Новости лазеры и аппаратура

В данном разделе представлены нано-, пико-, фемтосекундные лазеры, приборы с перестраиваемой длиной волны, высокоэнергетические промышленные системы. «Вместе с оператором мобильного лазерного комплекса мы наблюдали на экране монитора, как лазер с расстояния 5 м режет бок газодиффузионной машины К‑30, — рассказывает Евгений Гежа. Компания, локализовавшая на территории особой экономической зоны (ОЭЗ) «Технополис Москва» производство лазерных систем и оборудования, разработала четыре новых лазерных станка. Московская компания-производитель лазерной техники «Лазеры и аппаратура» впервые в стране создала и начала серийное производство станков высокоточной микрообработки ультрафиолетовым лазером.

В России запустили производство лазерных станков для печатных плат

Специалисты инженерного центра группы компаний «Лазеры и аппаратура» запустили в серийное производство новую модификацию аддитивного оборудования. В прошлом году компания «Лазеры и аппаратура» наладила серийное производство новой модификации аддитивного оборудования для промышленной 3D-печати металлами с системой машинного зрения. Созданный в корпорации «Росатом» промышленный лазер, режущий металл как масло, поражает воображение. Завод «Лазеры и аппаратура», расположенный в Зеленограде, произвел в прошлом году более 40 лазерных станков — это в 2,5 раза больше, чем в 2022-м, пишет «Москва24». Министерство промышленности и торговли Российской Федерации включило пятикоординатную машину для лазерной наплавки и прямого выращивания из металлического порошка МЛ7 производства группы компаний «Лазеры и аппаратура» в реестр промышленной продукции.

Другие новости по данной тематике:

  • Лазер – последние новости
  • Ученые разработали технологию создания лазеров нового поколения - Российская газета
  • Что за эксперимент с космической лазерной связью задумали в России? | Аргументы и Факты
  • Другие новости по данной тематике:
  • Создан миниатюрный высокопроизводительный лазер: Наука: Наука и техника:
  • Новости журнала

Компания ОЭЗ «Технополис Москва» расширила ассортимент лазерного оборудования

Производство умных лазерных машин запустили в Зеленограде // Новости НТВ Миссия группы компаний «Лазеры и аппаратура» — производить промышленное оборудование мирового уровня для эффективной работы.
Московский производитель лазерного оборудования расширил ассортимент – Москва 24, 19.06.2023 Группа компаний «Лазеры и аппаратура» запустила серийное производство модификации аддитивного оборудования для промышленной 3D-печати с системой машинного зрения собственной разработки.
«Лазеры и аппаратура» Руководитель Департамента инвестиционной и промышленной политики Москвы Владислав Овчинский заявил о внесении в реестр российской промышленной продукции Минпромторга РФ оборудования для лазерной наплавки.
ООО НПЦ "Лазеры и аппаратура" последние новости по теме на сайте АБН24.
Обзор №5 участников выставки «Фотоника-2024» Руководитель Департамента инвестиционной и промышленной политики Москвы Владислав Овчинский заявил о внесении в реестр российской промышленной продукции Минпромторга РФ оборудования для лазерной наплавки.

Лазер – последние новости

Группа компаний «Лазеры и аппаратура» выпускает промышленное лазерное оборудование с 1995 года. На сегодняшний день в России и за рубежом работает более 700 лазерных станков нашего производства. В ассортименте продукции ГК «Лазеры и аппаратура» представлены станки для металлообработки, макро- и микрообработки материалов, использующихся в микроэлектронной промышленности и приборостроении, установки для 3D-печати из металлических порошков. Группа компаний обеспечивает полный жизненный цикл разработки, производства и сервисного обслуживания промышленных лазерных станков.

Новая технология дешевле, поскольку можно сразу изготовить изделие заданной геометрии, при этом используя более доступные и менее дорогие материалы Такая технология дешевле, поскольку можно сразу изготовить изделие заданной геометрии, при этом используя более доступные и менее дорогие материалы. Керамическая технология не предполагает применение тигли из иридия одного из самых редких и дорогостоящих веществ в мире , который необходим при выращивании монокристаллов.

