Новости наибольшей наглядностью обладают формы записи алгоритмов

Наибольшей наглядностью обладают алгоритмы, записанные в виде блок-схем. Наибольшей наглядностью обладает следующая форма записи алгоритмов: а)словесная. Наибольшей наглядностью обладают формы записи алгоритмов. 11. Наибольшей наглядностью обладает следующая форма записи алгоритмов. Урок по теме Формы записи алгоритмов. Теоретические материалы и задания Информатика, 6 класс. ЯКласс — онлайн-школа нового поколения.

Глава 7. Алгоритмы. Алгоритмизация. Алгоритмические языки

То есть если алгоритм многократно применяется к одному и тому же набору исходных данных, то на выходе он получает каждый раз один и тот же результат. Результативность - исполнение алгоритма должно закончиться за конечное число шагов, и при этом должен быть получен результат решения задачи. В качестве одного из возможных результатов может быть и установление того факта, что задача решений не имеет. Свойство результативности содержит в себе свойство конечности - завершение работы алгоритма за конечное число шагов. Массовость - алгоритм пригоден для решения любой задачи из некоторого класса задач, то есть алгоритм правильно работает на некотором множестве исходных данных, которое называется областью применимости алгоритма. Свойство массовости определяет скорее качество алгоритма, а не относится к обязательным свойствам как дискретность, понятность и пр. Существуют алгоритмы, область применимости которых ограничивается единственным набором входных данных или даже отсутствием таковых например, получение фиксированного числа верных цифр числа p. Правильнее говорить о том, что алгоритм должен быть применим к любым данным из своей области определения, и слово массовость не всегда подходит для описания такого свойства. Понятие алгоритма Обобщив вышесказанное, сформулируем следующее понятие алгоритма. Алгоритм - понятное и точное предписание исполнителю на выполнение конечной последовательности действий, приводящей от исходных данных к искомому результату. Приведенное определение не является определением в математическом смысле слова, то есть это не формальное определение формальное определение алгоритма см.

Отметим, что для каждого исполнителя набор допустимых действий СКИ всегда ограничен - не может существовать исполнителя, для которого любое действие является допустимым. Перефразированное рассуждение И. Интересно, что существуют задачи, которые человек, вообще говоря, умеет решать, не зная при этом алгоритм ее решения. Например, перед человеком лежат фотографии кошек и собак. Задача состоит в том, чтобы определить, кошка или собака изображена на конкретной фотографии. Человек решает эту задачу, но написать алгоритм решения этой задачи пока чрезвычайно сложно. С другой стороны, существуют задачи, для которых вообще невозможно построить процедуру решения. Причем данный факт можно строго доказать. Элементы теории алгоритмов Алгоритм - понятие, относящееся к фундаментальным основам информатики. Оно возникло задолго до появления компьютеров и является одним из основных понятий математики.

У понятия «алгоритм» нет четкого, однозначногоопределения в математическом смысле. Можно дать толькоописание пояснение этого понятия. Для пояснения понятия«алгоритм» большое значение имеет определение понятия«исполнитель алгоритма». Алгоритм формулируется в расчете на конкретного исполнителя. Алгоритм - руководство к действию для исполнителя, поэтому значение слова «алгоритм» близко по смыслу к значению слов «указание» или «предписание».

