Новости коэффициент джини показывает

Коэффициент Джини открывает глаза и показывает социально-финансовые диспропорции внутри страны и по миру. Коэффициент Джини позволяет выявить высокие уровни неравенства доходов, которые могут стать причиной нежелательных политических и экономических последствий. Коэффициент Джинни показывает степень отклонения фактического объема распределения доходов населения от линии их равномерного распределения.

Статьи из архивов

  • Неравенство доходов и коэффициент Джини в России: причины, последствия и пути решения
  • Коэффициент Джини по странам и в России. Кривая Лоренца. Пример по годам
  • Ответственный за раздел
  • Социальное неравенство. Индекс Джини | Блог Свободного Инвестора

Как рассчитать коэффициент Джини в Excel (с примером)

У богатых денег больше, соответственно, и возможностей больше. Они увеличивают свое состояние быстрее. Поэтому даже при равных условиях в более выгодном положении остается тот, у кого средств оказалось больше. Но, как говорится, нет ничего не возможного. Если абстрагироваться от размера капитала, и исходить из реальности, то оптимальной позицией будет следующая.

Самостоятельность в действиях, анализ доходов и трат, четкий план действий, а также грамотное распределение денег, накопление, откладывание, инвестиции — необходимый минимум на пути к благосостоянию. Подытоживая, следует заметить, что, безусловно, есть много людей, которые считают, что со временем ситуация ухудшится и число бедных будет только расти. Но если все время придерживаться этой позиции и ничего совсем не делать, то лучше от этого точно не станет. Все в руках человека.

Преимущества коэффициента Джини Gini coefficient позволяет: Провести сопоставления по распределению исследуемого признака в совокупностях, разных по числу единиц, и между разными совокупностями. К примеру, в регионах с различной численностью либо между странами. Скорректировать данные по ВВП и среднедушевому доходу. Проследить динамику неравномерного рассредоточения изучаемого признака.

Сопоставить также разделение рассматриваемого признака по разнородным группам населения к примеру, для сельчан и горожан. Одним из несомненных достоинств Gini coefficient признается его анонимность. О чьих доходах идет речь, остается неизвестным, т.

В данной статье приведены показатели коэффициента и индекса Джини — показателя, характеризующего дифференциацию населения России по доходам. Применение коэффициента Джини в России началось в 1990-х годах — в это время, как и позднее период экономического роста в 2000-е годы , он демонстрировал низкую эгалитарность равенство российского общества [2]. Показатели коэффициента Джини в России за все время измерения 1991—2018 Содержание.

Страна, в которой один резидент получил весь доход, а все остальные ничего не заработал, будет иметь коэффициент Джини дохода, равный 1. Тот же анализ может быть применен к распределению богатства «коэффициент Джини богатства» , но поскольку богатство труднее измерить, чем доход, коэффициенты Джини обычно относятся к доходу и выглядят просто как «коэффициент Джини» или «индекс Джини», без указания того, что они относятся к доходу. Коэффициенты богатства Джини, как правило, намного выше, чем для дохода. Коэффициент Джини — важный инструмент для анализа распределения доходов или богатства в стране или регионе, но его не следует принимать за абсолютное измерение дохода или богатства. По данным ОЭСР , в стране с высоким и низким уровнем доходов может быть один и тот же коэффициент Джини, если доходы распределяются одинаково внутри каждой из них: в Турции и США в 2016 году коэффициенты Джини по доходам составляли около 0,39-0,40. Графическое представление индекса Джини Индекс Джини часто представляется графически через кривую Лоренца, которая показывает распределение доходов или богатства путем нанесения процентиля населения по доходу на горизонтальную ось и совокупного дохода на вертикальной оси. Коэффициент Джини равен площади под линией полного равенства 0,5 по определению за вычетом площади под кривой Лоренца, деленной на площадь под линией полного равенства. Другими словами, это вдвое больше площади между кривой Лоренца и линией полного равенства. Чтобы оценить коэффициент Джини дохода для Гаити в 2012 году, мы найдем площадь под кривой Лоренца: около 0,2. Вычитая это число из 0,5 площадь под линией равенства , мы получаем 0,3, которое затем делим на 0,5. Эта цифра представляет собой чрезвычайно высокое неравенство. Другой способ восприятия коэффициента Джини — это показатель отклонения от идеального равенства. Чем дальше кривая Лоренца отклоняется от идеально равной прямой линии которая представляет собой коэффициент Джини, равный 0 , тем выше коэффициент Джини и тем меньше равноправия в обществе. В приведенном выше примере Гаити более неравное, чем Боливия.