Характеристики керамики также превосходят показатели монокристаллических аналогов. В частности, она отличается повышенной устойчивостью к разрушению. Керамика также высокоэффективна при создании более мощных лазеров. В сфере разработки и совершенствования технологии оптической керамики ученые СКФУ зарегистрировали восемь патентов, новую технологию планирует использовать индустриальный партнер вуза. Идеи, предложенные учеными, могут получить широкое применение в промышленности, обработке материалов, системах связи, в том числе космической, при создании медицинских лазеров.

Комментарий Дмитрий Беспалов, ректор Северо-Кавказского федерального университета: - Разработки ученых СКФУ в области перспективных материалов для микроэлектроники, оптики и фотоники имеют большое значение для развития отечественных лазерных технологий.

Актуальные возможности и перспективы» с докладами: «Производство лазеров российского разработчика «Нордлэйз» для промышленных применений», Дмитрий Саченко, руководитель группы «Лазерные системы и компоненты АО «ЛЛС» «Обзор решений по автоматизации лазерного заготовительного производства», Максим Яковлев, инженер АО «ЛЛС» Благодарим организатора ГК «Лазеры и аппаратура» за возможность представить наши доклады! Сотрудники «ЛЛС» активно работали в течение выставки: консультировали гостей по подбору оборудования; обсуждали с посетителями вопросы о поддержании оборудования в эксплуатационном состоянии; обрабатывали образцы на оборудовании; налаживали деловые контакты с партнерами-производителями; давали интервью для СМИ! В выставке приняли участие более 1000 компаний из 12 стран. До встречи в следующем году!

Для этого в городе создан комфортный инвестиционный климат, действует широкий набор инструментов поддержки, который позволяет промпредприятиям наращивать выпуск изделий и выводить на рынок инновационную продукцию. Так, производитель промышленного лазерного оборудования создал и организовал выпуск пятикоординатных лазерных станков для обработки сложных деталей двигателей. Компания может выпускать до 15 установок в год», — отметил Владислав Овчинский. Такие станки востребованы в отраслях, где необходима высокая точность обработки деталей сложных форм, в частности в двигателестроении.

Лазерные технологические комплексы вывели в серию на заводе в Зеленограде

«Лазеры и аппаратура ТМ», НПЦ ООО Специалисты Владимирского инжинирингового центра использования лазерных технологий в машиностроении при ВлГУ разработали комплекс обнаружения и обезвреживания малоразмерных беспилотников с помощью лазера.
На АЭХК испытали мобильный лазерный комплекс производства ТРИНИТИ В компании Юрикон вы можете купить медицинские лазерные аппараты Производитель лазерного медицинского оборудования Бесплатная консультация Собственное производство в России.
На АЭХК испытали мобильный лазерный комплекс производства ТРИНИТИ Рассказывает исполнительный директор «Лазеры и аппаратура» Анна Цыганцова и главный конструктор «Лазеры и аппаратура» Владимир Черноволов.
Предприятие «Лазеры и аппаратура» создало лазерный станок для высокоточной обработки деталей В рамках программы SSL-TM (Solid State Laser Technology Maturation) ВМС США поручили компании Northrop Grumman доработать твердотельный лазер для размещения на существующих и перспективных кораблях.

Производитель лазерного оборудования из Москвы нарастил производство в 2023 году

Московская компания по производству лазерных станков увеличила мощности Оборудование для создания аддитивным методом продуктов из порошковых полимеров начала производить в столице группа компаний "Лазеры и аппаратура".
Московская компания по производству лазерных станков увеличила мощности Министерство промышленности и торговли Российской Федерации включило пятикоординатную машину для лазерной наплавки и прямого выращивания из металлического порошка МЛ7 производства группы компаний «Лазеры и аппаратура» в реестр промышленной продукции.