А в популярной средневековой поэме « Роман о Розе » 1275—1280 Жана де Мена «греческий философ Алгус» ставится в один ряд с Платоном , Аристотелем , Евклидом и Птолемеем! Встречался также вариант написания имени Аргус Argus. И хотя, согласно древнегреческой мифологии, корабль « Арго » был построен Ясоном , именно этому Арго приписывалось строительство корабля. И в уже упоминавшейся «Романе о розе», и в известной итальянской поэме «Цветок», написанной Дуранте , имеются фрагменты, в которых говорится, что даже «mestre Argus» не сумеет подсчитать, сколько раз ссорятся и мирятся влюблённые. Английский поэт Джефри Чосер в поэме « Книга герцогини » 1369 г. Однако со временем такие объяснения всё менее занимали математиков, и слово algorism или algorismus , неизменно присутствовавшее в названиях математических сочинений, обрело значение способа выполнения арифметических действий посредством арабских цифр, то есть на бумаге, без использования абака. Именно в таком значении оно вошло во многие европейские языки. Например, с пометкой «устар. Алгоритм — это искусство счёта с помощью цифр, но поначалу слово «цифра» относилось только к нулю. Знаменитый французский трувер Готье де Куанси Gautier de Coincy, 1177—1236 в одном из стихотворений использовал слова algorismus-cipher которые означали цифру 0 как метафору для характеристики абсолютно никчёмного человека. Очевидно, понимание такого образа требовало соответствующей подготовки слушателей, а это означает, что новая система счисления уже была им достаточно хорошо известна. Многие века абак был фактически единственным средством для практичных вычислений, им пользовались и купцы, и менялы, и учёные. Достоинства вычислений на счётной доске разъяснял в своих сочинениях такой выдающийся мыслитель, как Герберт Аврилакский 938—1003 , ставший в 999 году папой римским под именем Сильвестра II. Новое с огромным трудом пробивало себе дорогу, и в историю математики вошло упорное противостояние лагерей алгорисмиков и абацистов иногда называемых гербекистами , которые пропагандировали использование для вычислений абака вместо арабских цифр. Интересно, что известный французский математик Николя Шюке Nicolas Chuquet, 1445—1488 в реестр налогоплательщиков города Лиона был вписан как алгорисмик algoriste. Но прошло не одно столетие, прежде чем новый способ счёта окончательно утвердился, столько времени потребовалось, чтобы выработать общепризнанные обозначения, усовершенствовать и приспособить к записи на бумаге методы вычислений. В Западной Европе учителей арифметики вплоть до XVII века продолжали называть «магистрами абака», как, например, математика Никколо Тарталью 1500—1557. Итак, сочинения по искусству счёта назывались Алгоритмами. Из многих сотен можно выделить и такие необычные, как написанный в стихах трактат Carmen de Algorismo латинское carmen и означает стихи Александра де Вилла Деи Alexander de Villa Dei, ум. Постепенно значение слова расширялось. Учёные начинали применять его не только к сугубо вычислительным, но и к другим математическим процедурам. Например, около 1360 г. Когда же на смену абаку пришёл так называемый счёт на линиях, многочисленные руководства по нему стали называть Algorithmus linealis, то есть правила счёта на линиях. Можно обратить внимание на то, что первоначальная форма algorismi спустя какое-то время потеряла последнюю букву, и слово приобрело более удобное для европейского произношения вид algorism. Позднее и оно, в свою очередь, подверглось искажению, скорее всего, связанному со словом arithmetic. В 1684 году Готфрид Лейбниц в сочинении Nova Methodvs pro maximis et minimis, itemque tangentibus… впервые использовал слово «алгоритм» Algorithmo в ещё более широком смысле: как систематический способ решения проблем дифференциального исчисления. В XVIII веке в одном из германских математических словарей, Vollstandiges mathematisches Lexicon изданном в Лейпциге в 1747 году , термин algorithmus всё ещё объясняется как понятие о четырёх арифметических операциях. Но такое значение не было единственным, ведь терминология математической науки в те времена ещё только формировалась. В частности, выражение algorithmus infinitesimalis применялось к способам выполнения действий с бесконечно малыми величинами. Пользовался словом алгоритм и Леонард Эйлер , одна из работ которого так и называется — «Использование нового алгоритма для решения проблемы Пелля» De usu novi algorithmi in problemate Pelliano solvendo. Мы видим, что понимание Эйлером алгоритма как синонима способа решения задачи уже очень близко к современному. Однако потребовалось ещё почти два столетия, чтобы все старинные значения слова вышли из употребления. Этот процесс можно проследить на примере проникновения слова «алгоритм» в русский язык. Историки датируют 1691 годом один из списков древнерусского учебника арифметики, известного как «Счётная мудрость». Это сочинение известно во многих вариантах самые ранние из них почти на сто лет старше и восходит к ещё более древним рукописям XVI веке По ним можно проследить, как знание арабских цифр и правил действий с ними постепенно распространялось на Руси. Полное название этого учебника — «Сия книга, глаголемая по-еллински и по-гречески арифметика, а по-немецки алгоризма, а по-русски цифирная счётная мудрость». Таким образом, слово «алгоритм» понималось первыми русскими математиками так же, как и в Западной Европе. Однако его не было ни в знаменитом словаре В. Даля , ни спустя сто лет в «Толковом словаре русского языка» под редакцией Д. Ушакова 1935 г. Зато слово «алгорифм» можно найти и в популярном дореволюционном Энциклопедическом словаре братьев Гранат , и в первом издании Большой советской энциклопедии БСЭ , изданном в 1926 г. И там, и там оно трактуется одинаково: как правило, по которому выполняется то или иное из четырёх арифметических действий в десятичной системе счисления. Однако к началу XX в.

Вспомогательный алгоритм — это блок последовательных действий в основном алгоритме, который выделен в качестве самостоятельного алгоритма, имеющего свое имя. Чем крупнее блоки, тем легче проходит сборка алгоритма. Вспомогательный алгоритм всегда является вложенным, если он включается в другой алгоритм. Но вложенная конструкция не является вспомогательным алгоритмом до тех пор, пока ей не дано имя. К вспомогательным алгоритмам можно отнести процедуры, которые описываются перед выполнением основной программы и служат для выполнения одинаковых действий с различными параметрами. При разработке алгоритма необходимо пройти минимум две стадии — сначала алгоритм должен быть понятен тому, кто его разрабатывает, а затем его следует преобразовать с учетом специфики среды.

Образованная структура алгоритма оказывается прерывной дискретной : только выполнив одну команду, исполнитель сможет приступить к выполнению следующей. Алгоритм должен быть понятен исполнителю, и исполнитель должен быть в состоянии выполнить его команды. Следовательно, алгоритм нужно разрабатывать с ориентацией на определенного исполнителя, то есть в алгоритм можно включать команды только из системы команд данного исполнителя. Будучи понятным, алгоритм не должен содержать команды, смысл которых может восприниматься неоднозначно. Например, робот будет поставлен в тупик командой «Взять две - три ложки песка»: что значит «две-три»? Кроме того, недопустимы ситуации, когда после выполнения очередной команды исполнителю не ясно, какую команду выполнять на следующем шаге. Нарушением составителем алгоритма этих требований называемых требованием определенности, или детерминированности приводит к тому, что одна и та же команда после выполнения разными исполнителями дает неодинаковый результат. Смысл этого обязательного требования к алгоритмам состоит в том, что при точном исполнении всех команд алгоритма процесс решения задачи должен, прекратиться за конечное число шагов и при этом, должен быть получен определенный постановкой задачи ответ. Разработка алгоритмов - процесс интересный, творческий, но непростой, требующий многих, часто коллективных, умственных усилий и затрат времени. Поэтому предпочтительно разрабатывать алгоритмы» обеспечивающие решение всего класса задач данного типа.