Однако эти различия в большинстве своем являются результатом выбора самого человека. Так, кто-то после окончания 11-го класса пойдет работать, а кто-то поступит в ВУЗ. Итак, выпускник ВУЗа имеет больше возможностей для получения большего дохода, чем люди, не имеющие высшего образования. Различия в профессиональном опыте. Доходы людей отличаются, в том числе и вследствие различий в профессиональном опыте. Так, если Иванов работает в фирме один год, то понятно, что он будет получать зарплату меньше, чем Петров, который в этой фирме более 10 лет и имеет больший профессиональный опыт. Различия в распределении собственности. Различия в распределении собственности является наиболее веской причиной неравенства доходов. Немалое количество людей имеют небольшую или вообще не имеют собственности и, соответственно, или получают небольшой доход или не получают его вообще. А другие являются владельцами большего количества недвижимости, оборудования, акций и т. Риск, удача, неудача, доступ к ценной информации. Эти факторы также оказывают существенное влияние на распределение доходов.

Вы точно человек?

Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям.

Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм?

Тогда кривая будет отклоняться в сторону оси Х. И чем больше неравенства в стране, тем более вогнутой будет кривая. Рис 1. Кривая Лоренца Рис 1. Кривая Лоренца Государство часто пытается выровнять кривую за счёт прогрессивной ставки подоходного налога и развития социальных программ. Так оно перераспределяет доходы внутри общества, чтобы снизить экономическое неравенство. Чтобы получить коэффициент Джини, надо: Посчитать площадь фигуры Т , которая образована линией абсолютного равенства и кривой Лоренца. Посчитать площадь треугольника OFE. Разделить площадь Т на площадь OFE. Если доходы распределены равномерно, то показатель будет равен 0, если всё принадлежит одному человеку, то — 1. В целом чем ниже коэффициент Джини, тем лучше, тем меньше в стране экономическое неравенство. В 1991 году коэффициент Джини равнялся 0,26, а в 1993 году после перехода к рыночному механизму регулирования экономики — уже 0,498. Однако в реальности он, вероятно, был ещё выше, потому что в то время большую часть доходов не декларировали. За два года общество сильно расслоилось: появились богатые люди и бедные. Сейчас индекс Джини в России равен 0,417 последние данные на начало 2018 года. Данные Росстата, Всемирного банка и других организаций обычно отличаются. Вот как он изменялся: 32 Источник данных. Всемирный банк посчитал индекс Джини в России по-другому: по его данным он снижается с 1996 года и составляет 0,377 последние данные на 2015 год. Динамика коэффициента Джини, 1996-2015 года. В других странах индекс Джини такой источник : Рис. Индекс Джини в странах мира данные на 2016 год. Однако следует помнить, что низкий показатель говорит не о богатстве общества, а о равномерном распределении доходов.

Когда вы видите коэффициент, вы не знаете, на основании какого количества групп он рассчитывался — чем меньше групп, тем больше коэффициент. Кроме того, для плановой экономики этот коэффициент не применим. Выводы Коэффициент или индекс Джини — это число, показывающее распределение доходов населения.

Федор Титарчук Гуру 4164 , закрыт 16 лет назад Maryana Мастер 1280 16 лет назад Коэффициент Джини индекс Джини — статистический показатель, свидетельствующий о степени расслоения общества данной страны или региона по отношению к какому-либо изучаемому признаку к примеру, по уровню годового дохода — наиболее частое применение, особенно при современных экономических расчётах. Индекс Джини это процентный аналог коэффициента Джини.

Навигация по записям

  • Социальное неравенство. Индекс Джини | Блог Свободного Инвестора
  • Коэффициент Джини: все ли равны? | Частных инвесторов журнал | Дзен
  • Некоторые равнее: что такое коэффициент Джини и зачем он нужен
  • Коэффициент Джини: формула неравенства
  • Коэффициент Джини. Из экономики в машинное обучение -
  • Формула расчета

Вы точно человек?

Коэффициент Джини является основным широко используемым показателем для измерения неравенства распределения доходов в обществе. Коэффициент Джини как функция таблиц смертности: расчет на основе дис-кретных данных, декомпозиция различий и эмпирические примеры. Коэффициент Джини — статистический показатель степени расслоения общества данной страны или региона по какому-либо изучаемому признаку. Значение коэффициента Джини для этих стран стабильно удерживается в диапазоне 0,25-0,3.

