Новости чем отличается атомная бомба от водородной

Водородные и атомные бомбы относятся к атомной энергетике. Взрыв термоядерных или водородных бомб способен вызвать яркий шар огня с температурой, сравнимой с температурой центра Солнца. Термоядерные бомбы были испытаны, но никогда не использовались в боевых действиях. Чем водородная бомба отличается от атомной?

Какая бомба мощнее: ядерная или водородная

Новость декабря — успешные испытания Северной Кореей водородной бомбы. Основное различие между атомной и водородной бомбой состоит в том, что водородная бомба управляется синтезом изотопов водорода, тогда как изотопы урана или плутония выбираются для реакции атомного деления. Момент взрыва водородной бомбы в акватории Тихого океана. Ядерная бомба — история появления ядерного оружия. Ядерная бомба — самое мощное оружие, придуманное человечеством. 2. Чем отличаются атомная, ядерная и термоядерная бомбы? Понятия «атомная» и «ядерная бомба» чаще всего взаимозаменяемы и в нашем контексте означают одно и то же: для их взрыва используется реакция деления ядер тяжёлых элементов, таких как уран или.

Ядерный взрыв — есть ли защита от атомной бомбы?

Выбрать и зарегистрировать свободное доменное имя. Заказать хостинг, выбрав подходящий тарифный план или заказать установку выделенного сервера. Заказать создание сайта у нашего специалиста. Мы можем предложить вам создание сайта любой сложности.

При расщеплении тяжелых атомов, таких, как уран или плутоний, высвобождаются нейтроны, которые могут разбивать другие атомы и вызывать цепную реакцию. Эта цепная реакция приводит к освобождению большого количества энергии и мощному взрыву. Атомные бомбы, которые уничтожили Хиросиму и Нагасаки в Японии, имели мощность от 15 до 20 тысяч тонн тротилового эквивалента.

Современное оружие способно причинить еще больше разрушений. Взрыв термоядерных или водородных бомб способен вызвать яркий шар огня с температурой, сравнимой с температурой центра Солнца. Термоядерные бомбы были испытаны, но никогда не использовались в боевых действиях. Подводный ядерный взрыв бомбы «Бэйкер» в 1946 году. Эти смерти будут вызваны пожарами и интенсивным облучением радиацией. Кто-то получит травмы от ударной волны, кто-то пострадает из-за разрушенных зданий или летящих осколков.

Большинство строений в радиусе 800 метров от эпицентра взрыва будут разрушены или сильно повреждены. Смерть также может наступить от огненной бури.

Средства доставки ядерных боеприпасов[ ] Средством доставки ядерного боеприпаса к цели может быть практически любое тяжёлое вооружение.

В частности, тактическое ядерное оружие с 1950-х годов существует в форме артиллерийских снарядов и мин — боеприпасов для ядерной артиллерии. Однако габариты многих современных ракет тяжелых РСЗО позволяют разместить в них ядерную боевую часть, аналогичный применяемому ствольной артиллерией, в то время как некоторые РСЗО, например, российский «Смерч», по дальности практически сравнялись с тактическими ракетами, другие же например, американская система MLRS способны запускать со своих установок тактические ракеты. Тактические ракеты и ракеты большей дальности являются носителями ядерного оружия.

В Договорах по ограничению вооружений в качестве средств доставки ядерного оружия рассматриваются баллистические и крылатые ракеты и самолёты. Исторически самолёты были первыми средствами доставки ядерного оружия, и именно с помощью самолётов было выполнено единственное в истории боевое ядерное бомбометание: На японский город Хиросима 6 августа 1945 года. В 08:15 местного времени самолёт B-29 «Enola Gay» под командованием полковника Пола Тиббетса, находясь на высоте более 9 км, произвёл сброс атомной бомбы «Малыш» «Little Boy» на центр Хиросимы.

Взрыватель был установлен на высоту 600 метров над поверхностью. Взрыв, эквивалентый от 13 до 18 килотонн тротила, произошёл через 45 секунд после сброса. Несмотря на такие «скромные» параметры, «примитивная» ядерная бомба «Малыш» стала самой смертоносной из двух применённых , унеся более 50 000 человеческих жизней и став символом ядерной войны.

На японский город Нагасаки 9 августа 1945 года. Взрыв произошёл в 11:02 местного времени на высоте около 500 метров. Мощность взрыва составила 21 килотонну в тротилового эквивалента.

Развитие систем ПВО и ракетного оружия выдвинуло на первый план именно ракеты как средство доставки ядерного оружия. В частности баллистические и создаваемые гиперзвуковые крылатые ракеты обладают наибольшей скоростью доставки ядерного оружия к цели. Договор СНВ-1 [8] делил все баллистические ракеты по дальности на: Межконтинентальные МБР с дальностью более 5500 км; Ракеты средней дальности — от 1000 до 5500 км; Ракеты малой дальности — от 500 до 1000 км.

Договор РСМД [9] , ликвидируя ракеты средней и меньшей от 500 до 1000 км дальности, вообще исключил из регулирования ракеты с дальностью до 500 км. В этот класс попали все тактические ракеты, и в настоящий момент такие средства доставки активно развиваются особенно в Российской Федерации. И баллистические, и крылатые ракеты могут быть размещены на подводных обычно атомных и надводных кораблях.

Кроме того, многоцелевые подводные лодки могут вооружаться торпедами и крылатыми ракетами с ядерными боевыми частями. Ядерные торпеды могут использоваться как для атаки морских целей, так и побережья противника. Так, академиком Сахаровым был предложен проект торпеды Т-15 с зарядом около 100 мегатонн.

