myc при развитии нейробластомы. Также амплификация — накопление... Он осуществляет цис-регуляцию мРНК, на которой находится, путём связывания с лигандами — разнообразными малыми молекулами, например, кобамамидом, тиаминпирофосфатом, лизином, глицином, флавинмононуклеотидом, гуанином, аденином и другими. Типичный рибопереключатель включает два основных домена: аптамерный домен, осуществляющий распознавание лиганда и связывание с ним, и платформу экспрессии англ. Метод Сэнгера — метод секвенирования определения последовательности нуклеотидов ДНК, также известен как метод обрыва цепи. Впервые этот метод секвенирования был предложен Фредериком Сэнгером в 1977 году, за что он был удостоен Нобелевской премии по химии в 1980 году. Данный метод был наиболее распространенным на протяжении 40 лет. Аденин — азотистое основание, аминопроизводное пурина 6-аминопурин.
Образует две водородных связи с урацилом и тимином комплементарность. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации. Репрессор — ДНК-связывающий или РНК-связывающий белок, который ингибирует экспрессию одного или нескольких генов путём связывания с оператором или сайленсерами. Эта блокировка экспрессии называется репрессией. Автокатализ — катализ химической реакции одним из её продуктов или исходных веществ. Одним из наиболее широко известных примеров автокатализа является окисление щавелевой кислоты перманганатом... Эндонуклеазы рестрикции , рестриктазы от лат. Эндонуклеазы — белки из группы нуклеаз, расщепляющие фосфодиэфирные связи в середине полинуклеотидной цепи.
Эндонуклеазы рестрикции, или рестриктазы, расщепляют ДНК в определенных местах так называемых сайтах рестрикции , они подразделяются на три типа I, II и III на основании механизма действия. Эти белки часто используют в генной инженерии для создания рекомбинантных ДНК, которые вводят затем в бактериальные, растительные или животные клетки. Последовательность Шайна — Дальгарно англ. Описана австралийскими учёными Джоном Шайном и Линн Дальгарно. Сигнальный пептид , или сигнальная последовательность, — короткая от 3 до 60 аминокислот аминокислотная последовательность в составе белка, которая обеспечивает котрансляционный или посттрансляционный транспорт белка в соответствующую органеллу ядро, митохондрия, эндоплазматический ретикулум, хлоропласт, апопласт или пероксисома.
В 1996 г. Кейлер предложил в качестве механизма функционирования тмРНК модель транс-трансляции биосинтез полипептидной цепи белка с использованием различных матричных последовательностей. Она предлагает механизм синтеза дополнительного пептида, основанный на наблюдении, что добавление нового пептида происходит в случае трансляции мРНК, в которой отсутствует стоп-кодон. Остановившаяся пептидная цепь переносится на аланил-тмРНК реакция транспептидирования , и рибосома продолжает синтез по матричной части тмРНК. Синтез продолжается до поступления в А-центр стоп-кодона тмРНК, после чего вступает в действие фактор терминации и трансляция завершается.
В результате гибридный белок, состоящий из пептидов, соединенных аланином из тмРНК, уходит из рибосомы, а освободившаяся рибосома может участвовать в синтезе другого белка. Особенность такой транс-трансляционной системы состоит в том, что одна пептидная цепь синтезируется с двух различных молекул мРНК. Необходимо отметить, что способ установления рамки считывания ОРС матричной части тмРНК отличен от всех известных способов установления рамки считывания. Первая включаемая аминокислота не определена обычным кодон-антикодоновым взаимодействием, а аденозиновый остаток, отстоящий на 3 н. Это предположение требует дальнейшего экспериментального подтверждения. С помощью тмРНК клетка решает две задачи: с одной стороны, освобождаются остановившиеся рибосомы, а с другой, неправильные белки быстро расщепляются специфической протеазой, узнающей сигнальный пептид, кодируемый матричной частью тмРНК. Это связано с открытием процесса транс-трансляции, а именно с возможностью синтеза одного белка на основе двух различных мРНК. Кроме того, отсутствие тмРНК у высших организмов указывает на возможность ее использования в качестве хорошей мишени при создании новых антибактериальных средств. Функция тмРНК особенно важна для жизнедеятельности бактерий при повышенных температурах. Известно, что многие бактериальные инфекции сопровождаются повышением температуры, поэтому создание препарата, блокирующего функцию тмРНК, приведет к гибели бактерий и не повлияет на биосинтез белков человека.