Какие страны и почему отличаются высоким показателем джини география реферат

Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини. В данной статье приведены показатели коэффициента и индекса Джини — показателя, характеризующего дифференциацию населения России по доходам. Чем больше коэффициент Джини, тем сильнее распределение отклоняется от прямой и тем выше уровень неравенства доходов в данной группе. Коэффициент Джини может принимать значения от нуля до единицы (0÷1), расположенные между идеальной прямой равномерного распределения и кривой Лоренца. Как указывает автор, коэффициент Джини лишь один из многих измерителей неравенства, и сказанное относительно коэффициента Джини в равной мере относится и к остальным, близким по содержанию показателям (например, к индексам Тейла, Аткинсона, Херфиналя-Хиршмана.

В России вырос уровень доходного неравенства

Запишу факторы в отдельный лист для удобства. Однако, в ходе анализа модели было предложено рассмотреть возможность добавления нового фактора — F18. Данный показатель является качественным, поэтому требует преобразования с помощью woe функции. Переобучили модель с учетом нового набора предикторов и посчитали Джини.

По результатам видно, что на обучающей выборке качество модели лучше с дополнительным фактором, а на тестовой — без него. Так как решение принимается исходя из большего значения по Gini test, то дополнительный фактор не будет добавлен в модель.

Таким образом, это макроэкономический показатель, характеризующий дифференциацию денежных доходов населения в виде степени отклонения фактического распределения доходов от абсолютно равного их распределения между жителями страны.

Минздрав России зарегистрировал двухкомпонентную вакцину от коронавируса «Спутник V» с обновленным составом. В 16 российских регионах зафиксировали нехватку вакцин от кори. Препараты производит компания «Нацимбио». Ее представители сообщили, что в январе 2024 года все регионы получили почти 200 тыс.

В Волгограде произошел пожар на складе пиломатериалов. Площадь возгорания составила тысячу квадратных метров. Погибших и пострадавших нет. Минюст предложил штрафовать коллекторов на 2 млн рублей за навязчивые звонки или письма. Ученые выяснили, почему начал таять ледник Туэйтса «ледник Судного дня».

Кривая Лоренца Государство часто пытается выровнять кривую за счёт прогрессивной ставки подоходного налога и развития социальных программ. Так оно перераспределяет доходы внутри общества, чтобы снизить экономическое неравенство. Чтобы получить коэффициент Джини, надо: Посчитать площадь фигуры Т , которая образована линией абсолютного равенства и кривой Лоренца.

Посчитать площадь треугольника OFE. Разделить площадь Т на площадь OFE. Если доходы распределены равномерно, то показатель будет равен 0, если всё принадлежит одному человеку, то — 1. В целом чем ниже коэффициент Джини, тем лучше, тем меньше в стране экономическое неравенство. В 1991 году коэффициент Джини равнялся 0,26, а в 1993 году после перехода к рыночному механизму регулирования экономики — уже 0,498. Однако в реальности он, вероятно, был ещё выше, потому что в то время большую часть доходов не декларировали. За два года общество сильно расслоилось: появились богатые люди и бедные. Сейчас индекс Джини в России равен 0,417 последние данные на начало 2018 года.

Данные Росстата, Всемирного банка и других организаций обычно отличаются. Вот как он изменялся: 32 Источник данных. Всемирный банк посчитал индекс Джини в России по-другому: по его данным он снижается с 1996 года и составляет 0,377 последние данные на 2015 год. Динамика коэффициента Джини, 1996-2015 года. В других странах индекс Джини такой источник : Рис. Индекс Джини в странах мира данные на 2016 год. Однако следует помнить, что низкий показатель говорит не о богатстве общества, а о равномерном распределении доходов. Экономисты считают , что коэффициент Джини не должен быть выше значения 0,3-0,4.

Когда индекс больше, в стране существует высокое неравенство. Оно замедляет темп экономического развития и формирует «ловушку бедности», при которой общество становится беднее с каждым поколением. Как правило, страны пытаются снизить экономическое неравенство.

Индекс Джини в 1980–2022 годах

  • Социальная поддержка сократила уровень неравенства в России - Российская газета
  • Ваш пароль
  • Коэффициент Джини: формула неравенства
  • Коэффициент Джини — Википедия
  • Как рассчитать коэффициент Джини в Excel (с примером)
  • Вы точно человек?

Неравенство доходов и коэффициент Джини в России: причины, последствия и пути решения

Федор Титарчук Гуру 4164 , закрыт 16 лет назад Maryana Мастер 1280 16 лет назад Коэффициент Джини индекс Джини — статистический показатель, свидетельствующий о степени расслоения общества данной страны или региона по отношению к какому-либо изучаемому признаку к примеру, по уровню годового дохода — наиболее частое применение, особенно при современных экономических расчётах. Индекс Джини это процентный аналог коэффициента Джини.