Ростех и РАН создают уникальные лазеры для медицинских и досмотровых комплексов

Мы постоянно публикуем свежие новости в сфере лазерных технологий. Московская группа компаний «Лазеры и аппаратура» в 2022 году произвела и поставила заказчикам 24 лазерные установки, что почти в три раза превышает показатели 2021 года. На стенде компании «Лазерный Центр» уникальные технологии и оборудование для лазерной обработки, маркираторы, микрообработка, импортозамещение. Специалисты московской компании "Лазеры и аппаратура" разработали установку для лазерной маркировки и микрообработки полупроводниковых пластин, которые служат основой для создания микросхем. Министерство промышленности и торговли Российской Федерации включило пятикоординатную машину для лазерной наплавки и прямого выращивания из металлического порошка МЛ7 производства группы компаний «Лазеры и аппаратура» в реестр промышленной продукции.

Лазерные технологические комплексы вывели в серию на заводе в Зеленограде

Как отметила исполнительный директор компании «Лазеры и аппаратура» Анна Цыганцова, станки для микроэлектроники — это одно из центральных направлений деятельности предприятия, которое активно развивается. Она также подчеркнула, что благодаря собственным инвестициям, высококвалифицированному персоналу, а также поддержке города компании удается создавать современную конкурентоспособную продукцию и наращивать производственную базу. Дополнительные площадки позволят предприятию существенно нарастить объем выпуска станков. Москва — мегаполис с развитым производством, в котором работает более четырех тысяч промышленных площадок.

Установки оснащают специализированным программным обеспечением, которое позволяет минимизировать участие оператора в производственном процессе, отметил он. Оборудование самостоятельно определит алгоритм работ на основе заданных условий и загруженных чертежей. Предприятие уже более 20 лет занимается созданием и выпуском промышленных лазерных систем, которые успешно работают на производствах ведущих российских и зарубежных компаний», — объяснил глава ведомства.

Об этом сообщил министр правительства Москвы, руководитель департамента инвестиционной и промышленной политики Владислав Овчинский. Высокоточные лазерные установки позволяют создавать микроэлектронику и любую электротехнику. По словам Овчинского, на сегодняшний день предприятие выпустило четыре таких установки, а в год планируется производить не менее 50 станков. Реклама «Установка на ультрафиолете предназначена для прецизионной микрообработки плоских и объемных полимерных пленок, печатных плат и полупроводниковых материалов. Ультрафиолетовый лазер имеет высокую точность и мощность излучения, им можно обрабатывать материалы, которые не поддаются инфракрасным устройствам», — рассказал Владислав Овчинский.

Крупный бизнес Промышленность Техника История 2022: Увеличение производства лазерных установок почти в три раза Столичная группа компаний «Лазеры и аппаратура» по итогам 2022 года произвела и поставила заказчикам 24 лазерные установки, что почти втрое превышает показатели 2021 года. Об этом 1 февраля 2023 года сообщил руководитель Департамента инвестиционной и промышленной политики города Москвы , входящего в Комплекс экономической политики и имущественно-земельных отношений столицы , Владислав Овчинский.

ОТКРОЙ #МОСПРОМ ОНЛАЙН. Выпуск о ГК "Лазеры и аппаратура"

Инженеры столичного предприятия «Лазеры и аппаратура» разработали отечественные пятикоординатные лазерные станки для высокоточной обработки деталей, сложноконтурной резки и сварки. МЛП1-Дайсер – инновационное оборудование с применением наносекундных и пикосекундных лазерных источников, применяемых в области микроэлектроники и приборостроения. Компания "Лазеры и аппаратура" по итогам 2022 года произвела и поставила заказчикам 24 лазерные установки, что почти втрое превышает. Этот метод уже внедрен в работу клиники «Микрохирургия глаза», и практически все операции по лазерному удалению катаракты проводятся с использованием двух лазеров. Московская компания «Лазеры и аппаратура» сделала шаг в этом направлении, первой в России запустив в серийное производство станок высокоточной микрообработки ультрафиолетовым лазером. Проект аппаратуры для межспутниковой связи, который сейчас обсуждают ВНИИЭФ и «Роскосмос», носит название «НИР-лазер».