Тест с ответами: «Основы алгоритмизации»

Новости Сочинения по теме Тестовые задания по теме «Алгоритмы. Программирование на Pascal — начало работы» 1. Алгоритм —это: а правила выполнения определенных действий; б ориентированный граф, указывающий Тема урока Алгоритм. Имя существительное.

Насыщение текста существительными может стать средством языковой изобразительности. Текст стихотворения А. Фета «Шепот, робкое дыханье...

Однако любой алгоритм в отличие от рецепта или способа обязательно обладает следующими свойствами. Выполнение алгоритма разбивается на последовательность законченных действий-шагов. Только выполнив одно действие команду , можно приступать к исполнению следующего.

Это свойство алгоритма называется дискретностью. Произвести каждое отдельное действие исполнителю предписывает специальное указание в записи алгоритма команда. Понятность - алгоритм не должен содержать предписаний, смысл которых может восприниматься исполнителем неоднозначно, то есть запись алгоритма должна быть настолько четкой и полной, чтобы у исполнителя не возникало потребности в принятии каких-либо самостоятельных решений.

Алгоритм составляется из команд, входящих в СКИ. Если машин нет, дойди до середины улицы. Если есть, подожди, пока они проедут, и т.

Представьте себе ситуацию: машина слева есть, но она не едет - у нее меняют колесо. Если вы думаете, что исполнитель алгоритма должен ждать, то вы поняли этот алгоритм. Если же вы решили, что улицу переходить можно, считая алгоритм подправленным ввиду непредвиденных по вашему мнению!

Детерминированность определенность и однозначность. Каждая команда алгоритма определяет однозначное действие исполнителя, и должно быть однозначно определено, какая команда выполняется следующей. То есть если алгоритм многократно применяется к одному и тому же набору исходных данных, то на выходе он получает каждый раз один и тот же результат.

Результативность - исполнение алгоритма должно закончиться за конечное число шагов, и при этом должен быть получен результат решения задачи. В качестве одного из возможных результатов может быть и установление того факта, что задача решений не имеет. Свойство результативности содержит в себе свойство конечности - завершение работы алгоритма за конечное число шагов.

Массовость - алгоритм пригоден для решения любой задачи из некоторого класса задач, то есть алгоритм правильно работает на некотором множестве исходных данных, которое называется областью применимости алгоритма.

Представьте себе ситуацию: машина слева есть, но она не едет - у нее меняют колесо. Если вы думаете, что исполнитель алгоритма должен ждать, то вы поняли этот алгоритм. Если же вы решили, что улицу переходить можно, считая алгоритм подправленным ввиду непредвиденных по вашему мнению! Детерминированность определенность и однозначность.

Каждая команда алгоритма определяет однозначное действие исполнителя, и должно быть однозначно определено, какая команда выполняется следующей. То есть если алгоритм многократно применяется к одному и тому же набору исходных данных, то на выходе он получает каждый раз один и тот же результат. Результативность - исполнение алгоритма должно закончиться за конечное число шагов, и при этом должен быть получен результат решения задачи. В качестве одного из возможных результатов может быть и установление того факта, что задача решений не имеет. Свойство результативности содержит в себе свойство конечности - завершение работы алгоритма за конечное число шагов.

Массовость - алгоритм пригоден для решения любой задачи из некоторого класса задач, то есть алгоритм правильно работает на некотором множестве исходных данных, которое называется областью применимости алгоритма. Свойство массовости определяет скорее качество алгоритма, а не относится к обязательным свойствам как дискретность, понятность и пр. Существуют алгоритмы, область применимости которых ограничивается единственным набором входных данных или даже отсутствием таковых например, получение фиксированного числа верных цифр числа p. Правильнее говорить о том, что алгоритм должен быть применим к любым данным из своей области определения, и слово массовость не всегда подходит для описания такого свойства. Понятие алгоритма Обобщив вышесказанное, сформулируем следующее понятие алгоритма.

Алгоритм - понятное и точное предписание исполнителю на выполнение конечной последовательности действий, приводящей от исходных данных к искомому результату. Приведенное определение не является определением в математическом смысле слова, то есть это не формальное определение формальное определение алгоритма см. Отметим, что для каждого исполнителя набор допустимых действий СКИ всегда ограничен - не может существовать исполнителя, для которого любое действие является допустимым. Перефразированное рассуждение И. Интересно, что существуют задачи, которые человек, вообще говоря, умеет решать, не зная при этом алгоритм ее решения.

Например, перед человеком лежат фотографии кошек и собак. Задача состоит в том, чтобы определить, кошка или собака изображена на конкретной фотографии. Человек решает эту задачу, но написать алгоритм решения этой задачи пока чрезвычайно сложно. С другой стороны, существуют задачи, для которых вообще невозможно построить процедуру решения. Причем данный факт можно строго доказать.

Элементы теории алгоритмов Алгоритм - понятие, относящееся к фундаментальным основам информатики. Оно возникло задолго до появления компьютеров и является одним из основных понятий математики.

Какая последовательность символов не может служить именем в языке Паскаль? Какая клавиша нажимается после набора последнего данного в операторе read: 20.

