Новости теория суперсимметрии

Знаменитая теория Суперсимметрии, объясняющая основы мироздания, не нашла подтверждения в ходе исследований в Европейском центре ядерных исследований (ЦЕРН). Суперсимметрия доминировала над физикой частиц десятилетиями, и исключила почти все альтернативные физические теории, выходившие за рамки СМ. му же, в этом случае у нас исчезают расходимости в первом порядке теории возмущений, что тоже является одним из плюсов суперсимметрии.

СУПЕРСИММЕТРИЯ

Прелестный кварк обычно переходит в очарованный кварк, но в редких случаях может превращаться и в верхний кварк. Это могло стать расширением для стандартной модели, - объясняет сатклифф. В выводах, опубликованных в журнале Nature Physics, измерения не показали никакого правостороннего вращения. В конечном счете ученые получили результат, который был в соответствии со стандартной моделью: прелестный кварк распадается только на верхний кварк, если имеет левосторонний спин. Это удар по суперсимметрии, который, однако, не сбрасывает теорию со счетов. И тот факт, что ученые смогли проделать такие измерения а ранее они казались слишком сложными , впечатляет.

Таким образом, суперпространство является умозрительной вспомогательной структурой, которая позволяет максимально просто и ясно реализовать на ней суперсимметрию. Существуют и теории с настоящими бозонными дополнительными измерениями — суперпространства с 10 бозонными координатами, и еще более сложные теории с 11-мерным пространством. Эти дополнительные бозонные измерения которые не наблюдаются при энергиях, достижимых на настоящий момент необходимы для согласованности теории суперструн на квантовом уровне. Функции, заданные в суперпространстве суперполя , в разложении по грассмановым переменным дают автоматически все поля, которые объединяются в супермультиплеты. Вскоре после открытия суперсимметрии выяснилось, что простые суперпространства не в полной мере отвечают теории суперструн и ее низкоэнергетическим пределам, и нужно вводить расширенные суперпространства, где грассмановы координаты имеют внутренний индекс, а потому преобразуются еще и по внутренней симметрии. Для описания таких расширенных суперпространств наиболее естественным и простым образом необходимо, кроме пространственных координат и грассмановых переменных, ввести дополнительные координаты, а именно т. Гармоническое суперпространство было открыто в Дубне коллективом авторов. На сегодняшний день понятие гармонического суперпространства стало общепринятым в математической физике. Оно оказалось незаменимым для изучения суперсимметричных калибровочных теорий и особенно — их квантовых свойств, в пространствах с разным количеством измерений от четырех до десяти. Для изучения структуры суперструн необходимо в полной мере понимать все теоретико-полевые пределы этой теории. Определенный этап работ закончен, но сейчас возникает множество новых задач, которыми мы продолжаем заниматься. Результаты конкретных вычислений в рамках теории суперструн в итоге позволят найти связи между наблюдаемыми константами взаимодействия в природе», — заключил Евгений Иванов. Труды авторов имеют высокую цитируемость.