Практически современной реализацией этой проектной идеи является торпеда «Посейдон». Кроме ядерных зарядов, доставляемых техническими носителями, существуют ранцевые боеприпасы небольшой мощности, переносимые человеком, и предназначенные для использования диверсионными группами. По назначению средства доставки ядерного оружия делятся на: тактическое, предназначенное для поражения живой силы и боевой техники противника на фронте и в тактических тылах.

К тактическому ядерному оружию обычно относят и ядерные средства поражения морских, воздушных, и космических целей; оперативно-тактическое — для уничтожения объектов противника в пределах оперативной глубины; стратегическое — для уничтожения административных, промышленных центров и иных стратегических целей в глубоком тылу противника. Ракета может быть оснащена 8 боеголовками W88 Боевой железнодорожный ракетный комплекс БЖРК 15П961 «Молодец» c межконтинентальной ракетой с ядерной боевой частью. Снят с вооружения в 1990-х годах.

В 1899 году Эрнест Резерфорд обнаруживает альфа- и бета-лучи. В 1900 г.

Ему показалось оптимальным 100 мегатонн. Советские ученые поднатужились и у них получилось вложиться в 50 мегатонн. Испытания начались на острове Новая Земля, где был военный полигон. До сих пор Царь-бомбу называют крупнейшим зарядом, взорванным на планете. Взрыв произошел в 1961 году.

Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах. А вот от водородной ракеты он поднялся на 5 километров в диаметре. Гриб из пыли, радиации и сажи вырос на 67 километров. По подсчетам ученых, его шапка в диаметре составляла сотню километров. Только представьте себе, что бы было, если бы взрыв произошел в городской черте. Современные опасности использования водородной бомбы Отличие атомной бомбы от термоядерной мы уже рассмотрели. А теперь представьте, какими бы были последствия взрыва, если бы ядерная бомба, сброшенная на Хиросиму и Нагасаки, была водородной с тематическим эквивалентом.

От Японии не осталось бы и следа. По заключениям испытаний, ученые сделали вывод о последствиях термоядерной бомбы. Некоторые думают, что водородная боеголовка является более чистой, то есть фактически не радиоактивной. Это связано с тем, что люди слышат название «водо» и недооценивают ее плачевное влияние на окружающую среду. Как мы уже разобрались, водородная боеголовка основана на огромном количестве радиоактивных веществ. Ракету без уранового заряда сделать можно, но пока на практике этого не применялось. Сам процесс будет очень сложным и затратным.

Поэтому реакция синтеза разбавляется ураном и получается огромная мощность взрыва. Они нанесут вред здоровью даже тем, кто находится в десятках тысяч километров от эпицентра. При подрыве создается огромный огненный шар. Все, что попадает в радиус его действия, уничтожается. Выжженная земля может быть необитаемой десятилетиями. На обширной территории совершенно точно ничего не вырастет. И зная силу заряда, по определенной формуле можно рассчитать теоретически зараженную площадь.

Также стоит упомянуть о таком эффекте, как ядерная зима. Это понятие даже страшнее разрушенных городов и сотен тысяч человеческих жизней. Будет уничтожено не только место сброса, но и фактически весь мир. Сначала статус обитаемой потеряет только одна территория. Но в атмосферу произойдет выброс радиоактивного вещества, которое снизит яркость солнца. Это все смешается с пылью, дымом, сажей и создаст пелену. Она разнесется по всей планете.

Урожаи на полях будут уничтожены на несколько десятилетий вперед. Такой эффект спровоцирует голод на Земле. Население сразу сократится в несколько раз.

60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США

И это изменило всю историю противостояния сверхдержав. Еще в стадии проекта она должна была стать крупнейшей ядерной бомбой в мире. И произвести такое впечатление, чтобы у противников не оставалось шансов соревноваться с советскими учеными. Американцы создавали свои ядерные бомбы, мы - свои. И мы их должны были значительно обогнать, - объясняет член-корреспондент Российской академии ракетных и артиллерийских наук, доктор военных наук Константин Сивков. Испытания ядерных бомб должно было наводить ужас на противника. Первые такие взрывы стали проводить американцы еще в 1950-е годы. Так, у США появилась бомба весом более 19 тонн. В это же время идея создать сверхмощный заряд появилась и в СССР 1956 год. Эта идея невероятно понравилась Никите Хрущеву.

Его слова о ней процитировали тогда многие мировые СМИ: «Пусть 100-мегатонная бомба висит над капиталистами, как дамоклов меч! Курировал этот проект советский ученый Игорь Курчатов. Советские ученые называли работу над «Царь-бомбой» «войной за мир». Все это было сделано для того, чтобы избежать возможных катастрофических последствий.

На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах. Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы.

Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных «осколка». В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов. Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб. Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности. Последствия взрыва.

Ударная волна и тепловой эффект. Прямое первичное воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий — это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха — туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности. Огненный шар. В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов.

Однако самое опасное хотя и вторичное последствие взрыва — это радиоактивное заражение окружающей среды. Радиоактивные осадки. Как они образуются. При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу.

Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными — в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире.

Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей. Длительное заражение местности радиоактивными осадками. В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок. При взрыве супербомбы загрязненным окажется район в десятки тысяч квадратных километров. Столь огромная площадь поражения одной-единственной бомбой делает ее совершенно новым видом оружия. Даже если супербомба не попадет в цель, то есть не поразит объект ударно-тепловым воздействием, проникающее излучение и сопровождающие взрыв радиоактивные осадки сделают окружающее пространство непригодным для обитания.

