Стандартная реакция термоядерного синтеза T + D ---> He 4 + n+ 17.6 МэВ. Поступили новости о том, что американским ученым из Национальной лаборатории Лоуренса удалось повторить термоядерный синтез, высвободив больше энергии, чем было затрачено на запуск реакции. Холодный ядерный синтез: истории из жизни, советы, новости. теоретически возможный способ простого и дешёвого получения огромных количеств экологически чистой энергии. Что подпитывает шумиху вокруг коммерческого термоядерного синтеза? Академик Роберт Нигматулин поясняет: «Вообще-то неправильно называть пузырьковый термояд разновидностью «холодного термоядерного синтеза».
Разжечь Солнце на Земле. Россия первой запустит полноценный термоядерный реактор
Холодный ядерный синтез. L E N R | в направлении коммерческого применения холодного синтеза, самые сенсационные новости об этой технологии пришли из Америки. Американские ученые повторили прорыв в области термоядерного синтеза. |
Холодный синтез: миф и реальность | Хотя об этом еще не было объявлено публично, эта новость быстро распространилась среди физиков и других ученых, изучающих термоядерный синтез. |
Холодный ядерный синтез | Главная» Новости» Симпозиум по термоядерному синтезу 2024. |
Холодный ядерный синтез перестал быть лженаукой в ЕС
В Хэфэе испытывали такомак EAST, который представляет собой модификацию установки, созданной в 90-х годах при сотрудничестве с Россией. В запущенном в Китае реакторе термоядерного синтеза использовалось достижение российских ученых, создавших устройство, отслеживающее температуру плазмы. Как рассказал «Звезде» научный сотрудник частного учреждения Государственной корпорации по атомной энергии «Росатом» «Проектный центр ИТЭР» Кирилл Артемьев, речь идет об алмазном детекторе. Плазма просто так долго держаться не может, ее различными методами дополнительно нагревают», - пояснил суть работы устройства ученый.
Скорей всего, термоядерный реактор будет построен на базе классического токамака. Но для сферических токамаков может найтись своя ниша, а их коммерческое применение может начаться гораздо раньше. Гибридные технологии Как выяснилось, мало нашим физикам-ядерщикам сферической модернизации термоядерного реактора. Сейчас, по словам Минаева, в нашей стране параллельно запускается процесс разработки и создания гибридной электростанции, основанной на термоядерной и ядерной технологиях. Это позволит эффективней удерживать плазму? Мы хотим за счет термоядерных технологий решить проблему с «замыканием» ядерного топливного цикла.
Представляете, мы сможем нарабатывать искусственное топливо для атомных реакторов, получать в реакторе энергию, а после дожигать отработанное топливо до безопасного состояния, чего раньше никогда не было. До сих пор мы просто захоранивали ядерные отходы, накапливая их. В целом новая гибридная атомная станция будет значительно безопасней и экологичней. Отсутствие большого количества опасных отходов также позволит повысить экспортный потенциал нашей атомной промышленности. Развивая эту технологию, мы оставим своим потомкам более чистую планету, без залежей ядерных отходов. Мы будем использовать термоядерный реактор как мощный источник нейтронов для получения ядерного топлива. При этом параметры плазмы в таком термоядерном источнике нейтронов могут быть существенно ниже, чем в чисто термоядерном энергетическом реакторе, а размеры — существенно меньше, чем у того же ИТЕРа. Следовательно, такой реактор-источник будет значительно дешевле. Но самое главное: реализация гибридной концепции позволит существенно сократить время, требующееся для внедрения уже наработанных термоядерных технологий в коммерческий оборот.
Существует еще и открытый тип реактора — зеркальные ловушки, или, образно говоря, «магнитные бутылки», имеющие на концах магнитные «пробки» или магнитные «зеркала». На концах такого реактора, возле «пробок», магнитное поле сильное, в центре — слабее. Частицы плазмы привязаны к силовым линиям магнитного поля и движутся от одной «пробки» к другой, каждый раз отражаясь от них. Конструкция такого реактора получается более простой, а значит, дешевой и легкой в сборке. Такая зеркальная ловушка, модель будущего реактора открытого типа, есть в новосибирском Институте ядерной физики им. Она считается лучшей установкой такого типа в мире: среди них ей принадлежит рекорд по температуре -10 миллионов градусов. Но на этом новосибирцы останавливаться не намерены. В планах — скрестить открытую ловушку с ядерным реактором, сделать технологию гибридной о подобной технологии мы писали выше. Еще одна очень интересная технология.