Также мы начали работу по сооружению нейтринного эксперимента следующего поколения, названного LBNF , что в переводе на русский означает «Нейтринный эксперимент с большой базой». Стандартная модель сейчас более или менее оформилась. Когда построили LHC, перед физиками стояло две задачи — найти бозон Хиггса его нашли и подтвердить, что существует суперсимметрия. Вторая задача была, пожалуй, основной. Суперсимметрия, казалось бы, объясняет многое в физике элементарных частиц. Но проблема в том, что ничего из того, что предсказали теоретики, в эксперименте не обнаружилось. Поэтому сейчас мы наблюдаем «кризис суперсимметрии». Несмотря на большое количество идей и публикаций, никто не знает, существует ли суперсимметрия и если да, то где ее искать. Может быть, необходима энергия в 10 раз большая, чем на LHC, а может быть — в 100 раз, а может быть, суперсимметрии вообще не существует. В конце 1990-х выяснилось, что у разных типов нейтрино разные массы. В действительности это высказывание не очень аккуратно. Более аккуратно физики говорят, что каждый тип нейтрино электронное, мюонное и тау представлен квантово-механической смесью трех массовых состояний — или, упрощая, смесью трех частиц. Мы пытаемся разобраться, как реально все устроено. Сначала мы производим нейтрино — хорошо сфокусированный протонный сгусток сбрасывается на мишень, из мишени вылетают пи-мезоны, которые при распаде рождают мюоны и нейтрино. После выхода из распадного тоннеля мюоны останавливаются, а нейтрино пролетают 800 км под землей, и маленькая часть из них регистрируется детектором. Поскольку каждое нейтрино состоит из «частиц» с разными массами, которые двигаются с разными скоростями, то после пролета большого расстояния квантовомеханическое смешивание приводит к изменению типа нейтрино, осциллирующему с расстоянием. Это называется нейтринными осцилляциями. Цель нашего эксперимента — посмотреть, какое количество разных типов нейтрино мы реально регистрируем, разобраться с их массовыми состояниями и выяснить, как они смешиваются. Они же «бесплатные». Сейчас мы используем уже очень большой детектор — 14 килотонн, но поскольку взаимодействие нейтрино с веществом очень слабое, только очень маленький процент частиц регистрируется даже в таком большом детекторе. Его стоимость оценивается примерно в 3 млрд долларов. Сейчас мы находимся на этапе разработки проекта. LBNЕ подразумевает создание и установку детектора в 40 кт на глубине по 1,5 км и увеличение мощности пучка, с помощью которого производятся нейтрино, с 700 кВт до 1,2—2 МВт. Это огромная мощность! И вся эта мощность сконцентрирована в мишени для производства нейтрино, которая представляет собой маленький цилиндр длиной порядка метра и диаметром сантиметр. При этом пучок сфокусирован в еще меньший размер, то есть плотность энергии еще выше. Параметры пучка и мишени выбраны так, что мишень находится на грани взрыва. Чем больше энергия, тем больше «открывательная» способность. Но максимальная энергия ограничена размерами ускорителя. Хотя intensity frontier эксперименты не могут доставить такую же детальную картину, как energy frontier, они могут видеть эффекты, которые недоступны экспериментам в energy frontier, проводя измерения редких процессов с очень высокой точностью. LHC успешно работает, и сейчас обсуждается возможность строительства установки еще большего размера. На данном этапе определенности нет, все упирается в стоимость. Решение может быть принято как через 5 лет, так и через 50. Для понимания: мы говорим про установки, стоимость которых колеблется в пределах от 5 до 20 млрд долларов и которые потребляют 0,5—1ГВт. Даже по меркам физики высоких энергий — это огромные затраты. Если мы делаем машину на порядок больше по энергии, то потребляемая мощность и стоимость будут в три-четыре раза выше. Гигаватт энергии расходует солидный город.