Такие осадки могут продолжаться в течение многих дней, недель и даже месяцев. В зависимости от их количества интенсивность радиации может достичь смертельно опасного уровня. Сравнительно небольшого числа супербомб достаточно, чтобы полностью покрыть крупную страну слоем смертельно опасной для всего живого радиоактивной пыли. Таким образом, создание сверхбомбы ознаменовало начало эпохи, когда стало возможным сделать непригодными для обитания целые континенты. Даже спустя длительное время после прекращения прямого воздействия радиоактивных осадков будет сохраняться опасность, обусловленная высокой радиотоксичностью таких изотопов, как стронций-90. С продуктами питания, выращенными на загрязненных этим изотопом почвах, радиоактивность будет поступать в организм человека. Общее описание [ ] Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия , так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6.

Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6. Дейтерид лития-6 - твёрдое вещество, которое позволяет хранить дейтерий обычное состояние которого в нормальных условиях - газ при обычных условиях, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития. В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Термоядерная бомба, действующая по принципу Теллера - Улама, состоит из двух ступеней: триггера и контейнера с термоядерным горючим. Устройство, испытанное США в 1952 году, фактически не являлось бомбой, а представляло собой лабораторный образец, «3-этажный дом, наполненный жидким дейтерием», выполненный в виде специальной конструкции. Советские же учёные разработали именно бомбу - законченное устройство, пригодное к практическому военному применению. Самая крупная когда-либо взорванная водородная бомба - советская 58-мегатонная «царь-бомба », взорванная 30 октября 1961 года на полигоне архипелага Новая Земля. Никита Хрущёв впоследствии публично пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, «чтобы не побить все стёкла в Москве».

Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового на урановый. Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила ; тем не менее, создание и испытание сверхбомбы имели большое политическое значение, продемонстрировав, что СССР решил задачу достижения практически любого уровня мегатоннажа ядерного арсенала. США [ ] Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом, была предложена Энрико Ферми его коллеге Эдварду Теллеру осенью 1941 года , в самом начале Манхэттенского проекта. Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь. Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам.

Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма-излучение, порождённые первичным взрывом, могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию обжатие и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма. Взрыв «Джордж» В 1951 году была проведена серия испытаний под общим наименованием Операция «Парник» англ.

Все дело в различной критической массе ядерного топлива , а также в различии процессов высвобождения энергии. В ядерной бомбе процесс начинается после детонации заряда, расположенного внутри атомной бомбы, в которой находится уран или плутоний. После мини-взрыва, который приводит к детонации, изотопы начинают распадаться, захватывая нейтроны. Начинается цепной процесс деления атомных ядер. После разрушения структуры атомов происходит ядерное возбуждение энергии с момента, когда ядерный заряд достигнет критической отметки. Это и приводит к ядерному взрыву. Водородная бомба основана на совершенно ином процессе высвобождения энергии. Для начала в водородной бомбе начинается процесс расщепления тяжелых ядер дейтерида лития-6, который распадается на тритий и гелий. И только потом происходит процесс термоядерного синтеза, что приводит к резкому нагреву боевого заряда с последующим мощнейшим взрывом. Теоретически максимальный верхний предел мощности атомной бомбы, которую люди в настоящий момент могут изготовить, составляет около 800 000 тонн в тротиловом эквиваленте. Но такую бомбу никто не делает, так как мощность в 500 000 тонн — уже вершина безумия. Кстати, ядерное топливо уран-235, который используется в атомной бомбе, делится не полностью. Например, атомная бомба, сброшенная американцами на Хиросиму, Япония, содержала 60 килограммов урана-235. Но успешному делению подверглось только 700 граммов топлива.

The nuclei put to use are extracted from highly powerful radioactive elements that can be sustained for a long time. A hydrogen bomb is formed when two light nuclei are bombarded with each other in an atmosphere of high pressure. No hydrogen bomb has been used in nuclear warfare as of now. In most countries, successful testing has been conducted. This bomb is an exaggerated version of the atomic bomb. Скачать Так будет выглядеть взрыв тактической ядерной бомбы мощностью 3 килотонны в городеСкачать Ядерная бомба за 10 минутСкачать Какая разница между ядерной и термоядерной бомбой? Скачать Водородная бомба кто и как ее придумал.. Как ответит Запад? Масштабы и шансы выживания — Ядерное оружие в 2023. Скачать Что если взорвать все атомные бомбы одновременно? Скачать Какие последствия имеет использование водородной бомбы и ядерного оружия? Использование водородной бомбы или ядерного оружия имеет катастрофические последствия для окружающей среды, живых организмов и социально-экономической сферы. Эти типы оружия обладают огромной разрушительной силой и способны нанести смертельный ущерб на огромные территории. Разрушение и радиация Одно из основных последствий использования водородной бомбы или ядерного оружия — это мгновенное разрушение инфраструктуры. Взрыв такой мощной бомбы вызывает волну ударной силы, способную снести здания и инфраструктуру на большом расстоянии от центра взрыва. Пожары, вызванные взрывом, также вносят свой вклад в разрушение городов и населенных пунктов. Однако, самое опасное последствие использования ядерного оружия — это радиация. Взрыв ядерного устройства вызывает высвобождение огромного количества радиоактивных частиц. Эти частицы могут загрязнить почву, воду и воздух, что приводит к длительному облучению окружающей среды и людей. Человеческие потери и гуманитарные последствия Использование водородной бомбы и ядерного оружия ведет к огромному количеству человеческих потерь.