Наши возможности

  • Содержание
  • Росатом Госкорпорация «Росатом» ядерные технологии атомная энергетика АЭС ядерная медицина
  • ООО НПЦ "Лазеры и аппаратура"
  • Наш холдинг

Китайские ученые разрабатывают лазерный двигатель для сверхзвуковых подводных лодок

В год предприятие может выпускать до пяти таких машин». Лазерная машина при помощи луча спекает порошковые полимеры в прочное изделие и после этого обрабатывает его. Система машинного зрения, используемая в разработке, распознаёт и анализирует контур обрабатываемой детали, что позволяет создавать продукцию с максимальной точностью. МЛ7 уже используется на предприятиях машиностроения, двигателестроения, в автомобильной, аэрокосмической и железнодорожной отраслях.

В созданной российскими учёными системе данные обрабатываются намного быстрее за счёт использования программируемых логических интегральных схем ПЛИС. Исходя из контекста, реализовано распараллеливание вычислений, но это не точно.

В условиях реальной трассы до космического аппарата мы достигли быстродействия больше 2 кГц, что представляет интерес, например, в получении чётких изображений в ходе астрономических наблюдений. Несколько килогерц — это тот уровень, который позволяет нам корректировать искажения излучения в условиях реальной, постоянно меняющейся атмосферы, поэтому и идёт гонка за этими килогерцами», — отметил научный руководитель НЦФМ, сопредседатель направления НЦФМ «Физика высоких плотностей энергии» академик РАН Александр Сергеев. Источник изображения: «Росатом» Кроме компенсации атмосферных искажений, что необходимо для астрономических наблюдений с поверхности Земли, система позволяет более эффективно фокусировать лазерное излучение в обычных условиях на земле. В России к 2030 году планируется создать лазерную установку экзаваттной мощности. В одной точке должны будут фокусировать одновременно 12 лазеров.

Предложенная система адаптивной оптики сможет так задать фронты волны каждого лазера, что они придут к мишени одновременно. Это создаст наиболее интенсивное воздействие на мишень, что позволит реализовывать передовые лазерные технологии и решать фундаментальные вопросы науки, связанные с пониманием, как ведёт себя вещество в экстремальных, недостижимых ранее условиях. Испытания прошли в январе этого года и стали «значительным шагом вперёд» по пути к высокоэнергетическому оружию. Лазерное оружие первого поколения не будет взято на вооружение. Оно послужит основой для создания второго поколения более мощных боевых лазеров.

Источник изображений: министерство обороны Великобритании Испытания прототипа британского боевого лазера проекта DragonFire мощностью 50 кВт прошли на полигоне в Шотландии. Как и другие установки такого рода, мощный луч формируется спектральным сложением излучения от нескольких волоконно-оптических каналов от менее мощных твердотельных полупроводниковых лазеров. Испытания первого прототипа показали правильность выбранной стратегии и будут положены в основу второго поколения боевых лазеров, которые уже поступят на вооружение. Также стоит задача найти комплектующие для производства боевых лазеров в Великобритании. Сейчас комплектация закупается за рубежом.

Источник изображения: Crown Copyright Представленное военными видео не даёт полного представления о возможностях системы. Показаны центр управления, работа лазера на стенде и поражение цели на полигоне на открытой местности. Отдельно представлена фотография поражённого лазером миномётного снаряда, но не уточняется, его поразили в воздухе, или на неподвижном стенде скорее всего — второе. Кроме того, представлен цифровой видеоролик работы установки DragonFire на боевом корабле по уничтожению воздушных беспилотников и малых плавсредств. Использование боевых лазеров позволит существенно сэкономить на боекомплекте.

Цель будет поражаться буквально со скоростью света. Система прицеливания позволит поражать 23-мм монету на расстоянии 1 км. Они смогли получить энергетический образ движения электрона вокруг атома водорода в капле воды ещё до того, как атом пришёл в движение. До сих пор у учёных не было инструментов для подобной детализации процессов в веществе, что раскроет больше деталей о физике и химии многих процессов и, особенно, о радиационном воздействии на живые клетки. Источник изображений: PNNL В эксперименте, отдалённо похожем на съёмку замедленного видео, учёные выделили энергетическое движение электрона, одновременно «заморозив» движение гораздо более крупного атома, вокруг которого вращался целевой электрон, сделав это в образце обычной жидкой воды.