Этот проект, который, если все пойдет по плану, может значительно улучшить имидж атомной энергетики, который несколько пострадал после аварии на Фукусиме. Никаких нейтронов, загрязняющих окружающую среду, при этом нет — только чистая энергия. Правда, протон и бор идут на сближение еще труднее, чем дейтерий с тритием, а потому платой за явные преимущества их «союза» является гораздо более высокая температура зажигания реакции — миллиард градусов Цельсия.
Итак, ХЯС на основе мюонного катализа подтвержден корифеями ядерной физики экспериментально 60 лет назад. Единственный маааленький недостаток этого реально наблюдаемого синтеза — использование ускорителя резко снижает общий КПД: полученная энергия намного меньше затраченной. Одновременно у разных исследователей появилась идея заменить ускоритель совершенно бесплатными природными мезонами. Помимо вполне реального механизма мюонного катализа за последние три десятилетия неоднократно появлялись сообщения об успешной демонстрации холодного синтеза в условиях взаимодействия ядер изотопов водорода внутри металлической матрицы или на поверхности твёрдого тела. Например, были надежды, что в твердых телах из-за электронного окружения отталкивание будет слабее. Или в сонолюминесценции --- ультразвуком можно в жидкости родить микропузырьки, которые настолько малы, что будут схлопываться. В процессе схлопывания скорости могут быть сильно сверхзвуковыми.
Жидкость начинает светиться. Или если крошить кристаллы, то возникают высокие напряжения, ускоряющие поглощенные в кристаллах дейтерий и тритий. Первые сообщения такого рода были связаны с именами маститых электрохимиков не физиков Флейшмана и Понса, которые много лет изучали особенности электролиза тяжёлой воды в установке с палладиевым катодом. На протяжении последних десятка лет поиски условий протекания «холодного синтеза» сдвинулись от электрохимических опытов и электрического разогрева образцов к «сухим» экспериментам, в которых осуществляется проникновение ядер дейтерия в кристаллическую структуру металлов переходных элементов — палладия, никеля, платины. Эти опыты относительно просты и представляются более воспроизводимыми, чем ранее упомянутые. В отличие от столкновения «голых» ядер в горячей плазме, где энергия столкновения должна преодолеть кулоновский барьер, при проникновении ядра дейтерия в кристаллическую решётку металла кулоновский барьер между ядрами модифицируется экранирующим действием электронов атомных оболочек и электронами проводимости. Обращает внимание также «рыхлость» ядра дейтрона, объём которого в 125 раз превышает объём протона. Электрон атома в нижнем, невозбужденном S-состоянии имеет высокую вероятность оказаться внутри ядра, что приводит к эффективному исчезновению заряда ядра, которое в этом случае иногда называют «динейтроном». Можно говорить о том, что атом дейтерия вообще какую-то часть времени находится в таком «свёрнутом» нейтральном состоянии, в котором он способен проникать в другие ядра — в том числе в ядро другого дейтрона. Дополнительным фактором, влияющим на вероятность сближения ядер в кристаллической решетке, служат колебания и ударные, а также термические волны Введение.
Исходная посылка: предполагаем, что из уже имеющихся законов природы и свойств материалов можно сложить новый пазл и получить ХЯС. Потому, что ничто другое проверить невозможно. Мы НЕ претендовали на открытие новых законов природы это дело фундаментальной физики , а также Святого Духа, Всемирного Разума и т. Азы которой все присутствующие проходили в школе, а некоторые изучали более глубоко в вузе. Это т. Но при этом, если явление имеет место быть, мы должны обязательно его следы обнаружить, даже если ХЯС связан с какими-либо потусторонними силами. Мы были практически уверены в успехе, так как пришли к обоюдному согласию, что давно открытый ядерной физикой мюонный катализ уже и есть в чистом виде ХЯС. От этой «печки» и решили танцевать, так как при этой гипотезе аппаратура для эксперимента от исходной модели не зависит, просто мы несколько усложняем себе жизнь, делая аппаратуру портативной и спускаясь с ней под землю. Общие положения. Эксперименты на ускорителях по синтезу различных элементов показали, что эффективные поперечные сечения реакций ХЯС зависят от того, в каком материале размещены ядра частицы-мишени.