Чем отличается атомная бомба от водородной

Сжатие и нагрев инициируют термоядерную реакцию, а плутониевый стержень играет роль "запальной свечи", продуцируя нейтроны для превращения лития в тритий. Металлический корпус может быть из вольфрама, и не добавляет ни энергии взрыву, ни радиоактивного заражения, а может быть из необогащённого или слабообогащённого урана, что увеличивает мощность взрыва и создаёт мощное заражение "грязная бомба" - впрочем, так именуют и радиологическую бомбу, в которой реакции деления или синтеза нет, а просто разбрасываются обычным химическим взрывом изотопы. Можно также использовать кобальт, что породит крайне радиоактивный изотоп Кобальт-60. Такая бомба предлагалась для превращения территорий в недоступные например, на советско-корейской границе во время войны в Корее , но ни использована, ни даже испытана на полигоне она не была. Нейтронная бомба - это маломощная термоядерная бомба с увеличенным нейтронным выходом по некоторым сведениям - на дейтерии и тритии, а не на дейтриде лития и без плутониевого стержня. При обычном атомном взрыве этой же мощности аналогичное расстояние будет равняться 360 м.

В обычной атомной бомбе происходит детонация находящегося внутри заряда, состоящего из изотопов урана или плутония, которые, распадаясь, выделяют огромное количество энергии. В свою очередь, в водородной бомбе энергия высвобождается в результате реакции термоядерного синтеза тяжёлого водорода — дейтерия и трития — и получения более тяжёлых элементов. Основное преимущество термоядерного оружия в том, что в отличие от атомного у него теоретически нет ограничений по мощности. Первый в мире термоядерный заряд испытали американцы.

Это произошло 1 ноября 1952 года на атолле Эниветок. Однако заокеанские учёные, не сумев создать достаточно компактную бомбу, взорвали лабораторное устройство размером с трёхэтажный дом. Также по теме Ядерный пацифизм: насколько оправданны призывы запретить атомное оружие 16 июля 1945 года Соединённые Штаты впервые в истории человечества провели испытание атомной бомбы. В 1949 году обладателем самого... Советский физик Андрей Сахаров предложил создать сферическую водородную бомбу, начинка которой состояла из слоёв урана и термоядерного горючего, окружённых взрывчатым веществом. Компактный термоядерный заряд мощностью 400 кт под названием «изделие РДС-6c» был разработан в КБ-11 в городе Арзамас-16 современный Саров Нижегородской области. Для того чтобы оценить мощность нового оружия, на полигоне построили макет населённого пункта из 190 сооружений, между которыми поместили образцы военной техники, а также около 3 тыс. Заряд подняли на стальной мачте на 30 м от земли. В результате взрыва в радиусе 4 км были снесены все кирпичные здания, а железобетонный мост, находившийся в 1 км от эпицентра, сместился на 200 м.

Советский Союз вышел в лидеры военно-технической гонки. За океаном компактный термоядерный заряд появился только в 1954 году. Значение и последствия «За восемь лет до описываемых событий произошла первая атомная бомбардировка Хиросимы и Нагасаки. Эти два города не были военными объектами, но Америка продемонстрировала свой военный арсенал, которого на тот момент не было ни у одной другой страны. Все понимали, что американские бомбардировщики, летавшие в годы Второй мировой войны над фашистской Германией, могли в условиях холодной войны полететь и в нашу сторону.

Последствия использования водородной бомбы и ядерного оружия Разрушение инфраструктуры Разрушение городов и населенных пунктов Высвобождение радиоактивных частиц и загрязнение окружающей среды Человеческие потери и травмированные люди Долгосрочные заболевания и мутации на генетическом уровне Эвакуация и вынужденное перемещение населения Разрушение медицинских и экологических систем Потеря доступа к пище и воде Гуманитарный кризис и длительное восстановление Международные соглашения и договоры, регулирующие распространение и применение водородной бомбы и ядерного оружия Развитие ядерного оружия и его потенциальная опасность привели к необходимости создания международных соглашений и договоров, направленных на регулирование распространения и применения ядерного оружия, включая водородные бомбы. Наиболее важные из этих международных документов включают в себя следующие: Договор о нераспространении ядерного оружия НДЯО Договор о нераспространении ядерного оружия был подписан в 1968 году и вступил в силу в 1970 году. Основной целью данного договора является предотвращение распространения ядерного оружия и стимулирование ядерного разоружения. Договор содержит обязательства для государств-участников в отношении нераспространения ядерного оружия, применения ядерной энергии только в мирных целях и содействия ядерному разоружению. Договор об общем запрещении ядерных испытаний ДОЗЯИ Договор об общем запрещении ядерных испытаний был подписан в 1996 году, но до сих пор не вступил в силу. Он предусматривает полный запрет на ядерные испытания, включая взрывы ядерных бомб, в любых условиях. Данный договор направлен на предотвращение развития новых видов ядерного оружия и принципиального ограничения его распространения. Международное агентство по атомной энергии МАГАТЭ также играет ключевую роль в международном регулировании ядерной энергии и проблем нераспространения ядерного оружия. МАГАТЭ контролирует использование ядерной энергии, осуществляет инспекции и поддерживает безопасность и контроль над ядерными материалами и технологиями. Эти международные соглашения и договоры имеют целью предотвратить распространение ядерного оружия и обеспечить безопасность в области использования ядерной энергии. Они закрепляют международную ответственность и обязательства государств в отношении ядерного оружия, включая водородные бомбы, и способствуют устойчивому развитию безопасных и мирных ядерных технологий. Перспективы развития и улучшения водородной бомбы и ядерного оружия 1. Увеличение мощности и эффективности Одной из главных перспектив развития водородной бомбы и ядерного оружия является увеличение их мощности и эффективности. Научные исследования позволяют разработать новые методы сжатия ядерного материала и увеличения его реакции во время взрыва. Это позволяет создать более мощные взрывы и увеличить радиус поражения. Кроме того, усовершенствования в области ракетной технологии позволяют доставлять ядерное оружие на большие расстояния и с высокой точностью. Это делает его еще более опасным и угрожающим для мировой безопасности. Развитие новых видов ядерного оружия Помимо водородной бомбы, ученые работают над разработкой и усовершенствованием других видов ядерного оружия. Например, существуют исследования по созданию так называемых «мини-ядерных бомб». Эти бомбы имеют меньший размер, но все также обладают огромной разрушительной силой.

Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества - но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны что в 450 раз больше мощности бомбы, сброшенной на Нагасаки , а в 1953 году в СССР было испытано устройство мощностью 400 килотонн. Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования.

Какая бомба мощнее: ядерная или водородная

Что произойдет после взрыва ядерной бомбы? - Hi-Tech путем ядерного синтеза.
Атомная бомба и водородная бомба это два различных типа ядерных боеприпасов, которые имеют разные принципы работы и поразительные характеристики.
В чем отличие атомной, ядерной и водородной бомб друг от друга? Принцип работы атомной и водородной бомб. Конструкция ядерного заряда.

Разница между водородной бомбой и атомной бомбой

Атомная война приведёт к превращению значительной части планеты в ядерную пустыню, а подвергшаяся ядерным ударам территория будет бесполезна для победителя из-за радиоактивного заражения. Атомной бомбой называется бомба, где используется деление изотопов урана или плутония. То есть, тяжелый атом распадается на более легкие атомы, и выделяется большое количество энергии. Атомная, водородная, термоядерная и нейтронная бомбы — в чем фактическая разница между этими видами ядерного оружия? Чем отличается ядерная бомба от атомной? Основное различие между атомной и водородной бомбой состоит в том, что водородная бомба управляется синтезом изотопов водорода, тогда как изотопы урана или плутония выбираются для реакции атомного деления. Чем отличается ядерная бомба от атомной?

Атомная бомба и водородная бомба

Водородная (термоядерная) бомба: испытания оружия массового поражения. Так работают взрывные заряды атомных бомб, а также ядерные реакторы АЭС. Что касается термоядерной реакции или термоядерного взрыва, то там ключевое место отводится совсем иному процессу, а именно – синтезу гелия. Атомная сильно слабее термоядерной бомбы, а также отличается самим процессом того, как происходит взрыв.

Термоядерная бомба: устройство. Первая термоядерная бомба. Испытание термоядерной бомбы

Атомная бомба и водородная бомба - ТЕХНОЛОГИЯ 2024 Атомная бомба — это один из видов ядерного оружия, которое базируется на процессе деления атомных ядер.
Никто не спрячется: что будет после ядерной войны? Ядерная (атомная) и термоядерная (водородная) бомбы очень похожи друг на друга. Обе бомбы являются оружием массового поражения и основываются на ядерной реакции, приводящей к высвобождению колоссальной энергии.
Водородная против атомной. Что нужно знать о ядерном оружии Атомная и водородная бомба относятся к ядерному оружию, но принцип действия у них разный.
Что такое ядерное оружие и сколько его у России. Простыми словами Вслед за "чистой водородной бомбой" в 58 мегатонн, которую сбросили с самолета над Новой Землей 30 октября 61-го, на том же Северном полигоне и в том же году испытали еще не менее десяти мощных термоядерных бомб и боеголовок мегатонного класса.

Чем отличаются обычная, ядерная, атомная, термоядерная и водородная бомбы

Чтобы понять, какая самая мощная атомная бомба на планете, узнаем обо всем подробнее. Водородные и атомные бомбы относятся к атомной энергетике. Если объединить два кусочка урана, но каждый будет иметь массу ниже критической, то этот «союз» намного превысит критическую массу. Каждый нейтрон участвует в цепной реакции, потому что расщепляет ядро и высвобождает еще 2-3 нейтрона, которые вызывают новые реакции распада. Нейтронная сила совершенно не поддается контролю человека. Меньше чем за секунду сотни миллиардов новообразованных распадов не только освобождают огромное количество энергии, но и становятся источниками сильнейшей радиации. Этот радиоактивный дождь покрывает толстым слоем землю, поля, растения и все живое. Если говорить о бедствиях в Хиросиме, то можно заметить, что 1 грамм взрывчатого вещества стал причиной гибели 200 тысяч человек. Принцип работы и преимущества вакуумной бомбы Считается, что вакуумная бомба, созданная по новейшим технологиям, может конкурировать с ядерной. Дело в том, что вместо тротила здесь используется газовое вещество, которое мощнее в несколько десятков раз. Авиационная бомба повышенной мощности - самая мощная вакуумная бомба в мире, которая не относится к ядерному оружию.

Она может уничтожить противника, но при этом не пострадают дома и техника, а продуктов распада не будет. Каков принцип ее работы? Сразу после сбрасывания с бомбардировщика срабатывает детонатор на некотором расстоянии от земли. Корпус разрушается и распыляется огромнейшее облако.

Нарастить же «силу» ядерной бомбы так быстро и легко не удастся. Зона поражения водородной бомбы в разы больше, чем радиус поражения ядерной. Только вот разработчики подобного вооружения идут на хитрость: внутри термоядерной бомбы находится ядерная не всегда , что приводит и к мощному поражению взрывом, и радиационным заражением территории. Атомная бомба внутри водородной может также использоваться для «запуска» термоядерного синтеза. Мощность советской водородной бомбы, созданной в 1961 году, превысила 58 мегатонн. Высота «ядерного гриба» составила не менее 67 км, а огненный шар от взрыва имел диаметр 4,6 км.