О своей работе учёные сообщили в статье в журнале Science. Работа в основном была направлена на изучение высокоэнергетического излучения на живые клетки, что нужно для космоса, радиотерапии опухолей и не только. Это всё равно, что сказать "я родился, а потом умер". Вы хотели бы знать, что происходит в промежутке? Это то, что мы сейчас можем сделать».

Чтобы добиться результата, межведомственная группа учёных из нескольких национальных лабораторий Министерства энергетики США, а также университетов США и Германии объединила эксперименты и теорию, чтобы в режиме реального времени выявить последствия воздействия ионизирующего излучения от источника рентгеновского излучения на вещество. Не секрет, что субатомные частицы, например, электроны, движутся так быстро, что для фиксации их действий требуется датчик, способный измерять время в аттосекундах. Это настолько быстро или мало , что в каждой секунде, например, больше аттосекунд, чем прошло секунд за всю историю Вселенной. Проведённое авторами исследование опирается на открытие и создание аттосекундных рентгеновских лазеров на свободных электронах, за что в прошлом году, в частности, была присуждена Нобелевская премия по физике. Экспериментальная установка, создающая тончайшую плёнку воды шириной около 1 см В качестве тестового образца для эксперимента была выбрана обычная жидкая вода.

Первый аттосекундный импульс возбуждал электроны, а второй измерял отклик. Это позволило отреагировать датчикам настолько быстро, что возбуждённое состояние электрона проявило себя ещё до того, как атом водорода в молекуле пришёл в движение. Раньше в процессе подобного наблюдения с помощью импульсов большей длительности картина была настолько смазанной, что учёные предполагали существование ряда промежуточных состояний. Аттосекундный лазер показал, что промежуточных состояний нет — это всё миражи или помехи. Кратковременное воздействие фемтосекундным лазером на теллуритовое стекло превращало его в полупроводник, чувствительный к свету.

Тем самым можно производить фоточувствительные стёкла без каких-либо дополнительных материалов и усилий, что учёные в шутку сравнили с алхимией. Источник изображения: EPFL «Это фантастика, мы на месте превращаем стекло в полупроводник с помощью света, — сказал один из авторов исследования Ив Беллуар Yves Bellouard. Учёных заинтересовало поведение атомов в теллуритовом стекле TeO2 при воздействии на него сверхбыстрых импульсов высокоэнергетического лазерного излучения. Они обнаружили, что лазер в месте падения луча создаёт в толще стекла крошечные кристаллы полупроводниковых материалов теллура и оксида теллура. Это означает, что обработанные таким образом участки могут вырабатывать электричество под воздействием дневного света.

Всё, что вам нужно — это теллуритовое стекло и фемтосекундный лазер для создания активного фотопроводящего материала», — добавил учёный. В ходе эксперимента на полученный из Японии 1-см диск теллуритового стекла лазером был нанесён штриховой рисунок. Под воздействием света от ультрафиолетового и до видимого диапазона обработанный участок вырабатывал электрический ток, оставаясь месяцами стабильно работающим. Точно также на стекле можно создавать светочувствительные датчики и другие полупроводниковые схемы, используя для этого только источник лазерного света. Рисунок можно наносить на месте на уже установленное стекло, превращая его в умное с необходимой функциональностью.

Правда, обычные оконные стёкла для этого не подходят. Но если технологию подхватят производители, то это может привести к революции в архитектуре. Его энергии хватит, чтобы зарядить аккумуляторы небольших спутников, рои которых обещают появиться на орбите. Солнечные батареи нецелесообразно использовать для их питания, а направленный энергетический луч — вполне. Источник изображения: WiPTherm Четыре года назад в Европейском союзе создали консорциум по разработке системы беспроводного питания наноспутников.

Основной целью проекта WiPTherm было создание инновационной системы беспроводной передачи энергии, которая могла бы заряжать компоненты накопителей энергии на спутниках микро- и наноразмеров. Интересно отметить, что выбор был сделан в пользу термоэлектрических, а не фотоэлектрических приёмных систем. Группа разработала приёмник и оптическую систему с использованием массива линз и 27 термоэлектрическими датчиками.