Регуляция экспрессии эукариотических генов может осуществляться на нескольких уровнях: во время транскрипции, на стадии процессинга РНК, при трансляции и на уровне созревания белка. В последнее время в связи с открытием явления интерференции РНК большое внимание ученых привлекает посттранскрипционный уровень регуляции. Интерференция РНК - высокоспецифичный механизм подавления экспрессии гена на посттранскрипционном уровне за счет деградации считанной с него мРНК. Малые РНК могут регулировать экспрессию генов не только посредством интерференции, но также подавляя трансляцию, транскрипцию или способствуя удалению гена-мишени из клеточного генома. Последнее наблюдается у некоторых простейших в процессе созревания макронуклеуса. Феномен интерференции РНК обнаружен у различных эукариотических организмов, в частности, у одноклеточных, низших грибов, растений, нематод, насекомых, а также у позвоночных, включая мышей и человека. Подобная высокая консервативность механизма интерференции РНК свидетельствует о его большой значимости. И хотя функции некоторых видов малых РНК до сих пор не установлены, предполагают, что основная их роль - защита генома клетки от внедрения мобильных генетических элементов вирусов, транспозонов , а также участие в регуляции дифференцировки многоклеточных организмов. Малые РНК представляют значительный интерес для фундаментальной молекулярной биологии и таких прикладных ее областей, как биомедицина и биотехнология. Одним из наиболее эффективных способов изучения функции гена является анализ фенотипа организмов, у которых этот ген не экспрессируется.
Существует ряд методов, позволяющих подавлять экспрессию определенных генов, в том числе, использование антисмысловых олигонуклеотидов, рибозимов, химических блокаторов, а также разрушение нужного гена во всем организме путем внесения соответствующих мутаций в зиготу. Однако эти методики либо сложны, либо не всегда эффективны и не обеспечивают полного сайленсинга гена то есть подавления экспрессии в экспериментальных моделях млекопитающих. В отличие от перечисленных методик, технологии, основанные на явлении интерференции РНК деградация мРНК при введении в клетку соответствующих им 81РНК или экспрессирующих их конструкций , просты в исполнении, эффективны и обладают большой специфичностью распознавания молекулы-мишени. Биохимически и функционально это молекулы практически неразличимы, и принцип их подразделения основан на природе предшественников. По происхождению малые РНК можно разделить на экзогенные индуцируемые или кодируемые вирусами, либо введенные искусственно и эндогенные образующиеся при транскрипции собственных генов клетки. Сигналом для инициации интерференции РНК служит появление в клетке экзогенной вирусной или введенной в ходе эксперимента либо эндогенной транскрибированной с собственных генов клетки дцРНК. Минимальный размер дцРНК, достаточный для индукции интерференции, - 26 п. Скорее всего, такое ограничение защищает от деградации собственную клеточную мРНК с короткими внутримолекулярными самокомплементарными структурами. Предполагают, что расщепление дцРНК у млекопитающих осуществляется последовательно с одного конца молекулы. В результате работы Dicerобразуются двухцепочечные siРНК длиной 20-25 п.
Именно такая структура необходима для участия в последующих этапах процесса, приводящего к сайленсингу РНК. Следующие стадии интерференции - распознавание и фрагментация РНК-мишени. Очевидно, именно домен PIWI обусловливает эндонуклеазную активность всего комплекса. У растений и червей может происходить амплификация siРНК. У этих организмов интерференции РНК имеет системный эффект, как следствие передачи сигнала из клетки в клетку или его доставки во все ткани организма. Такое явление называется системной супрессией. Передача дцРНК или siРНК у растений может происходить по цитоплазматическим мостикам из клетки в клетку или по системе сосудов. Эта реакция протекает с использованием энергии АТР. Такой модифицированный комплекс функционально активен. У растений и нематод существует механизм амплификации siРНК.