Облако взрыва распространилось на расстояние 800 км, а ударную волну почувствовали даже самолёты, находившиеся на расстоянии в 250 км от эпицентра взрыва. В перспективе СССР собирался создать и водородную бомбу мощностью в 100 мегатонн, но мощность итоговой конструкции уменьшили, чтобы, как сказал Никита Хрущёв «окошки в Москве не побить». Самое главное В общем, что нужно понимать? Несмотря на то, что и атомная, и водородная бомбы относятся к ядерному оружию, принцип их действия, можно сказать противоположный. В атомной бомбе происходит распад тяжёлых ядер на более лёгкие с высвобождением большого количества энергии. В водородной же термоядерной бомбе происходит синтез веществ — сверхлёгкие элементы сливаются в более тяжёлые с выделение огромного количества энергии. Сравнение бомб, сброшенных на Хиросиму и Нагасаки, Эвереста и советской царь-бомбы.

Водородная бомба самая мощная - это неоспоримый факт. Достаточно всего лишь представить, что взрыв ее равен взрывам 3000 атомных бомб в Хиросиме. Взрыв такого боеприпаса сопоставим с процессами, которые наблюдается внутри Солнца и звезд. Быстрые нейтроны с огромной скоростью расщепляют урановые оболочки самой бомбы. Выделяется не только тепло, но и радиоактивные осадки. Насчитывают до 200 изотопов. Производство такого ядерного оружия дешевле, чем атомного, а его действие может быть усилено во сколько угодно раз. Это самая мощная взорванная бомба, которую испытали в Советском Союзе 12 августа 1953 года. Последствия взрыва Результат взрыва водородной бомбы носит тройной характер. Самое первое, что происходит - наблюдается мощнейшая взрывная волна. Ее мощность зависит от высоты проводимого взрыва и типа местности, а также степени прозрачности воздуха. Могут образовываться большие огненные ураганы, которые не успокаиваются в течение нескольких часов. И все же вторичное и наиболее опасное последствие, которое может вызвать самая мощная термоядерная бомба - это радиоактивное излучение и заражение окружающей местности на длительное время. Радиоактивные остатки после взрыва водородной бомбы При взрыве огненный шар содержит в себе множество очень маленьких радиоактивных частиц, которые задерживаются в атмосферном слое земли и надолго там остаются. При соприкосновении с землей этот огненный шар создает раскаленную пыль, состоящую из частиц распада. Сначала оседает крупная, а затем более легкая, которая при помощи ветра разносится на сотни километров. Эти частицы можно разглядеть невооруженным глазом, например, такую пыль можно заметить на снегу. Она приводит к летальному исходу, если кто-либо окажется поблизости. Самые мелкие частицы могут много лет находиться в атмосфере и так «путешествовать», несколько раз облетая всю планету. Их радиоактивное излучение станет более слабым к тому моменту, когда они выпадут в виде осадков. При возникновении ядерной войны с применением водородной бомбы зараженные частицы приведут к уничтожению жизни в радиусе сотни километров от эпицентра. Если будет использоваться супербомба, тогда загрязнится территория в несколько тысяч километров, что сделает землю совершенно необитаемой.