Из-за квадратично расходящихся вкладов в квадрат массы Хиггса в Стандартной модели квантово-механические взаимодействия бозона Хиггса вызывают большую перенормировку массы Хиггса, и, если не происходит случайного сокращения, естественный размер массы Хиггса является наибольшим. Кроме того, электрослабая шкала получает огромные квантовые поправки планковского масштаба. Наблюдаемая иерархия между электрослабой шкалой и шкалой Планка должна быть достигнута исключительно точной настройкой. Эта проблема известна как проблема иерархии. Суперсимметрия, близкая к электрослабой шкале , например, в минимальной суперсимметричной стандартной модели , решила бы проблему иерархии, которая присуща Стандартной модели. Это уменьшило бы размер квантовых поправок за счет автоматической отмены между фермионными и бозонными взаимодействиями Хиггса, а квантовые поправки планковского масштаба отменяли бы между партнерами и суперпартнерами из-за знака минус, связанного с фермионными петлями. Иерархия между электрослабой шкалой и шкалой Планка могла бы быть достигнута естественным образом, без особой тонкой настройки. Другая мотивация для минимальной суперсимметричной стандартной модели исходит из великого объединения , идеи о том, что калибровочные группы симметрии должны объединяться при высоких энергиях. В Стандартной модели, однако, слабые , сильные и электромагнитные связи датчиков не могут быть объединены при высокой энергии. В частности, эволюция ренормгруппы трех калибровочных констант связи Стандартной модели несколько чувствительна к нынешнему содержанию частиц в теории. Эти константы связи не совсем совпадают на общей шкале энергий, если мы запустим ренормализационную группу, используя Стандартную модель. После включения минимальной SUSY в электрослабой шкале работа калибровочных связей изменяется, и совместная сходимость калибровочных констант связи прогнозируется примерно при 10 16 ГэВ. Модифицированный ход также обеспечивает естественный механизм радиационного нарушения электрослабой симметрии. Во многих суперсимметричных расширениях Стандартной модели, таких как минимальная суперсимметричная стандартная модель , есть тяжелая стабильная частица такая как нейтралино , которая может служить кандидатом в слабовзаимодействующую массивную частицу WIMP темной материи. Существование суперсимметричного кандидата в темную материю тесно связано с R-четностью. Суперсимметрия в электрослабом масштабе дополненная дискретной симметрией обычно обеспечивает кандидатную частицу темной материи в массовом масштабе, согласующемся с расчетами теплового реликтового содержания. Стандартная парадигма для включения суперсимметрии в реалистичную теорию состоит в том, чтобы базовая динамика теории была суперсимметричной, но основное состояние теории не соблюдает симметрию, и суперсимметрия нарушается спонтанно.

🔸 Доказательство суперсимметрии полностью изменит наше понимание Вселенной🔸

Vallery, P. Zitzewitz, and D. Resolution of the Orthopositronium-Lifetime Puzzle. Котов, Б.

Левин, В. Ортопозитроний: «О возможной связи между тяготением и электричеством». Препринт 1784 ФТИ им.

Kotov, B. Levin, V. Orthopositronium: «On the possible relation of gravity to electricity».

Левин Борис. Глинер Э. Алгебраические свойства тензора энергии-импульса и вакуумоподобные состояния вещества.

ЖЭТФ, т. Огиевецкий В.

На данный момент главенствующей теорией физики элементарных частиц является Стандартная модель. Она отлично объясняет, как взаимодействуют основные строительные блоки материи, создавая Вселенную, которую мы видим вокруг. Стандартная модель — лучшее описание, которое у нас есть, но оно далеко от совершенства. Неполная теория Стандартная модель образовалась в 1970-х годах.

Это набор уравнений, который описывает, как все известные элементарные частицы взаимодействуют с четырьмя фундаментальными силами: сильным и слабым взаимодействием, электромагнетизмом и гравитацией. Стандартная модель отлично связывает первые три из этих четырех фундаментальных сил, но не касается гравитации. Гравитация настолько слабая сила, что даже игрушечный магнит может ее побороть. Остальные три силы намного сильнее. Гравитация имеет крайне важное значение для физики, и ее поведение описывает общая теория относительности Эйнштейна. Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе.

И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером. Это касается даже знакомых нам частиц вроде электронов. Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее. Вот все пробелы в физике, которые может исправить суперсимметрия.

Теория суперсимметрии SUSY предполагает, что у всех известных элементарных частиц существуют «двойники» - суперсимметричные частицы, которые «родились» вместе с «обычными» частицами в момент Большого взрыва. Затем суперсимметричные частицы стали намного тяжелее обычного вещества и распались, а их «остатки» образовали «темную материю», из которой почти на четверть состоит Вселенная. Суперсимметрия дает способ объединить электрослабое и сильные взаимодействия и в конечном счете создать единую теорию поля. В экспериментах на коллайдере ученые рассчитывают увидеть рождение суперсимметричных частиц, которые пока не были обнаружены ни в одном эксперименте. Члены коллаборации CMS пытались обнаружить «суперпартнеров» кварков и глюонов. Если бы эти частицы рождались в столкновениях протонов на коллайдере, они распадались бы на «обычные» кварки и глюоны, а также легкие стабильные частицы нейтралино, из которых, согласно, теории может состоять «темная материя». Кварки и глюоны, в свою очередь, создавали бы потоки джеты других частиц, а нейтралино, не взаимодействующие с обычной материей, «улетали» бы незамеченными.

Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц. По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии. Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии.

Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза. Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ. Ускоритель БАК обеспечит новую ступень в ряду открытий частиц, которые начались столетие назад. Тогда ученые еще только обнаружили всевозможные виды таинственных лучей: рентгеновские, катодное излучение.

Суперсимметрия в свете данных LHC: что делать дальше?

Гипотеза описывает и другие элементы — браны. Все вещества в нашем мире состоят из колебаний струн и бран. Естественным следствием теории является описание гравитации. Именно поэтому ученые считают, что в ней содержится ключ к объединению силы тяжести с другими взаимодействиями. Концепция развивается Теория единого поля, теория суперструн, — сугубо математическая. Как и все физические концепции, она основана на уравнениях, которые могут быть определенным образом интерпретированы.

Сегодня никто не знает точно, каким будет окончательный вариант этой теории. Ученые имеют довольно смутное представление об ее общих элементах, но никто еще не придумал окончательного уравнения, охватившего бы все теории суперструн, а экспериментально до сих пор не удалось ее подтвердить хотя и опровергнуть тоже. Физики создали упрощенные версии уравнения, но пока что оно не вполне описывает нашу вселенную. Теория суперструн для начинающих В основе гипотезы положены пять ключевых идей. Теория суперструн предсказывает, что все объекты нашего мира состоят из вибрирующих нитей и мембран энергии.

Она пытается совместить общую теорию относительности гравитации с квантовой физикой. Теория суперструн позволит объединить все фундаментальные силы вселенной. Эта гипотеза предсказывает новую связь, суперсимметрию, между двумя принципиально различными типами частиц, бозонами и фермионами. Концепция описывает ряд дополнительных, обычно ненаблюдаемых измерений Вселенной. Струны и браны Когда теория возникла в 1970 годы, нити энергии в ней считались 1-мерными объектами — струнами.

Слово «одномерный» говорит о том, что струна имеет только 1 измерение, длину, в отличие от, например, квадрата, который имеет длину и высоту. Эти суперструны теория делит на два вида — замкнутые и открытые. Открытая струна имеет концы, которые не соприкасаются друг с другом, в то время как замкнутая струна является петлей без открытых концов. В итоге было установлено, что эти струны, называемые струнами первого типа, подвержены 5 основным типам взаимодействий. Взаимодействия основаны на способности струны соединять и разделять свои концы.

Поскольку концы открытых струн могут объединиться, чтобы образовывать замкнутые, нельзя построить теорию суперструн, не включающую закольцованные струны. Это оказалось важным, так как замкнутые струны обладают свойствами, как полагают физики, которые могли бы описать гравитацию. Другими словами, ученые поняли, что теория суперструн вместо объяснения частиц материи может описывать их поведение и силу тяжести. Через многие годы было обнаружено, что, кроме струн, теории необходимы и другие элементы. Их можно рассматривать как листы, или браны.

Струны могут крепиться к их одной или обеим сторонам. Квантовая гравитация Современная физика имеет два основных научных закона: общую теорию относительности ОТО и квантовую.

Стандартная модель очень точно предсказывает g-фактор мюона — значение, которое говорит ученым, как эта частица ведет себя в магнитном поле.

Этот g-фактор, как известно, близок к значению два, и эксперименты измеряют его отклонение от двух, отсюда и название Muon g-2. Эксперимент в Брукхейвене показал, что g-2 отличается от теоретического предсказания на несколько частей на миллион. Эта крохотная разница намекала на существование неизвестных взаимодействий между мюоном и магнитным полем — взаимодействий, которые могут включать новые частицы или силы.

К чему приведут новые открытия? Частицы, выходящие за рамки Стандартной модели, могут помочь объяснить загадочные явления, как природа темной материи, загадочной и широко распространенной субстанции, о существовании которой физики знают, но её еще предстоит обнаружить. А что такое мюоны?