Нормально вычислимой называют функцию, которую можно реализовать нормальным алгоритмом. То есть алгоритмом, который каждое слово из множества допустимых данных функции превращает в её начальные значения [11].. Создатель теории нормальных алгоритмов А. Марков выдвинул гипотезу, которая получила название принцип нормализации Маркова: Для нахождения значений функции, заданной в некотором алфавите, тогда и только тогда существует некоторый алгоритм, когда функция нормально исчисляемая. Подобно тезисам Тьюринга и Черча, принцип нормализации Маркова не может быть доказан математическими средствами. Стохастические алгоритмы[ править править код ] Однако приведённое выше формальное определение алгоритма в некоторых случаях может быть слишком строгим.

Иногда возникает потребность в использовании случайных величин [12]. Алгоритм, работа которого определяется не только исходными данными, но и значениями, полученными из генератора случайных чисел , называют стохастическим или рандомизированным, от англ. Стохастические алгоритмы часто бывают эффективнее детерминированных, а в отдельных случаях — единственным способом решить задачу [12]. На практике вместо генератора случайных чисел используют генератор псевдослучайных чисел. Однако следует отличать стохастические алгоритмы и методы, которые дают с высокой вероятностью правильный результат. В отличие от метода , алгоритм даёт корректные результаты даже после продолжительной работы.

Некоторые исследователи допускают возможность того, что стохастический алгоритм даст с некоторой заранее известной вероятностью неправильный результат. Тогда стохастические алгоритмы можно разделить на два типа [14] : алгоритмы типа Лас-Вегас всегда дают корректный результат, но время их работы не определено. Для некоторых задач названные выше формализации могут затруднять поиск решений и осуществление исследований. Для преодоления препятствий были разработаны как модификации «классических» схем, так и созданы новые модели алгоритма. В частности, можно назвать: многоленточная и недетерминированная машины Тьюринга; регистровая и РАМ-машина — прототип современных компьютеров и виртуальных машин; Виды алгоритмов[ править править код ] Виды алгоритмов как логико-математических средств отражают указанные компоненты человеческой деятельности и тенденции, а сами алгоритмы в зависимости от цели, начальных условий задачи, путей её решения. Следует подчеркнуть принципиальную разницу между алгоритмами вычислительного характера, преобразующими некоторые входные данные в выходные именно их формализацией являются упомянутые выше машины Тьюринга, Поста, РАМ, нормальные алгорифмы Маркова и рекурсивные функции , и интерактивными алгоритмами уже у Тьюринга встречается C-машина, от англ.

Последние предназначены для взаимодействия с некоторым объектом управления и призваны обеспечить корректную выдачу управляющих воздействий в зависимости от складывающейся ситуации, отражаемой поступающими от объекта управления сигналами [15] [16]. В некоторых случаях алгоритм управления вообще не предусматривает окончания работы например, поддерживает бесконечный цикл ожидания событий, на которые выдается соответствующая реакция , несмотря на это, являясь полностью правильным. Можно также выделить алгоритмы: Механические алгоритмы, или иначе детерминированные, жесткие например, алгоритм работы машины, двигателя и т. Гибкие алгоритмы, например, стохастические, то есть вероятностные и эвристические. Вероятностный стохастический алгоритм даёт программу решения задачи несколькими путями или способами, приводящими к вероятному достижению результата. Эвристический алгоритм от греческого слова « эврика » — алгоритм, использующий различные разумные соображения без строгих обоснований [17].

Линейный алгоритм — набор команд указаний , выполняемых последовательно во времени друг за другом. Разветвляющийся алгоритм — алгоритм, содержащий хотя бы одно условие, в результате проверки которого может осуществляться разделение на несколько альтернативных ветвей алгоритма. Циклический алгоритм — алгоритм, предусматривающий многократное повторение одного и того же действия одних и тех же операций. К циклическим алгоритмам сводится большинство методов вычислений, перебора вариантов. Цикл программы — последовательность команд серия, тело цикла , которая может выполняться многократно. Вспомогательный подчинённый алгоритм процедура — алгоритм, ранее разработанный и целиком используемый при алгоритмизации конкретной задачи.

В некоторых случаях при наличии одинаковых последовательностей указаний команд для различных данных с целью сокращения записи также выделяют вспомогательный алгоритм. На всех этапах подготовки к алгоритмизации задачи широко используется структурное представление алгоритма. Структурная блок-схема , граф-схема алгоритма — графическое изображение алгоритма в виде схемы связанных между собой с помощью стрелок линий перехода блоков — графических символов, каждый из которых соответствует одному шагу алгоритма. Внутри блока дается описание соответствующего действия. Графическое изображение алгоритма широко используется перед программированием задачи вследствие его наглядности, так как зрительное восприятие обычно облегчает процесс написания программы, её корректировки при возможных ошибках, осмысливание процесса обработки информации. Можно встретить даже такое утверждение: «Внешне алгоритм представляет собой схему — набор прямоугольников и других символов, внутри которых записывается, что вычисляется, что вводится в машину и что выдается на печать и другие средства отображения информации».

Нумерация алгоритмов[ править править код ] Нумерация алгоритмов играет важную роль в их исследовании и анализе [18]. Поскольку любой алгоритм можно задать в виде конечного слова представить в виде конечной последовательности символов некоторого алфавита , а множество всех конечных слов в конечном алфавите счётное , то множество всех алгоритмов также счётное. Это означает существование взаимно однозначного отображения между множеством натуральных чисел и множеством алгоритмов, то есть возможность присвоить каждому алгоритму номер. Нумерация алгоритмов является одновременно и нумерацией всех алгоритмически исчисляемых функций, причем любая функция может иметь бесконечное количество номеров. Существование нумерации позволяет работать с алгоритмами так же, как с числами. Особенно полезна нумерация в исследовании алгоритмов, работающих с другими алгоритмами.