Дьюар, в свою очередь, был покрыт слоем 238-урана весом более 5 метрических тонн, который в процессе взрыва испарялся, обеспечивая симметричное сжатие термоядерного топлива. Контейнер с первичным и вторичным зарядами был помещен в стальной корпус 80 дюймов шириной и 244 дюйма длиной со стенками в 10-12 дюймов толщиной, что было крупнейшим примером кованого изделия до того времени. Внутренняя поверхность корпуса был выстлана листами свинца и полиэтилена для отражения излучения после взрыва первичного заряда и создания плазмы, разогревающей вторичный заряд. Все устройство весило 82 тонны. Вид устройства незадолго до взрыва показан на фото ниже. Первое испытание термоядерной бомбы состоялось 31 октября 1952 г. Мощность взрыва составила 10,4 мегатонны. Аттол Эниветок, на котором он был произведен, был полностью разрушен. Момент взрыва показан на фото ниже. Из описания выше становится ясно, что американцами на Эниветоке была взорвана собственно не бомба, как вид готового к применению боеприпаса, а скорее лабораторное устройство, громоздкое и весьма несовершенное. Советские же ученые, несмотря на небольшую мощность всего 400 кг, испытали вполне законченный боеприпас с термоядерным топливом в виде твердого дейтерида лития, а не жидкого дейтерия, как у американцев. Кстати, следует отметить, что в составе дейтерида лития используется только изотоп 6 Li это связано с особенностями прохождения термоядерных реакций , а в природе он находится в смеси с изотопом 7 Li. Поэтому были построены специальные производства для разделения изотопов лития и отбора только 6 Li. Достижение предельной мощности Затем последовало десятилетие непрерывной гонки вооружений, в течение которого мощность термоядерных боеприпасов непрерывно возрастала. Наконец, 30. Этот трехступенчатый боеприпас разрабатывался на самом деле как 101,5-мегатонная бомба, но стремление снизить радиоактивное заражение территории заставило разработчиков отказаться от третьей ступени мощностью в 50 мегатонн и снизить расчетную мощность устройства до 51,5 мегатонн. При этом 1,5 мегатонны составляла мощность взрыва первичного атомного заряда, а вторая термоядерная ступень должна была дать еще 50. Реальная мощность взрыва составила до 58 мегатонн. Внешний вид бомбы показан на фото ниже. Последствия его были впечатляющими. Несмотря на весьма существенную высоту взрыва в 4000 м, невероятно яркий огненный шар нижним краем почти достиг Земли, а верхним поднялся до высоты более 4,5 км. Давление ниже точки разрыва было в шесть раз выше пикового давления при взрыве в Хиросиме. Вспышка света была настолько яркой, что ее было видно на расстоянии 1000 километров, несмотря на пасмурную погоду. Один из участников теста увидел яркую вспышку через темные очки и почувствовал последствия теплового импульса даже на расстоянии 270 км. Фото момента взрыва показано ниже. При этом было показано, что мощность термоядерного заряда действительно не имеет ограничений. Ведь достаточно было выполнить третью ступень, и расчетная мощность была бы достигнута. А ведь можно наращивать число ступеней и далее, так как вес «Царь-бомбы» составил не более 27 тонн. Вид этого устройства показан на фото ниже. После этих испытаний многим политикам и военным как в СССР, так и в США стало ясно, что наступил предел гонки ядерных вооружений и ее нужно остановить. Сегодня термоядерные бомбы России продолжают служить сдерживающим фактором для тех, кто стремится к мировой гегемонии. Будем надеяться, что они сыграют свою роль только в виде средства устрашения и никогда не будут взорваны. Однако все, что мы могли почерпнуть из предыдущего текста, говорит о взрывном характере таких процессов. Тогда почему Солнце не взрывается как термоядерная бомба? Дело в том, что ядра дейтерия сами образуются в результате слияния двух ядер водорода, да не просто слияния, а с распадом одного из протонов на нейтрон, позитрон и нейтрино т. При этом образующиеся ядра дейтерия распределены по объему солнечного ядра довольно равномерно. Поэтому при её огромных размерах и массе отдельные и редкие очаги термоядерных реакций относительно небольшой мощности как бы размазаны по всему его ядру Солнца. Выделяемого при этих реакциях тепла явно недостаточно, чтобы мгновенно выжечь весь дейтерий в Солнце, но хватает для его нагрева до температуры, обеспечивающей жизнь на Земле. В 1961 году был произведен самый мощный взрыв водородной бомбы. Утром 30 октября в 11 ч. Советский Союз провел испытание самого мощного в истории термоядерного устройства. Даже в "половинном" варианте а максимальная мощность такой бомбы составляет 100 мегатонн энергия взрыва десятикратно превышала суммарную мощность всех взрывчатых веществ, использованных всеми воюющими сторонами за годы Второй мировой войны включая атомные бомбы, сброшенные на Хиросиму и Нагасаки. Ударная волна от взрыва трижды обогнула земной шар, первый раз - за 36 ч. Световая вспышка была настолько яркой, что, несмотря на сплошную облачность, была видна даже с командного пункта в поселке Белушья Губа отдаленном от эпицентра взрыва почти на 200 км. Грибовидное облако выросло до высоты 67 км. К моменту взрыва, пока на огромном парашюте бомба медленно опускалась с высоты 10500 до расчетной точки подрыва, самолет-носитель Ту-95 с экипажем и его командиром майором Андреем Егоровичем Дурновцевым уже был в безопасной зоне. Командир возвращался на свой аэродром подполковником, Героем Советского Союза. В заброшенном поселке - 400 км от эпицентра - были порушены деревянные дома, а каменные лишились крыш, окон и дверей. На многие сотни километров от полигона в результате взрыва почти на час изменились условия прохождения радиоволн, и прекратилась радиосвязь. Бомба была разработана В. Адамским, Ю. Смирновым, А. Сахаровым, Ю. Бабаевым и Ю. Трутневым за что Сахаров был награжден третьей медалью Героя Социалистического Труда. Масса "устройства" составляла 26 тонн, для ее транспортировки и сброса использовался специально модифицированный стратегический бомбардировщик Ту-95. Сахаров, не помещалась в бомбовом отсеке самолета ее длина составляла 8 метров, а диаметр - около 2 метров , поэтому несиловую часть фюзеляжа вырезали и смонтировали специальный подъемный механизм и устройство для крепления бомбы; при этом в полете она все равно больше чем наполовину торчала наружу. Весь корпус самолета, даже лопасти его винтов, был покрыт специальной белой краской, защищающей от световой вспышки при взрыве. Такой же краской был покрыт корпус сопровождавшего самолета-лаборатории. Огненный шар разрыва достиг земли и почти достиг высоты сброса бомбы то есть, радиус огненного шара взрыва был примерно 4,5 километра. Также, ударная волна в какой-то степени сохранила разрушительную силу на расстоянии тысячи километров от эпицентра. Политическим результатом этого испытания была демонстрация Советским Союзом владения неограниченным по мощности оружием массового уничтожения -- максимальный мегатоннаж бомбы из испытанных к тому моменту США был вчетверо меньше, чем у «Царь-бомбы». В самом деле, увеличение мощности водородной бомбы достигается простым увеличением массы рабочего материала, так что, в принципе, нет никаких факторов, препятствующих созданию 100-мегатонной или 500-мегатонной водородной бомбы. На самом деле, «Царь-бомба» была рассчитана на 100-мегатонный эквивалент; планируемую мощность взрыва урезали вдвое, по словам Хрущёва, «Чтобы не разбить все стёкла в Москве». Этим испытанием Советский Союз продемонстрировал способность создать водородную бомбу любой мощности и средства доставки бомбы к точке подрыва. В недрах Солнца содержится гигантское количество водорода, находящегося в состоянии сверхвысокого сжатия при температуре ок. Атом водорода - простейший из всех существующих атомов. Тщательные исследования воды H 2 O показали, что в ней в ничтожном количестве присутствует «тяжелая» вода, содержащая «тяжелый изотоп» водорода - дейтерий 2 H. Ядро дейтерия состоит из протона и нейтрона - нейтральной частицы, по массе близкой к протону. Существует третий изотоп водорода - тритий, в ядре которого содержатся один протон и два нейтрона. Следы трития обнаружены в атмосфере Земли, где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4? Нейтроны бомбардируют вкладыш из дейтерида лития - соединения дейтерия с литием используется изотоп лития с массовым числом 6.