В этих экспериментах наблюдалось существенное увеличение вероятности взаимодействия в тех случаях, когда ядра мишени внедрены или являются частью проводящего кристалла. Эти опыты позволяют совершенно по-новому взглянуть на проблему ХЯС. Это может означать, что в кристалле платины атомы дейтерия не испытывают кулоновского отталкивания до расстояний, в 25 раз меньших, чем размер самих атомов дейтерия. В последнем случае мюон как удавка сразу для двух висельников стягивает дейтоны до критически малого расстояния. Процесс DD-синтеза в кристалле можно рассматривать на основе представления о квазимолекуле дейтерия, захваченной в одну кристаллическую ячейку. Скорость ядерного синтеза в такой системе равна проницаемости барьера, умноженной на частоту колебаний квазимолекулы: Корректный расчет частоты колебаний такой системы в реальном потенциале кристаллической ячейки — довольно сложная задача. В таблице приводятся экспериментальные оценки скорости реакции DD-синтеза на основе такого подхода для кристаллов палладия, кобальта и платины.
Освобождаясь после акта реакции, мюоны могут повторить этот процесс т. Но эта величина все же меньше, чем энергетические затраты на производство самого мюона 5-10 ГэВ. Таким ообразом мюонный катализ пока энергетичеки невыгодный процесс. Другое дело, что «мюонный катализ» нерентабелен. Что касается множества других притязаний на реализацию «холодного синтеза», то, насколько мне известно, это всё были ошибки экспериментов — в ряде случаев это были ошибки добросовестные, но, несомненно, были и аферы. Ставки очень высоки — переворот в энергетике, гарантированная Нобелевская премия, геополитические изменения в мире и т. Потому к подобным заявлениям в СМИ профессионалы относятся с естественным привычным недоверием».
Холодный ядерный синтез — научная сенсация или фарс?
Следует понимать, что холодный ядерный синтез на настольных аппаратах не только возможен, но и осуществлен, причем в нескольких версиях. В Китае на несколько часов запустили реактор термоядерного синтеза, или так называемую установку токамак. Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике. Проблемы термояда обсудили на 50‑й Международной конференции по физике плазмы и управляемому термоядерному синтезу в Звенигороде 20–24 марта. «Холодный термоядерный синтез» пользуется у физиков той же репутацией, что и вечный двигатель, машина времени и прочие экспериментально недоказанные или недоказуемые, гипотетические приспособления, которые идут вразрез с законами физики и химии. Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа.
Российские физики рассказали о приручении термоядерного синтеза
Оба положительно заряжены и друг от друга, естественно, отталкиваются. Но физики народ упрямый — им надо во что бы то ни стало их объединить, принудительно разогнать до сверхскоростей при высочайшей температуре и сблизить настолько, чтобы было преодолено электростатическое отталкивание. Тогда и возникнет ядерная реакция с выделением энергии. Атомы трития и дейтерия ионизируются и образуют плазму, которую до определенного времени нужно поддерживать в активном состоянии при очень высоких температурах, измеряемых в сотнях миллионов градусов, а в идеале прийти к тому, что реакция будет энергетически поддерживать саму себя. Цель — получить «положительный выход», чтобы выделившейся энергии в итоге оказалось больше, чем вы получили от розетки на разогрев той самой плазмы. Реактор должен дать больше, чем взял. И этого до сих пор, за десятки лет работы ядерщиков, не достиг еще никто ни в одной стране мира. Токамак или дырка от бублика? Ученые постоянно находятся в поиске.
Возьмем, к примеру, изобретенный в России самый традиционный способ получения плазмы — в устройстве под названием токамак тороидальная, или бубликообразная, камера с магнитными катушками. Кстати, слово «токамак» — это один из немногих русизмов, уже вошедший в обиход ученых всего мира. Плазма в этом реакторе удерживается в торе магнитным полем, не контактируя с материальной стенкой. По принципу токамака с начала 90-х годов прошлого века создается самый большой термоядерный реактор в мире — IТER. Огромное площадью около 1 квадратного километра сооружение на окраине французского города Кадараш стоит почти 20 миллиардов долларов. Россия вносит 10 процентов от этой суммы, но не деньгами. Мы, к примеру, создаем устройства для нагрева плазмы, магнитную систему и прочие необходимые компоненты этого реактора. Несмотря на большие вложенные средства, самый большой проект, за который многие уже успели получить премии, до сих пор не реализован.