! Способы записи алгоритмов:

Формы записи алгоритма. 29. Специальное средство, предназначенное для записи алгоритмов в аналитическом виде: а) алгоритмические языки + б) алгоритмические навыки в) алгоритмические эксперименты. Наибольшей наглядностью обладает следующая форма записи алгоритмов: а)словесная б)рекурсивная в)графическая г)построчная. Запишите значение переменной s, полученное в результате работыследующей программы.

Тест с ответами: «Алгоритмизация и программирование»

Они облегчают работу программиста и повышают надежность создаваемых программ. Какие компоненты образуют алгоритмический язык? Алгоритмический язык как и любой другой язык образуют три его составляющие: алфавит, синтаксис и семантика. Точнее говоря, синтаксис языка представляет собой набор правил, устанавливающих, какие комбинации символов являются осмысленными предложениями на этом языке. Семантика определяет смысловое значение предложений языка. Являясь системой правил истолкования отдельных языковых конструкций, семантика устанавливает, какие последовательности действий описываются теми или иными фразами языка и, в конечном итоге, какой алгоритм определен данным текстом на алгоритмическом языке. Какие понятия используют алгоритмические языки?

Каждое понятие алгоритмического языка подразумевает некоторую синтаксическую единицу конструкцию и определяемые ею свойства программных объектов или процесса обработки данных. Понятие языка определяется во взаимодействии синтаксических и семантических правил. Синтаксические правила показывают, как образуется данное понятие из других понятий и букв алфавита, а семантические правила определяют свойства данного понятия Основными понятиями в алгоритмических языках обычно являются следующие. Имеется тpи основных вида данных: константы, пеpеменные и массивы. Пеpеменные обозначаются именами и могут изменять свои значения в ходе выполнения пpогpаммы. Пеpеменные бывают целые, вещественные, логические, символьные и литерные.

Положение элемента в массиве однозначно определяется его индексами одним, в случае одномерного массива, или несколькими, если массив многомерный. Иногда массивы называют таблицами. Выражения записываются в виде линейных последовательностей символов без подстрочных и надстрочных символов, "многоэтажных" дробей и т. Различают выражения арифметические, логические и строковые. Арифметические выражения служат для определения одного числового значения. Логические выражения описывают некоторые условия, которые могут удовлетворяться или не удовлетворяться.

В них могут входить литерные константы, литерные переменные и литерные функции, разделенные знаком операции сцепки.

Ребята смогли разработать алгоритм перехода на другой берег за минимально возможное время. Какое время она затратили на его исполнение?

Алгоритм с ветвлением 8 класс Информатика. Алгоритмическая конструкция ветвление. Алгоритм с ветвлением это в информатике. Линейный алгоритм это в информатике 4 класс. Линейный алгоритм по информатике 4 класс. Линейный алгоритм 4 класс Информатика задания.

Алгоритмы по информатике 9 класс. Алгоритм это процесс решения задачи. Свойства алгоритма дискретность понятность. Каким должен быть алгоритм. Дискретность это процесс решения задач. Структура ветвления алгоритма. Структура ветвления Информатика.

Конструкция алгоритма ветвление. Неполная форма разветвляющегося алгоритма. Полная форма разветвляющегося алгоритма. Разветвляющийся алгоритм в виде блок схемы. Виды алгоритмов разветвляющийся алгоритм. Типовые конструкции алгоритмов. Типовые структуры алгоритмов.

Типовые алгоритмические структуры. Основные типы алгоритмов: линейные, разветвляющиеся, циклические.. Линейный алгоритм разветвляющийся алгоритм циклический алгоритм. Блок схема линейная Ветвеник. Блок-схема двух циклических алгоритмов. Блок-схемы алгоритмов. Составление алгоритма..

Решение задач по информатике на составление блок схем. Блок-схема алгоритма решения задачи. Как составлять блок схему действий. Алгоритм перехода улицы. Алгоритм перехода дороги. Алгоритм перехода дороги по светофору. Алгоритм светофора Информатика.

Словесная запись алгоритма. Стенды в кабинет информатики. Плакаты в кабинет информатики. Таблицы для кабинета информатики. Плакаты на стенд по информатике. Способы описания алгоритмов кратко. Алгоритмы и их описание Информатика.

Три способа описания алгоритма. Способы описания алгоритмов в информатике. Линейный алгоритм блок схема. Алгоритм посадки саженца блок схема. Блок схема линейного алгоритма пример. Виды алгоритмов в информатике 8 класс. Виды алгоритмов примеры.

Блок-схемы алгоритмов Информатика 8 класс. Какие блоки используются при реализации линейного алгоритма. Алгоритм и его свойства презентация. Презентация алгоритм презентация. Алгоритм действий для слайда. Алгоритм и его виды. Типы алгоритмов в информатике.

Типы алгоритмов в информатике 9 класс. Виды алгоритмов в информатике 6 класс. Виды алгоритмов 2 класс Петерсон. Алгоритм программирования схема. Алгоритм таблица Информатика. Алгоритмизация и программирование. Информатика алгоритмы и блок схемы 4 класс.