Какая бомба мощнее, атомная или водородная?

В чем разница между водородными бомбами и атомными? Ядерная бомба (атомная). Приводится в действие в момент взрыва из-за огромного количества энергии, выделяющейся при делении ядер. У ядерного взрыва три механизма поражения: ударная волна, вспышка видимого и инфракрасного излучения и гамма-излучение. Чем отличается ядерная бомба от атомной? Принцип работы атомной и водородной бомб. Конструкция ядерного заряда.

Сборник ответов на ваши вопросы

Радиоактивные элементы соединены плотно вместе так же, как ядерное деление, вызывающее ядерный синтез. По продукту атомная бомба производит высокорадиоактивные частицы после того, как энергия была выпущена, когда радиоактивные частицы водородной бомбы запускаются после взрыва. Мы с уверенностью можем представить себе масштабы разрушений как для атомной бомбы, так и для водородной бомбы, просто напомнив о бомбардировке Хиросимы и Нагасаки в 1945 году. На сегодняшний день никаких записей о бомбах ядерного слияния, используемых для военных действий, не было, хотя правительственные программы обороны провели значительные исследования в таких возможности производства. Чтобы суммировать разницу между атомной и водородной бомбой, ниже приводятся: 1. Водородная бомба считается «модернизированной» версией атомной бомбы 2. Атомная бомба работает путем ядерного деления, а водородная бомба - путем ядерного синтеза. По понятию водородная бомба состоит из нескольких атомных бомб 4.

Основная схема для современных бомб более сложна, и включает в себя металлический цилиндр, в котором находится стержень из дейтрида лития с плутониевым сердечником, окружённый слоем пластмассы.

Сбоку от цилиндра находится атомная бомба-"триггер", причём дейтрид лития прикрыт металлической крышкой. Взрыв бомбы приводит к испарению пластмассы, давление которой сжимает дейтрид лития в 1000 раз, а плутониевый стержень примерно вчетверо. Сжатие и нагрев инициируют термоядерную реакцию, а плутониевый стержень играет роль "запальной свечи", продуцируя нейтроны для превращения лития в тритий. Металлический корпус может быть из вольфрама, и не добавляет ни энергии взрыву, ни радиоактивного заражения, а может быть из необогащённого или слабообогащённого урана, что увеличивает мощность взрыва и создаёт мощное заражение "грязная бомба" - впрочем, так именуют и радиологическую бомбу, в которой реакции деления или синтеза нет, а просто разбрасываются обычным химическим взрывом изотопы. Можно также использовать кобальт, что породит крайне радиоактивный изотоп Кобальт-60.

Самая успешная модель термоядерной бомбы состоит из слоёв обедненного урана или плутония, дейтерида лития, и газообразного дейтерия. Для запуска термоядерного синтеза требуется невообразимая температура и давление для слияния ядер дейтерия и лития, которые являются первоначальным топливом, требуется температура выше, чем в ядре Солнца. Такие условия могут быть созданы при подрыве ядерного заряда и некоторого каскада реакций, которые я не буду описывать. В результате начинается реакция слияния с выделением трития, который ещё лучше подходит для термоядерных реакций, также выделяется дополнительно литий, гелий и ещё больше энергии, чем при делении ядер.

Большинство строений в радиусе 800 метров от эпицентра взрыва будут разрушены или сильно повреждены. Смерть также может наступить от огненной бури. В Хиросиме, например, она охватила 11,4 квадратных километра. Выжившим в районе взрыва не смогут оказать помощь, поскольку попасть в зону бедствия будет сложно из-за высокой радиации. Сами пострадавшие будут нести на себе радиоактивную пыль. Радиоактивные осадки Бомбы, сброшенные на Японию, вызвали локальные радиоактивные осадки. Современное термоядерное оружие выбрасывает радиоактивный материал высоко в стратосферу, что может привести к осадкам по всему миру. Макет бомбы «Малыш», сброшенной на Хиросиму. Источник: U. National Archives Риск радиоактивных осадков наиболее высок в течение 48 часов после взрыва. За это время область, которая первоначально подвергалась воздействию 1000 рентген в час, будет подвергаться только 10 рентгенам в час.

Сборник ответов на ваши вопросы

Атомной бомбой называется бомба, где используется деление изотопов урана или плутония. То есть, тяжелый атом распадается на более легкие атомы, и выделяется большое количество энергии. Бомба атомная — синоним бомбы ядерной, бомба водородная — термоядерной. Момент взрыва водородной бомбы в акватории Тихого океана. Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. Гораздо более мощная водородная бомба (термоядерная бомба), впервые испытанная в 1952 г., состоит из атомной бомбы, которая во время взрыва создает температуру, достаточно высокую для того, чтобы вызвать ядерный синтез в близлежащем твердом слое, обычно. Ядерная (атомная) и термоядерная (водородная) бомбы очень похожи друг на друга. Обе бомбы являются оружием массового поражения и основываются на ядерной реакции, приводящей к высвобождению колоссальной энергии.

Похожие новости:

Оцените статью
Добавить комментарий