Все чаще всплывают какие-то дополнительные проблемы и переносятся сроки запуска. Невольно возникает крамольная мысль: «А может, ученые сговорились и просто обманывают всех? Термоядерная гонка Для того чтобы понять степень сложности проблемы, мы обратились к специалисту — ведущему научному сотруднику Физико-технического института им. В дальнейшем ученые постоянно совершенствовали конструкцию токамаков, улучшая параметры удерживаемой в них плазмы примерно на порядок каждое последующее десятилетие. При этом токамаки неизменно увеличивались в размерах. Наш Т-15, увы, так по-настоящему и не заработал. Погубили его... Не сами по себе — причина тут чисто экономическая: для охлаждения сверхпроводников нужно было много жидкого гелия, который в то сложное время оказался слишком дорог для российских ученых.
Сегодня вместо Т-15 строится новый токамак, без сверхпроводников, который обещают запустить в ближайшее время. В Великобритании и США же тем временем получили плазму с рекордными параметрами и провели первые эксперименты с использованием дейтерия и трития.
Самый большой в мире экспериментальный термоядерный реактор сейчас строится на юге Франции. На связь оттуда вышел генеральный директор проекта. На совещании глава правительства обсудил с российскими учеными федеральную программу развития синхротронных и нейтронных исследований. До 2027 года на нее предусмотрено выделить 138 миллиардов рублей. В рамках программы Курчатовский институт создает по стране целую сеть мегаустановок нового уровня. Россия была абсолютно самодостаточна. Мы производили все сами, все компоненты от начала до конца. И сейчас у нас это есть, но это требуется перевести на современный уровень», — отметил президент НИЦ «Курчатовский институт» Михаил Ковальчук.
План по модернизации прорабатывается, и глава правительства призвал ученых присоединиться к этой работе. Сами же подобные установки призваны сделать научные прорывы во всевозможных сферах: от медицины и сельского хозяйства до генетики и космоса.
Разговоры о нем идут уже не одно десятилетие, и, судя по всему, его использование может начаться совсем скоро, считает автор статьи. Он взял интервью у ряда экспертов, чтобы узнать, способны ли термоядерные реакции обеспечить электроэнергией весь мир. Большинство исследований в этой области сосредоточено на другом подходе — так называемом синтезе с магнитным удержанием. При нем водородное топливо удерживается на месте мощными магнитами и нагревается настолько, что атомные ядра сливаются.
Исторически эти исследования вели крупные государственные лаборатории формата ДЖЭТа или Объединенного европейского токамака в Оксфорде, но в последние годы инвестиции хлынули и в частные компании, которые сулят выработать термоядерную энергию уже в 2030-х. По данным Ассоциации термоядерного синтеза, за год до конца июня компании из этой области привлекли 2,83 миллиарда долларов инвестиций, в результате чего общий объем инвестиций частного сектора на сегодняшний день достиг почти 4,9 миллиарда. Николас Хоукер, исполнительный директор стартапа First Light Fusion из Оксфорда, чей подход аналогичен Ливерморской национальной лаборатории, назвал это событие прорывным. Статья написана при участии Дэвида Шеппарда и Дерека Брауэра.
Однако, разумеется, такие реакции могут генерировать гораздо больше энергии, чем им требуется — и Солнце тому прямое подтверждение. Также немаловажный плюс термоядерного синтеза — полное отсутствие вредных отходов. Не производятся парниковые газы, не загрязняется атмосфера, не нужно утилизировать радиоактивное топливо, и даже при аварии ничего серьезнее выброса водорода в атмосферу, который и является топливом для термоядерного реактора, не будет. При этом термоядерный синтез может быть настолько эффективным, что текущих запасов водорода на Земле хватит, чтобы удовлетворить все потребности человечества в энергии на миллионы лет вперед. Нам нужно решение проблемы глобального потепления — иначе цивилизация окажется в беде.
Похоже, переход на термоядерную электроэнергетику может помочь исправить ситуацию». Слева — простейшая реакция термоядерного синтеза с использованием дейтерия и трития тяжелого водорода. Справа — схема токамака. В большинстве экспериментальных термоядерных реакторов используется советская конструкция в форме пончика, называемая токамаком. В такой установке используются мощные магнитные поля, чтобы удерживать облако плазмы или ионизированного газа при экстремальных температурах, достаточно высоких, чтобы атомы могли сливаться вместе.
Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака
У России появился шанс вновь стать лидером в освоении термоядерного синтеза. Почему научные группы, финансируемые Google и фондами США и Канады, не смогли получить реакции холодного ядерного синтеза ни одним из известных способов. Но больше всего меня интересовал холодный ядерный синтез, так как он может стать великим научным открытием, в том числе и для промышленности. в направлении коммерческого применения холодного синтеза, самые сенсационные новости об этой технологии пришли из Америки. Американские ученые повторили прорыв в области термоядерного синтеза. Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность. Если весь этот изотоп использовать в термоядерном реакторе, выделится столько же энергии, как при сжигании 300 л бензина.
Физики вносят ясность
- Другие новости
- Популярное
- Украина. Генератор Росси. Термоядерный, холодный синтез. Теория, технология.
- Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака
- Холодный ядерный синтез перестал быть лженаукой в ЕС
Компактные термоядерные реакторы: прорыв или просчёт?
Но созданный холодный термоядерный синтез своими руками Иван Степанович Филимоненко отказался устанавливать в подземных городах-убежищах для партийных руководителей страны. Ядерный синтез (часто говорят «термоядерный синтез») — это реакция, в которой легкие ядра при столкновении объединяются в одно тяжелое ядро. Если весь этот изотоп использовать в термоядерном реакторе, выделится столько же энергии, как при сжигании 300 л бензина. Следует понимать, что холодный ядерный синтез на настольных аппаратах не только возможен, но и осуществлен, причем в нескольких версиях.
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER
Россия это уникальная страна и наш подход ко всему должен быть интуитивным. Умом Россию не понять аршином длинным не измерить,в Россия только нужно верить. Никто из разумных не даст опасную бритву в колыбель ребёнку, даже если очень хочется. А, поскольку Истина открывается каждому по уровню его сознания, то нет и не может быть единого общего мнения, что ею является. Нужны условия… Пока Люди не поймут, что каждый должен жить для каждого, а мысли и идеи, порождаемые сознанием это источник и основа реальности физического мира, они уподобляются дикарям, которые будут жить соответственно. Извините за прямоту. Вращение, плюс должен быть в центре , даст огромную температуру в самом центре. В начале синтеза появляется лидер, который в свою очередь заставит соседей сделать тоже самое. Но резкое повышение температуры спровоцирует взрывную волну, которая разбросает атомы которые были на грани превращения, разлетятся не вступив в реакцию.
Вот для чего нужно давление. Представте грузовик полный гранат, если одна взорвется, взорвутся и еще несколько по соседству, остальные просто раскидает взрывная волна. А если их придавить чтоб не разлетелись вот тогда мы получим то что хотим! Лет 7 -8 назад при докладе Кириленко президенту. Он похвастался успешным завершением работ по холодному ядерному синтезу. После этого Киреленко практически не видно на экранах телевизора. Так что я спокоен и думаю, что технология уже отработана и находится под секретом. Скоро узнаем, может быть.
Гексагональная кристаллическая решётка никеля поглощает атом водорода. Под действием температуры внутреннее пространство решётки уменьшается. Атом водорода поглощает энергию и превращается в нейтрон. Нейтрон сливается с атомом никеля. Образуется изотоп.
Кстати, Мартин Флейшман и Стэнли Понс признавали приоритет группы Бориса Дерягина в получении реакций холодного ядерного синтеза, полученных при раскалывании дейтерированного льда в 1986 году. Но обо всём по порядку. Для начала попробуем разобраться, почему же «группе Google» не удалось запустить холодный ядерный синтез при использовании трёх, казалось бы, классических способов, которые были неоднократно воспроизведены за прошедшие 30 лет и основные условия воспроизводимости результатов для которых были давно установлены. За разъяснением причин этого мы обратились к известному российскому исследователю холодного ядерного синтеза ведущему технологу Института геологии и минералогии СО РАН имени академика В. Соболева, доктору геолого-минералогических наук, член-корреспонденту РАЕН Виталию Алексеевичу Киркинскому о результатах собственных многолетних исследований В. Этот метод можно использовать, если интенсивность ядерных реакций — высокая, на несколько порядков выше, чем при обнаружении продуктов синтеза. Достижение такой интенсивности — значительно более сложная задача. Мартин Флейшман и Стэнли Понс и большинство их последователей при калориметрических измерениях не всегда получали положительные результаты. Выход избыточной энергии происходил спорадически и зависел, в частности, от используемого палладия, поставляемого разными фирмами. Как было выяснено позже, положительное влияние на выход тепла оказывает присутствие некоторых примесей, например бора, и ряд других факторов. Даже при благоприятных условиях при работе с катодами малой площади интегральный коэффициент преобразования энергии был мал, что требовало высокой точности измерений. В ряде экспериментов, проведенных квалифицированными электрохимиками, в растворах на основе тяжелой воды наблюдались всплески нейтронного излучения и выделение избыточной энергии мощностью до нескольких ватт, в то время как в совершенно аналогичных условиях при использовании растворов с обычной водой никакого дополнительного тепловыделения не происходило. Ни в одном из проверочных опытов в статье в Nature не определялся гелий и его изотопный состав — непосредственный продукт ядерного синтеза. Было надежно подтверждено выделение избыточного тепла и его корреляция с выходом трития и гелия.