Алгоритмические конструкции Информатика 8 класс. Основные базовые конструкции алгоритмов. Основные блок-схемы конструкций алгоритма.

Блок схема циклического алгоритма с предусловием. Программирование циклических алгоритмов 9 класс. Циклические алгоритмы 8 класс Информатика.

Блок схема программирование алгоритмов циклической структуры. Алгоритм работы над задачей в начальной школе по ФГОС. Алгоритм решения задачи по математике 1 класс школа России.

Алгоритм решения задач в начальной школе. Памятка алгоритм. Что такое алгоритм в математике.

Учебные алгоритмы на уроках математики. Алгорифм математический. Алгоритм начальная школа.

Блок схема Информатика ветвление. Задачи на разветвляющиеся алгоритмы блок схемами. Блок схема алгоритма с ветвлением.

Неполное ветвление блок схема. Блок-схемы трех основных алгоритмических конструкций.. Основные алгоритмические конструкции ветвление.

Алгоритмические конструкции линейная ветвление циклы. Алгоритмическая конструкция ветвление примеры. Способы записи алгоритма.

Свойства алгоритма. Основные способы записи алгоритмов 8 класс. Способы записи алгоритмов в информатике 8 класс.

Способы записи алгоритма в информатике 8 класс таблица. Ветвление разветвляющийся алгоритм. Разветвляющийся алгоритм это 2 класс.

Алгоритм с ветвлением примеры 4 класс. Ветвление разветвляющийся алгоритм пример. Способы написания алгоритмов.

Формы записи алгоритма таблица. Перечислите способы записи алгоритмов Информатика. Табличная форма записи алгоритма.

Алгоритм подготовки к уроку. Алгоритм урока. Алгоритм готовности к уроку.

Алгоритм подготовки ученика к уроку. Каковы формы представления вычислительного алгоритма?. Формы представления алгоритмов в информатике.

Формы представления алгоритмов в информатике блок схемы. Графическая форма представления алгоритма примеры. Линейный разветвляющийся и циклический алгоритмы.

Разветвляющийся алгоритм блок схема алгоритма. Тип алгоритма разветвляющийся блок схема. Циклическая блок схема примеры.

Блок схема алгоритмической структуры полное ветвление. Разветвляющиеся алгоритмические структуры ветвления. Язык блок схем структура ветвление.

Блок схема конструкции ветвления. Типы величин в алгоритме. Типы величин в информатике.

Виды величин в информатике. Объекты алгоритмов величины. Понятие алгоритма с ветвлением.

Алгоритм с ветвлением 6 класс. Алгоритм с ветвлением , разветвляющимся алгоритмом. Полная структура ветвления алгоритма.

Основные алгоритмические конструкции разветвляющиеся алгоритмы. Структура команды полного ветвления.

Тест по информатике Основы алгоритмизации 8 класс

При записи алгоритмов для краткости указываются лишь номера команд. При записи алгоритмов для краткости указываются лишь номера команд. Составь и запиши слова с данными и их ь с ними и печь,ложь и рожь,брошь и тишь. Наибольшей наглядностью обладают следующие формы записи алгоритмов: Величины, значения которых меняются в процессе исполнения алгоритма, называются. Там мы даём ещё больше полезной информации для школьников!

Основы алгоритмизации

Алгоритм представляется в виде конечной последовательности шагов алгоритм имеет дискретную структуру и его исполнение расчленяется на выполнение отдельных шагов выполнение очередного шага начинается после завершения предыдущего. Выполнение алгоритма заканчивается после выполнения конечного числа шагов. При выполнении алгоритма некоторые его шаги могут повторяться многократно. В математике существуют вычислительные процедуры, имеющие алгоритмический характер, ноне обладающие свойствомконечности. Каждый шаг алгоритма должен быть четко и недвусмысленно определен и не должен допускать произвольной трактовки исполнителем. Следовательно, алгоритм рассчитан начисто механическое исполнение. Именноопределенность алгоритма дает возможность поручить его исполнениеавтомату. Каждый шаг алгоритма должен быть выполнен точно и за конечное время. В этом смысле говорят, что алгоритм должен быть эффективным , то есть действия исполнителя на каждом шаге исполнения алгоритма должны быть достаточно простыми, чтобы их можно было выполнить точно и за конечное время. Обычно отдельные указания исполнителю, содержащиеся в каждом шаге алгоритма, называюткомандами.

Таким образом, эффективность алгоритма связана с возможностью выполнения каждой команды за конечное время. Совокупность команд, которые могут быть выполнены конкретным исполнителем, называетсясистемой команд исполнителя. Следовательно, алгоритм должен быть сформулирован так, чтобы содержать только те команды, которые входят в систему команд исполнителя. Кроме того, эффективность означает, что алгоритм может быть выполнен не просто за конечное, а за разумно конечное время. Приведенные выше комментарии поясняют интуитивное понятие алгоритма , но само это понятие не становится от этого более четким и строгим. Тем не менее, в математике долгое время использовали это понятие. Лишь с выявлением алгоритмически неразрешимых задач, то есть задач, для решения которых невозможно построить алгоритм, появилась настоятельная потребность в построении формального определения алгоритма, соответствующего известному интуитивному понятию. Интуитивное понятие алгоритма в силу своей неопределенности не может быть объектом математического изучения, поэтому для доказательства существования или несуществования алгоритма решения задачи было необходимо строгое формальное определение алгоритма. Построение такого формального определения было начато с формализации объектов операндов алгоритма, так как в интуитивном понятии алгоритма его объекты могут иметь произвольную природу.