Владислав Овчинский Руководитель Департамента инвестиционной и промышленной политики Москвы «Развитие 3D-печати имеет большое значение для столичной промышленности. В городе работает более 30 инжиниринговых центров, свыше 20 компаний и образовательных учреждений, которые ведут разработки в этой области.

Например, московский производитель лазерного оборудования запустил в серийное производство усовершенствованную модель, которая применяется для лазерной обработки крупногабаритных изделий. В год предприятие может выпускать до пяти таких машин».

Для наземных и даже воздушных целей она не будет представлять опасности, но для объектов на орбите может создавать угрозу.

С точки зрения питания микроспутников по лазерному лучу идея достаточно здравая. Один большой корабль на высокой орбите, где Земля никогда не заслоняет Солнце, способен будет питать десятки, сотни и, скорее всего, тысячи мелких аппаратов, поддерживая работу их систем и даже питая электрорактные ионные двигатели. Предполагается, что проведённые стрельбы откроют путь к созданию недорогой альтернативы ракетам ПВО для уничтожения таких целей, как военные беспилотники.

Источник изображений: министерство обороны Великобритании Во время испытаний на Гебридских островах лазерная установка DragonFire уничтожила приближающиеся беспилотники с расстояния в несколько миль, что, по мнению экспертов, стало важной вехой для британских военных, сообщает The Times. Испытания прошли на полигоне в Шотландии, и британское министерство обороны «важным шагом» на пути к принятию технологии на вооружение. Министр обороны Грант Шаппс Grant Shapps заявил, что технология может снизить «зависимость от дорогостоящих боеприпасов, а также уменьшить риск сопутствующего ущерба».

По словам представителей министерства обороны Великобритании, лазерное оружие DragonFire достаточно точно, чтобы поразить монету в 1 британский фунт с расстояния в километр. Диаметр данной монеты составляет всего 23 мм. Также было отмечено, что как британская армия, так и флот рассматривают возможность использования лазерного оружия в своих перспективных системах противовоздушной обороны ПВО.

Заметим, что главным средством ПВО сейчас являются ракеты. Причём применяемые в таких системах боеприпасы могут быть гораздо дороже уничтожаемых ими беспилотников: некоторые из таких ракет стоят миллионы долларов, тогда как беспилотник может стоить лишь несколько тысяч. По данным минобороны Великобритании, 10-секундная стрельба из системы DragonFire по стоимости эквивалентна использованию обычного бытового обогревателя в течение часа.

Лазерное оружие, которое официально называется «энергетическое оружие с лазерным наведением» LDEW использует мощный световой луч для поражения цели и может наносить удары в буквальном смысле со скоростью света. Дальность действия системы DragonFire засекречена, но это оружие прямой видимости, то есть оно может атаковать любую видимую цель в пределах досягаемости. Руководитель DSTL доктор Пол Холлинсхед Paul Hollinshead сказал: «Благодаря этим испытаниям мы сделали огромный шаг вперед в реализации потенциальных возможностей и понимании угроз, которые несет в себе оружие направленной энергии».

Также было отмечено, что оружейная система DragonFire — результат совместных инвестиций минобороны и промышленности Великобритании в размере 100 миллионов фунтов стерлингов. Спонсируемая структурами Европейского союза разработка обещает приблизить появление нового типа полупроводниковых лазеров на PeLED, что подтолкнёт развитие проекционных и зондирующих систем в жизни, медицине и промышленности. Прототип сверхъяркого светодиода из перовскита на сапфировой подложке.

Источник изображения: Imec Перовскиты — особые соединения полупроводниковых материалов — уже зарекомендовали себя в сфере фотовольтаики. Они позволяют создавать элементы на гибкой подложке, поддерживают высокую мобильность электронов и обещают быть недорогими при производстве. Также они рассматриваются как кандидаты в светодиоды.

Главная задача, которая стояла перед учёными, заключалась в обеспечении подвода тока беспрецедентной плотности на малом участке подложки. Исследователи смогли найти решение в виде чередования прозрачных и непрозрачных слоёв металлизации на сапфировой подложке. Целью исследователей не является разработка сверхъярких экранов для смартфонов или другой электроники.