Затем он снижался до 0,412 в 2016 году. Наконец, самым минимальным он стал в 2017 году, достигнув 0,410. Ниже этого уровня индекс Джини в России был только в 2005 году 0,409. Как обратила внимание в документе «Комментарии о государстве и бизнесе» заместитель директора Центра развития ВШЭ Светлана Мисихина, в 2018 году индекс Джини в России вновь начал расти. За январь-сентябрь 2018 года индекс вырос с 0,400 до 0,402 в сравнении с тем же периодом 2017 года. Также было заявлено о разных темпах роста инфляции: для бедных она росла медленнее, чем для богатых. Это привело к росту потребления малообеспеченных групп населения, что и дало сокращение неравенства. Как определялась инфляция для бедных? На основе индекса прожиточного минимума.

Росстат полагает, что бедность тем ниже в стране, чем ниже прожиточный минимум. Однако в этом есть только теоретическая логика. В то же время коэффициент Джини ведь растет, показывая реальное положение дел. В расчетах федеральных ведомств немало ошибок. Дело не в сознательном занижении инфляции, попытках «не увидеть» реальный рост цен или понизить показатели коэффициента Джини. Дело в большей степени состоит в проблемной выборке для статистической оценки. Так, например, индекс прожиточного минимума высчитывает Минтруд, который не учитывает полное изменение стоимости услуг по всей стране, что на выходе дает более красивую картину по прожиточному минимуму, а значит, население кажется менее бедным, чем есть на самом деле. В обзоре ВШЭ сказано, что Росстат тоже не безгрешен.

Такой показатель есть, в 1912 году его вывел итальянский статистик Коррадо Джини 1884-1965 , в честь которого и назван коэффициент. Если мы представим себе, что площадь этого треугольника изображает совершенно неравномерное распределение доходов населения, то площадь фигуры между кривой Лоренца для Казыстана и кривой абсолютного равенства изображает неравенство в Казыстане. Тогда, если мы разделим неравенство Казыстана на абсолютное неравенство площадь треугольника АBC , то узнаем, какую долю неравенство в Казыстане составляет от абсолютного неравенства. Это и будет коэффициентом Джини для Казыстана, а метод расчета коэффициента называется геометрическим методом расчета. Но как посчитать площадь заштрихованной фигуры? Это просто: можно разделить эту фигуру на два треугольника и 3 трапеции, вывести площади всех этих фигур и сложить их. Геометрический способ был представлен для того, чтобы было понятно, в чем суть этого коэффициента.

Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: 2. Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и. Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение. Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей. Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге. И этому есть вполне разумное объяснение. Эта статья не ставит перед собой целью подробно остановиться на практическом применении статистики в той или иной области. На эту тему написаны многие книги, мы лишь кратко пробежимся по этой теме. Кредитный скоринг По всему миру банки ежедневно получают тысячи заявок на выдачу кредита. Разумеется, необходимо как-то оценивать риски того, что клиент может просто-напросто не вернуть кредит, поэтому разрабатываются предиктивные модели, оценивающие по признаковому пространству вероятность того, что клиент не выплатит кредит, и эти модели в первую очередь надо как-то оценивать и, если модель удачная, то выбирать оптимальный порог threshold вероятности. Выбор оптимального порога определяется политикой банка. Задача анализа при подборе порога — минимизировать риск упущенной выгоды, связанной с отказом в выдаче кредита. Но чтобы выбирать порог, надо иметь качественную модель. Основные метрики качества в банковской сфере: Страхование В этой области всё аналогично банковской сфере, с той лишь разницей, что нам необходимо разделить клиентов на тех, кто подаст страховое требование и на тех, кто этого не сделает. Рассмотрим практический пример из этой области, в котором будет хорошо видна одна особенность Lift Curve — при сильно несбалансированных классах в целевой переменной кривая почти идеально совпадает с ROC-кривой. Это было очень странное и в то же время невероятно познавательное соревнование. И с рекордным количеством участников — 5169.

Коэффициент Джини — индекс концентрации доходов, справедливости и неравенства

Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини Коэффициент Джини – это количественный показатель, показывающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини.
Как рассчитывать коэффициент Джини The Gini coefficient measures inequality on a scale from 0 to 1. Higher values indicate higher inequality. Depending on the country and year, the data relates to income measured after taxes and benefits, or to consumption, per capita.

Доверительный интервал коэффициента Джини. Что это?

Коэффициент Джини — статистический показатель степени расслоения общества данной страны или региона по какому-либо изучаемому признаку. Далее мы покажем, что Коэффициент Джини является абсолютно точной алгебраической интерпретацией Кривой Лоренца, а она в свою очередь является его графическим отображением. Коэффициент Джини является основным широко используемым показателем для измерения неравенства распределения доходов в обществе.

Похожие новости:

Оцените статью
Добавить комментарий