Ими могут быть, например, числа, показания датчиков, фиксирующих параметры производственного процесса, шахматные фигуры и позиции и т. Однако предполагая, что алгоритм имеет дело не с самими реальными объектами, а с их изображениями, можно считать, что операнды алгоритма - слова в произвольном алфавите. Тогда получается, что алгоритм преобразует слова в произвольном алфавите в слова того же алфавита. Дальнейшая формализация понятия алгоритма связана с формализацией действий над операндами и порядка этих действий. Одна из таких формализаций была предложена в 1936 году английским математиком А. Тьюрингом, который формально описал конструкцию некоторой абстрактной машины машины Тьюринга как исполнителя алгоритма и высказал основной тезис о том, что всякий алгоритм может быть реализован соответствующей машиной Тьюринга. Примерно в это же время американским математиком Э.

Когда два человека вместе идут по мосту, то идут они со скоростью более медлительного из них. Ребята смогли разработать алгоритм перехода на другой берег за минимально возможное время. Какое время она затратили на его исполнение?

Псевдокод обычно не зависит от конкретного языка программирования, поэтому его легко читать и понимать даже тем, кто не знаком с определенным языком программирования.

В ответе запишите номера команд. Сначала вычисляется длина исходной цепочки символов; если она чётна, то удаляется первый символ цепочки, а если нечётна, то в конец цепочки добавляется символ М. В полученной цепочке символов каждая буква заменяется буквой, следующей за ней в русском алфавите А — на Б, Б — на В и т. Получившаяся таким образом цепочка является результатом работы алгоритма.

Способы записи алгоритмов

Наибольшей наглядностью обладают алгоритмы, записанные в виде блок-схем. Пример — простейший алгоритм сложения 2-ч чисел, который записан средствами языка программирования Qbasic. В качестве примера словесного способа записи алгоритма рассмотрим алгоритм нахождения площади прямоугольника. наибольшей наглядностью обладает следующая форма записи алгоритмов: а)словесная б)рекурсивная в)графическая г)построчная.

Тест с ответами: «Алгоритмизация и программирование»

По названию понятно, какие величины бывают: постоянные — остаются в начале и конце выполнения задачи неизменными константы ; переменные — поддаются изменению во время исполнения команд. Для обозначения величин им присваивают идентификаторы. Это может как одна буква, так и целое имя из разных символов. По типу величины могут быть разными, в зависимости от условий задачи число, логическое выражение, текстовое значение. Если у переменной не одно значение, а много, его выражают в виде таблицы или массива. Таблица таких значений может быть линейной строчной или содержать в себе несколько строк и столбцов многоуровневой. Как и с другими типами переменных, над массивами можно выполнять различные операции сливать, сравнивать, сортировать. Чтобы указать, какое значение присвоено в конкретный момент, указывается имя переменной и рядом в скобках индексы: Источник Исполнители алгоритмов Каждая последовательность команд разрабатывает с учетом характеристик того, кто их будет выполнять. Это может быть конкретный человек, со знаниями и умениями, которые известны.

Или же абстрактный объект, способности которого неизвестны. Это может быть живое существо или машина, робот, компьютер. Поэтому слова, язык написания и даже формулировка заданий в каждом случае будут отличаться.

С одной стороны он близок к естественному языку, с другой — в псевдокоде используются формальные конструкции и математическая символика, приближающие его к формальным языкам и математической формализации. В псевдокоде не приняты строгие синтаксические правила записи команд, что дает возможность использовать более широкий набор команд, рассчитанный на абстрактного исполнителя на стадии проектирования. Однако здесь используются стандартные конструкции, присущие формальным языкам, что облегчает переход от записи алгоритма на псевдокоде к записи на формальном языке.