Они ищут путь к созданию полупроводниковых лазеров на основе перовскита, и проделанная работа подводит их к этому. Это уже шаг в область создания тонкоплёночных инжекционных полупроводниковых лазеров из перовскита, что становится ключевой вехой на пути к созданию лазера для покорения новых высот в проецировании изображений, зондировании окружающей среды, медицинской диагностике и за её пределами. В текущем году эта операция была повторена трижды и каждый раз с превышением энергии выхода над затраченной.

Повторяемость стала лучшим доказательством того, что учёные находятся на правильном пути и добьются ещё большего успеха в будущем. Источник изображения: LLNL Сегодня наиболее перспективными термоядерными реакторами считаются токамаки — реакторы с камерой в виде пончиков. Это предопределило выбор проекта для строительства первого масштабного экспериментального термоядерного реактора ИТЭР во Франции.

Но есть и другие способы запустить термоядерную реакцию. Например, с помощью лазеров, если их энергию в достаточной мере сконцентрировать на топливе. В конечном итоге нам надо заставить атомы водорода преодолеть кулоновское отталкивание и сблизиться для начала взаимодействия.

Выбранные для этого методы и энергии остаются на выбор экспериментаторов. Это может быть гравитация, температура или излучение. Лоуренса LLNL использует 192 лазера, направленных на мишень с топливом.

Топливная таблетка размером меньше перчинки помещается в специальный сосуд — хольраум. Лазеры ударяют в стенки хольраума и возбуждают в них рентгеновское излучение. Топливо находится в оптическом центре рентгеновских и лазерных лучей.

Концентрация энергии в сочетании с ударными и инерционными явлениями достигает такого значения, что ядра в топливе начинают сливаться и выделять энергию. Для извлечения из всего этого практической пользы получаемая на выходе энергия синтеза должны быть выше уровня энергии, затраченной на зажигание. Впервые этого удалось добиться в декабре 2022 года.

На мишень упало 2,05 МДж энергии, а в результате реакции учёные получили 3,15 МДж. В то же время необходимо понимать, что на накачку лазеров и поддержку всего оборудования установки ушло на пару порядков больше энергии. Установка лишь показала, что положительный выход возможен на уровне реакции.

Установка NIF Опыт был повторен 30 июля этого года. Значение энергии на выходе достигло 3,5 МДж по другим данным 3,88 МДж. Это доказало, что декабрьский результат не был случайностью.

Затем учёные ещё раз повторили реакцию в октябре и ноябре. Можно даже сказать, что термояд стал для них рутиной. Однако в каждом случае происходит набор данных по течению реакции и настройкам установки, что даёт ценный опыт для практического улучшения как установки, так и процесса.

В конечном итоге к бесконечной и чистой термоядерной энергии можно будет прийти и по этой дороге, а не только по пути токамаков. За счёт инновации появилась возможность интегрировать прозрачные магнитные материалы в оптические схемы. Ранее это считалось весьма сложной задачей.

Новый процесс получения прозрачного магнитного материала. Источник изображения: Taichi Goto Исследователи из Университета Тохоку в Сендае Япония и Технологического университета Тойохаси в одноименном японском городе разработали новый метод создания прозрачных магнитных материалов с помощью лазерного нагрева. Это считается значительным достижением в области оптических технологий и представляет собой новый подход к интеграции магнитооптических материалов в оптические устройства.

Таким образом, миниатюризация оптических устройств связи становится возможной. Магнитооптические изоляторы необходимы для стабильной оптической связи и выступают в качестве управляющих элементов, которые могут перемещать световые сигналы в одном направлении, но не в другом.

Продукты (4)

  • Что сделано
  • Регистрация
  • «Лазерный Центр» – инновационный партнер форума «Микроэлектроника 2023»
  • Продукты (4)
  • Московская компания в 2022 году увеличила производство лазерных установок почти в три раза
  • ООО НПЦ "Лазеры и аппаратура"

Сделано в России

Конфигурация установки обеспечивает ряд преимуществ: минимальный диаметр лазерного пучка и высокая плотность энергии лазерного излучения обеспечивают «холодную» бездеффектную обраотку; минимальная дефектная зона; высокий коэффициент поглощения в различных видах материалов; высокая точность обработки; работа с материалами, которые невозможно обработать на ИК-лазере. Стол XY. Прямой привод с оптической линейкой обратной связи. Ход 200х200. Точность не более 5мкм.