Механизм интерференции РНК I. В стрессовые гранулы при стрессе включается не вся клеточная мРНК: часть ее продолжает сохранять диффузное распределение в цитоплазме. По-видимому, для инкорпорации мРНК в стрессовые гранулы не нужны какие-либо специфические сигнальные последовательности, поскольку репортерная мРНК, не несущая известных сигнальных последовательностей, включается в состав стрессовых гранул. Скорее всего, специфические сигнальные последовательности нужны для исключения РНК из стрессовых гранул. Возможно, что из стрессовых гранул выводятся как раз те РНК, трансляция которых необходима при стрессе. В составе стрессовых гранул выявлены различные РНК-связывающие белки, связывающие как большинство цитоплазматических мРНК, так и специфические последовательности в определенных мРНК. Белок Staufen, входящий в состав транспортирующихся мРНП, входит и в состав стрессовых гранул в олигодендроцитах, вероятно, как «неспецифический» РНК-связывающий белок. Структурная основа стрессовых гранул не изучена, но весьма вероятно, что она состоит из прионоподобного конгломерата РНК-связывающего белка ТIА-1, обычно локализованного в ядре. Одной из первых адаптивных реакций при стрессовых воздействиях на эукариотическую клетку является изменение в системе трансляции. С одной стороны, происходит общее падение уровня синтеза белка в клетке, а с другой — активация трансляции некоторых видов мРНК.
Образование стрессовых гранул происходит одновременно с общим снижением синтеза белка. В настоящий момент принято считать, что именно ингибирование синтеза белка на стадии инициации трансляции вызывает появление стрессовых гранул в цитоплазме. В случае окислительного стресса, вызванного арсенатом, образование стрессовых гранул зависит от ингибирования инициации трансляции за счет фосфорилирования фактора еIF2. В такой ситуации формируются неканонические инициаторные комплексы, которые не могут перейти к элонгации трансляции. Каков бы ни был механизм, запускающий образование стрессовых гранул, при стрессорном воздействии первоначально диффузное распределение мРНП сменяется на локализацию в отдельных точках цитоплазмы — стрессовых гранулах. Для подобного изменения локализации необходимы значительные перемещения индивидуальных мРНП. При этом необходимо отметить, что размер мРНП достаточно велик и свободная диффузия частиц подобного размера в цитоплазме ограничена. Преодоление ограничения диффузии в клетке происходит за счет активного транспорта по цитоскелету — микротрубочкам или актиновым филаментам. Разрушение актиновых филаментов не ингибирует образование стрессовых гранул, в отличие от нарушения системы микротрубочек. Вызванная действием фармакологических агентов деполимеризация микротрубочек в клетке подавляет образование стрессовых гранул.
Восстановление микротрубочек на фоне окислительного стресса вызывает возникновение в такой клетке стрессовых гранул. Скорее всего, роль микротрубочек в формировании стрессовых гранул заключается в активном транспорте мРНП. Стрессовые гранулы способны перемещаться по клетке, и их движение подавляется при разрушении микротрубочек. Компоненты стрессовых гранул обмениваются с цитоплазмой, и этот обмен также значительно замедляется после разборки микротрубочек. Таким образом, микротрубочки необходимы для пространственного перемещения компонентов стрессовых гранул поли А -связывающего белка, фактора eIF2, белка TIA-1.
По данной гипотезе, первые репликаторы на Земле представляли собой РНК-молекулы, способные размножаться без участия белковых ферментов. Исследователи столкнулись с проблемой - как такая молекула могла появиться из предшественников, не обладающих каталитической активностью. Источник фото: Фото редакции Однако было установлено, что рибозим, способный расщеплять другие молекулы, может возникнуть спонтанно благодаря нескольким консервативным элементам. Чтобы понять, как эта функция сохранилась в процессе эволюции, исследователи разработали модель, имитирующую случайные разрывы в простых молекулах РНК.
Но долгое время было неясно, как такая молекула может появиться из предшественников, которые не могут проявлять каталитической активности.
Специалисты обнаружили, что рибозим, который помогает расщеплять другие молекулы, может появиться спонтанно, потому что для обеспечения его работы необходимы только несколько классических оснований. Но и тут оставалась проблема, как именно это свойство сохранилось во время биохимической эволюции. Чтобы в этом разобраться, ученые разработали модель, которая имитирует случайные разрывы в простых молекулах РНК без ферментативной активности.