Вся наша Вселенная построена из частиц размером меньше атома. Некоторые из этих частиц состоят из еще более мелких частиц, другие уже не дробятся. Это и есть элементарные частицы.

Мюоны как раз и являются такими элементарными частицами: они похожи на электроны, только в 200 раз тяжелее. В ходе эксперимента Muon g-2 частицы разгонялись по 14-метровому кольцу в циркулярном коллайдере под воздействием мощного магнитного поля. Согласно известным законам физики, это должно было приводить к колебанию мюонов с определенной частотой.

Однако физики обнаружили, что частота их колебаний оказалась выше предполагаемой. По их мнению, это может свидетельствовать о действии силы, ранее не известной науке. Никто не знает точно, что еще, кроме воздействия на мюон, подвластно этой новой силе.

Иными словами, поведение мюонов выходило за рамки того, что знают ученые. Физики задумались, а не причастна ли тут какая-то еще неизвестная, пятая сила? О какой пятой силе идет речь?

Вся наша жизнь подчинена законам физики.

Эта гипотеза очередной раз не подтвердилась, что влечёт за собой отказ от теории Большого Взрыва. С ней должна уйти на покой теория расширения пространства, из которой происходят теории тёмной материи и энергии. А это, согласитесь, огромный и практически основной пласт современной астрофизики. Но и это ещё не всё. Виртуальные частицы вакуума - электроны и позитроны, на которые тот должен постоянно распадаться и схлопываться назад, должны были бы вносить изменения в форму зарядов исследуемых электронов. Но этого не обнаружено, как и самих виртуальных частиц вакуума.

А на этой гипотезе тоже уже успели понастроить различных теорий и предположений. Весь этот мусор, наконец, пойдёт в корзину истории и я рад этому, потому что давно пишу об ошибочности этих теорий. Но у официальной физики нет им альтернативы. Вернее, альтернативных теорий довольно много, но они не признавались и не проверялись, так как противоречили общепризнанным и сколько теперь понадобится времени на отсев, проверку, а главное объединение других теорий сказать сложно. По моей теории квантового пространства за пол года так и не прислали ответа не из РАН, не из Физико-технологического института, не из Китайской Академии.

Но когда мы пытаемся рассчитать взаимодействия этих гравитонов, появляются бессмысленные бесконечности в уравнениях. Полноценная теория гравитации должна быть рабочей в любых масштабах и принимать во внимание квантовую природу фундаментальных частиц. Это позволило бы уместить гравитацию в объединенной структуре с тремя другими фундаментальными взаимодействиями, тем самым создав пресловутую теорию всего. Конечно, с тех пор, как умер Альберт Эйнштейн в 1955 году, был проделан значительный прогресс в этой области.

Наш лучший кандидат сегодня носит имя M-теории. Революция струн Чтобы понять основную идею М-теории, нужно вернуться в 1970-е годы, когда ученые поняли, что вместо того, чтобы описывать вселенную, основываясь на точечных частицах, их лучше было бы описывать в виде осциллирующих струн энергетических трубочек. Новый способ осмысления фундаментальных составляющих природы привел к решению многих теоретических проблем. Прежде всего, отдельное колебание струны можно интерпретировать как гравитон. И в отличие от стандартной теории гравитации, теория струн может описывать его взаимодействия математически и не получать странных бесконечностей. Значит, гравитацию можно будет включить в объединенную структуру. После этого волнительного открытия физики-теоретики приложили много усилий, чтобы осознать его последствия. Но, как это часто случается с научными исследованиями, история теории струн полна взлетов и падений.

Экзамены суперсимметричной модели вселенной 1978

Теория суперсимметрии возникла в 1970-х годах как способ исправить существенные недостатки Стандартной модели физики высоких энергий. Жесткие требования суперсимметрии при отборе жизнеспособных теорий должны замениться на какой-то руководящий принцип, который, не будучи суперсимметрией, действует по. Сформулированная в 1973 году, теория Суперсимметрии предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками. Одна из задач, которую ученые пытаются решить с помощью БАК, – это получение экспериментального подтверждения теории Суперсимметрии. му же, в этом случае у нас исчезают расходимости в первом порядке теории возмущений, что тоже является одним из плюсов суперсимметрии.