Ультрафиолетовый лазер имеет высокую точность и мощность излучения, им можно обрабатывать материалы, которые не поддаются инфракрасным устройствам», — рассказал Владислав Овчинский.

Компания «Лазеры и аппаратура» уже 25 лет разрабатывает и выпускает промышленные лазерные станки для пятикоординатной обработки, микрообработки, резки, сварки, наплавки и 3D-выращивания из металлических порошков. За это время созданы более 800 лазерных машин, которые работают на предприятиях России, Беларуси и других стран. Пресс-служба департамента инвестиционной и промышленной политики Москвы Пресс-служба департамента инвестиционной и промышленной политики Москвы Пресс-служба департамента инвестиционной и промышленной политики Москвы Пресс-служба департамента инвестиционной и промышленной политики Москвы По словам исполнительного директора Анны Цыганцовой, основное направление деятельности компании — создание оборудования для микроэлектроники. В последнее время оно активно развивается.

В сфере разработки и совершенствования технологии оптической керамики ученые СКФУ зарегистрировали восемь патентов, новую технологию планирует использовать индустриальный партнер вуза. Идеи, предложенные учеными, могут получить широкое применение в промышленности, обработке материалов, системах связи, в том числе космической, при создании медицинских лазеров. Комментарий Дмитрий Беспалов, ректор Северо-Кавказского федерального университета: - Разработки ученых СКФУ в области перспективных материалов для микроэлектроники, оптики и фотоники имеют большое значение для развития отечественных лазерных технологий.

Они позволяют не только решать задачи импортозамещения, но и планомерно выходить на мировые рынки. Уверен, что предложенные учеными университета технологии вызовут интерес у производителей. Справка "РГ" Лазер - устройство, которое излучает пучок света в результате процесса оптического усиления. Существуют разнообразные типы лазеров, включая газовые, волоконные, твердотельные, диодные, эксимерные, на красителях. Во всех - один и тот же базовый набор компонентов.

На своей новой площадке компания разместила дополнительные цеха узловой сборки и механообработки, рассказал руководитель департамента инвестиционной и промышленной политики Москвы Владислав Овчинский. Пресс-службв департамента инвестиционной и промышленной политики Москвы Руководитель департамента инвестиционной и промышленной политики Москвы Владислав Овчинский «Потребность российской промышленности в отечественных сложных системах и решениях для лазерной обработки существенно выросла.

Так, группа компаний «Лазеры и аппаратура» увеличила производственные площади в Зеленограде на 30 процентов для расширения цехов узловой сборки. Дополнительные площадки позволят предприятию существенно увеличить рост выпуска станков», — рассказал Владислав Овчинский.

В Москве стали производить высокоточные лазерные установки

С 26 по 29 марта в павильоне «Форум» ЦВК «Экспоцентр» состоится 18-я международная специализированная выставка лазерной, оптической и оптоэлектронной техники «Фотоника Мир лазеров и оптики-2024». Компания «Лазеры и аппаратура» первой в России разработала и запустила в серийное производство высокоточные лазерные установки для микроэлектроники. Министр правительства Москвы, руководитель Департамента инвестиционной и промышленной политики столицы Владислав Овчинский рассказал, что компания «Лазеры и аппаратура» на российском рынке с 1998 года. Компания Лазеры и аппаратура, История, Увеличение производства в 2,5 раза, Запущено первое в России производство лазерных станков для высокоточной микрообработки чипов, 2022 Увеличение производства лазерных установок почти в три раза. Оборудование для лазерной обработки материалов. Евгений Семенов, инженер ОКБ «Булат»: «Лазерное излучение доводит поверхность материалы до испарения, и он испаряется.

Похожие новости:

Оцените статью
Добавить комментарий