И его можно использовать для бомбардировки и осаждения на поверхность металла, такого как титан. Когда кристаллическая решётка металла оказывается заполнена, часть дейтерия начинает вступать в реакцию синтеза. Этот процесс называется синтезом твёрдого тела. И его используют для производства нейтронов в лаборатории. Металл помогает уменьшить кулоновский барьер и облегчает процесс синтеза. Однако в этом случае скорость синтеза крайне низка. А количество вводимой энергии значительно превышает количество получаемой на выходе. На самом деле учёные считают, что, возможно, другие типы металлов будут иметь ещё более низкий кулоновский барьер. У исследователей Мартина Флейшманна и Стэнли Понса однажды возникла подобная идея. И они выбрали палладий в качестве металла-катализатора. И это сработало! Исследователи сообщили всему миру о производстве избыточного тепла. И даже некоторых побочных продуктов синтеза! К сожалению, ни одна другая лаборатория не смогла воспроизвести этот эксперимент. И это погасило бушующее пламя сенсации — холодного синтеза с положительным выходом энергии. Никто так и не смог объяснить, почему один раз это сработало, а в другие — нет. Отбросьте глупые амбиции! После стольких лет неудачных исследований холодный синтез начал приобретать плохую репутацию. Как для себя, так и для всех, кто им занимался. Это направление исследований стали рассматривать как лженауку. Как что-то, что никогда не может быть достигнуто. Что-то, что никогда не будет надёжным источником энергии. Это создало своеобразную репутационную ловушку.
Но с новой технологией холодного синтеза каждая страна встанет на почти одинаковый уровень, потому что к этой энергии будет доступ у каждого. И это сильно изменит мир. Это похоже на то, как появилсяинтернет 30 лет назад. Никто себе даже не мог представить то, что мы имеем сейчас, например, телевизор в маленьком смартфоне. Поэтому мы не знаем, куда нас приведет холодный синтез. Но я уверен, что грядут сильные изменения. Этот проект так долго не запускался, потому что все были против. Тем, кто делает деньги на нефти, газе, ядерной энергетике, не нужен конкурент. Но холодный синтез все равно появится. Это неизбежно, так как открытия делаются не по плану, не предсказуемо. И в данном случае интернет — отличный пример. Потому что, когда интернет появился, не было никакого контроля, можно было делать всё что хочешь. Сейчас его пытаются контролировать, потому что осознали его потенциальные возможности. И то же самое произойдет с холодным синтезом. Когда эта энергия будет получена, это изменит всё. У вас, например, будет дом с собственным электричеством, обогревательной и охлаждающей системой. Источник всего этого будет спрятан в одну коробку. И то же самое с энергией для машин, фабрик и заводов. Мы забудем о проводах. Возможно, будет некая энергетическая сеть для обмена энергией от одного дома к другому. Это произойдёт, когда мы осознаем, что наука, а не евро — центр всего. На данный момент проведено огромное количество экспериментов. Некоторые из них очень сложные. Но есть и простые. Я сам демонстрировал такой простой эксперимент. Мы берем кусок палладия, направляем на него лазерный луч и видим, что вместо палладия появляется что-то еще — уже нет палладия, есть железо, никель, цинк, кислород, азот, алюминий, кальций. Всех этих элементов ведь не было в этом куске. Но вы видите превращение своими собственными глазами. И каждый может это сделать. Есть такая поговорка: «Наука движется вперед рывками: от похорон к похоронам». Это на самом деле так. Люди — ученые — неохотно меняют свою точку зрения. Они умирают, но им на смену приходят молодые, с новым духом. Именно они могут делать прорыв в науке. Для этого требуется время. Революция не происходит в один день.