Читайте также

  • Нобелевская премия по физике 2008 года. Нобелевская асимметрия
  • Большой адронный коллайдер нанес еще один удар теории суперсимметрии.
  • Концепция развивается
  • Адронный коллайдер подтвердил теорию суперсимметрии
  • Вы точно человек?

Суперсимметрия в свете данных LHC: что делать дальше?

Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта в зависимости от прошедшего с момента создания частицы. Важное предсказание суперсимметрии – существование суперрасширения теории гравитации, супергравитации, и суперсимметричного партнера гравитона – гравитино, частицы со спином 3/2. Во всех теориях суперсимметрии предполагается, что персимметрию уже на основе первых данных с БАК. Поскольку суперсимметрия является необходимым компонентом теории суперструн, любая обнаруженная суперсимметрия будет согласована с теорией суперструн. Тем не менее этот вопрос был решен в начале 1980-х годов вместе с введением в теорию струн так называемой “суперсимметрии”.

Поиски суперсимметрии на коллайдере принесли новую интригу

Эксперимент на Большом адронном коллайдере опроверг современную теорию мироздания Выступая на международной физической конференции, которая проходит в индийском городе Мумбаи, ученый подчеркнула: "Мы провели на БАК серию экспериментов с элементарными частицами, в ходе которых проверили опытным путем фундаментальные выводы теории Суперсимметрии и верность описания ею физического мира. Однако необходимых подтверждений мы не получили". Сформулированная в 1973 году, теория Суперсимметрии предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками.

Симметрия электрослабого взаимодействия, например, восстанавливается как раз при энергиях, достигающихся на Большом адронном коллайдере, о чем сигнализирует нам рождение бозона Хиггса. Это маленькие группы, как видно по небольшим числам в скобках.

Но более крупные группы симметрии зачастую содержат в себе несколько групп поменьше, так что одна большая группа, чья симметрия нарушается при высоких энергиях, могла бы породить Стандартную модель при энергиях, которые мы исследуем. Получается, теория Великого объединения — словно некий слон, а у нас сейчас, на низких энергиях, есть от него лишь ухо, хвост и нога. Целиком слон восстановится только при энергии объединения, оцениваемой примерно в 1016 ГэВ, что на 15 порядков превышает энергии Большого адронного коллайдера. Сначала для симметрии Великого объединения была предложена самая маленькая группа, содержащая группы симметрии Стандартной модели, — SU 5.

Такие объединенные силы в общем случае допускают новые взаимодействия, позволяющие протонам распадаться. А если протоны нестабильны, значит, нестабильны и ядра атомов. В подобных теориях объединения время жизни протона может достигать 1031 лет, существенно превышая возраст Вселенной на текущий момент. Однако в соответствии с квантовой механикой это попросту означает, что среднее время жизни протона таково.

Раз протоны вообще могут распадаться, значит, это может происходить и быстро — просто быстрые распады будут событиями редкими. В каждой молекуле воды 10 протонов, а в каждом литре воды около 1025 молекул воды. Поэтому вместо того, чтобы ждать 1031 лет, дабы увидеть распад одного протона, мы можем следить за огромным объемом воды, ожидая, пока распадется один из тамошних протонов. Подобные эксперименты проводятся с середины 1980-х годов, но еще никто не засек распада протона.

Текущие наблюдения а точнее, отсутствие оных намекают на то, что среднее время жизни протона больше 1033 лет. Так что SU 5 -модель Великого объединения исключается. Следующей была предложена группа побольше — SO 10 , в этой модели объединения верхняя граница для времени жизни протона проходит повыше. С тех пор опробованы были еще несколько групп симметрии, и в некоторых моделях верхняя граница для времени жизни протона сдвинута аж до 1036 лет, что на порядки превышает даже возможности будущих экспериментов.

Помимо распада протона теории Великого объединения также предсказывают существование новых частиц, поскольку крупные группы содержат больше, чем есть в Стандартной модели. Предполагается, как обычно, что эти новые частицы слишком тяжелые, поэтому пока и не могли быть замечены. Таким образом, сейчас у физиков-теоретиков есть широкий ассортимент теорий объединения, застрахованных от опровержения на основании экспериментов в обозримом будущем. Само по себе Великое объединение между тем не решает проблемы с массой бозона Хиггса.

Физикам приходится еще и суперсимметризовать Великое объединение. Мы знаем, что суперсимметрия — если это суперсимметрия природы — должна нарушаться при энергиях выше тех, что нами пока достигнуты, ведь мы еще не засекли суперсимметричных частиц. Но мы так пока и не знаем, при какой энергии симметрия восстанавливается — и происходит ли это вообще. Аргумент, согласно которому суперсимметрия должна придать массе бозона Хиггса естественность, подразумевает, что энергия, при которой суперсимметрия нарушается, на Большом адронном коллайдере должна быть уже достигнута.

Добавление суперсимметрии к Великому объединению не только еще больше увеличивает число симметрий — дополнительное преимущество в том, что это приводит к небольшому продлению времени жизни протона. Так, некоторые варианты суперсимметричной SU 5 -модели и поныне держатся на грани жизнеспособности. Тем не менее основная причина для добавления суперсимметрии заключается в числовом совпадении, которое мы обсуждали в четвертой главе, — в объединении констант взаимодействий см.

Большой адронный коллайдер подорвал позиции теории суперсимметрии 17:46, 3 ноября 2021 г. Наука Фото: ShutterStock В данных, собранных детекторами Большого адронного коллайдера, не было обнаружено подтверждений гипотезы суперсимметрии, которая, в частности, предполагает, что у каждой элементарной частицы существует суперсимметричный «двойник». Новые результаты, детализированные в двух статьях, не исключают эту гипотезу полностью, но устанавливают новые пределы для ее обнаружения. Теория суперсимметрии под угрозой Сотрудники Европейского центра ядерных исследований ЦЕРН , работающие на Большом адронном коллайдере, обнаружили чрезвычайно редкий случай распада элементарных частиц.

Это наблюдение наносит значительный урон теории суперсимметрии. Она основана на предположении, что существует гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие и наоборот. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной.

Чтобы понять важность этих результатов, нужно вернуться к основам. Как мы знаем, стандартная модель описывает элементарные частицы, которые составляют вселенную, а также их взаимодействие.

В настоящее время это одно из лучших описаний субатомного мира, в соответствии с церн, которое, однако, имеет ряд брешей. Она не может описать гравитацию, не объясняет существование темной материи и не может предсказать массу бозона хиггса. К стандартной модели создаются дополнения, но ученые непрерывно ищут расхождения внутри нее, которые могут указать в направлении новой физики. И теория суперсимметрии является одним из лучших кандидатов на замену см.

СУПЕРСИММЕ́ТРИ́Я

В новостях можно иногда встретить утверждение, что отрицательные данные LHC ставят крест на идее суперсимметрии. Сформулированная в 1973 году, теория Суперсимметрии предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками. Суперсимметрия — Это статья о физической гипотезе. Об одноимённом альбоме группы «Океан Эльзы» см. статью Суперсиметрія (альбом). За пределами Стандартной модели Стандартная модель Свидетельства Проблема иерархий • Тёмная материя Проблема. Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные. SIS’23 привлекло ведущих специалистов в квантовой теории поля и современной математической физики. Киральная симметрия (от греч. cheir — рука) — инвариантность уравнений квантовой теории поля относительно преобразований, перемешивающих состояния частиц как с различными.

Откройте свой Мир!

Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими. Знаменитая теория Суперсимметрии, объясняющая основы мироздания, не нашла подтверждения в ходе исследований в Европейском центре ядерных исследований (ЦЕРН). Самая амбициозная теория – теория струны, претендующая на единое описание всех сил природы, требует суперсимметрии для непротиворечивости и устойчивости.

Похожие новости:

Оцените статью
Добавить комментарий