Основная идея, лежащая в основе машины Тьюринга, очень проста. Машина Тьюринга — это абстрактная машина автомат , работающая с лентой отдельных ячеек, в которых записаны символы. Машина также имеет головку для записи и чтения символов из ячеек, которая может двигаться вдоль ленты. На каждом шаге машина считывает символ из ячейки, на которую указывает головка, и, на основе считанного символа и внутреннего состояния, делает следующий шаг. При этом машина может изменить своё состояние, записать другой символ в ячейку или передвинуть головку на одну ячейку вправо или влево. Этот тезис является аксиомой, постулатом, и не может быть доказан математическими методами, поскольку алгоритм не является точным математическим понятием. Основная статья: Рекурсивная функция теория вычислимости С каждым алгоритмом можно сопоставить функцию, которую он вычисляет. Однако возникает вопрос, можно ли произвольной функции сопоставить машину Тьюринга, а если нет, то для каких функций существует алгоритм? Исследования этих вопросов привели к созданию в 1930-х годах теории рекурсивных функций [9]. Класс вычислимых функций был записан в образ, напоминающий построение некоторой аксиоматической теории на базе системы аксиом. Сначала были выбраны простейшие функции, вычисление которых очевидно. Затем были сформулированы правила операторы построения новых функций на основе уже существующих. Необходимый класс функций состоит из всех функций, которые можно получить из простейших применением операторов. Подобно тезису Тьюринга в теории вычислимых функций была выдвинута гипотеза, которая называется тезис Чёрча : Числовая функция тогда и только тогда алгоритмически исчисляется, когда она частично рекурсивна. Доказательство того, что класс вычислимых функций совпадает с исчисляемыми по Тьюрингу, происходит в два шага: сначала доказывают вычисление простейших функций на машине Тьюринга, а затем — вычисление функций, полученных в результате применения операторов. Таким образом, неформально алгоритм можно определить как четкую систему инструкций, определяющих дискретный детерминированный процесс, который ведёт от начальных данных на входе к искомому результату на выходе , если он существует, за конечное число шагов; если искомого результата не существует, алгоритм или никогда не завершает работу, либо заходит в тупик. Основная статья: Нормальный алгоритм Нормальный алгоритм алгорифм в авторском написании Маркова — это система последовательных применений подстановок, которые реализуют определённые процедуры получения новых слов из базовых, построенных из символов некоторого алфавита. Как и машина Тьюринга, нормальные алгоритмы не выполняют самих вычислений: они лишь выполняют преобразование слов путём замены букв по заданным правилам [10]. Нормально вычислимой называют функцию, которую можно реализовать нормальным алгоритмом. То есть алгоритмом, который каждое слово из множества допустимых данных функции превращает в её начальные значения [11].. Создатель теории нормальных алгоритмов А. Марков выдвинул гипотезу, которая получила название принцип нормализации Маркова: Для нахождения значений функции, заданной в некотором алфавите, тогда и только тогда существует некоторый алгоритм, когда функция нормально исчисляемая. Подобно тезисам Тьюринга и Черча, принцип нормализации Маркова не может быть доказан математическими средствами. Стохастические алгоритмы[ править править код ] Однако приведённое выше формальное определение алгоритма в некоторых случаях может быть слишком строгим. Иногда возникает потребность в использовании случайных величин [12]. Алгоритм, работа которого определяется не только исходными данными, но и значениями, полученными из генератора случайных чисел , называют стохастическим или рандомизированным, от англ. Стохастические алгоритмы часто бывают эффективнее детерминированных, а в отдельных случаях — единственным способом решить задачу [12]. На практике вместо генератора случайных чисел используют генератор псевдослучайных чисел. Однако следует отличать стохастические алгоритмы и методы, которые дают с высокой вероятностью правильный результат. В отличие от метода , алгоритм даёт корректные результаты даже после продолжительной работы. Некоторые исследователи допускают возможность того, что стохастический алгоритм даст с некоторой заранее известной вероятностью неправильный результат. Тогда стохастические алгоритмы можно разделить на два типа [14] : алгоритмы типа Лас-Вегас всегда дают корректный результат, но время их работы не определено. Для некоторых задач названные выше формализации могут затруднять поиск решений и осуществление исследований. Для преодоления препятствий были разработаны как модификации «классических» схем, так и созданы новые модели алгоритма. В частности, можно назвать: многоленточная и недетерминированная машины Тьюринга; регистровая и РАМ-машина — прототип современных компьютеров и виртуальных машин; Виды алгоритмов[ править править код ] Виды алгоритмов как логико-математических средств отражают указанные компоненты человеческой деятельности и тенденции, а сами алгоритмы в зависимости от цели, начальных условий задачи, путей её решения. Следует подчеркнуть принципиальную разницу между алгоритмами вычислительного характера, преобразующими некоторые входные данные в выходные именно их формализацией являются упомянутые выше машины Тьюринга, Поста, РАМ, нормальные алгорифмы Маркова и рекурсивные функции , и интерактивными алгоритмами уже у Тьюринга встречается C-машина, от англ. Последние предназначены для взаимодействия с некоторым объектом управления и призваны обеспечить корректную выдачу управляющих воздействий в зависимости от складывающейся ситуации, отражаемой поступающими от объекта управления сигналами [15] [16]. В некоторых случаях алгоритм управления вообще не предусматривает окончания работы например, поддерживает бесконечный цикл ожидания событий, на которые выдается соответствующая реакция , несмотря на это, являясь полностью правильным. Можно также выделить алгоритмы: Механические алгоритмы, или иначе детерминированные, жесткие например, алгоритм работы машины, двигателя и т. Гибкие алгоритмы, например, стохастические, то есть вероятностные и эвристические. Вероятностный стохастический алгоритм даёт программу решения задачи несколькими путями или способами, приводящими к вероятному достижению результата. Эвристический алгоритм от греческого слова « эврика » — алгоритм, использующий различные разумные соображения без строгих обоснований [17]. Линейный алгоритм — набор команд указаний , выполняемых последовательно во времени друг за другом.

Формульно-словесный способ При использовании формульно-словесного способа инструкции задаются более чётко. Этот тот случай, когда словесные пояснения сопровождаются перечнем конкретных действий, плюс эти пояснения характеризуются наличием формальных символов и выражений формул. Это более компактный и лаконичный метод, он нагляднее, но всё же строго формальным не является. Табличный способ В случае применения табличного метода алгоритм задаётся в виде входных данных: расчётных форм и таблиц. Способ широко применяется в экономических расчетах. Исходные данные, как и результаты, заносятся в заголовки столбцов используемой таблицы. Простейший пример такого способа представления — та же таблица умножения: 32 Графический способ Этот метод ещё называют способом блок-схем. В данной ситуации каждый этап прохождения алгоритма представляется в виде геометрических фигур — так называемых «блоков», причём конкретная форма фигур зависит от выполняемой операции. Существует стандарт, регламентирующий размеры используемых графических блоков, а также их отображение, функции, формы и взаимное расположение. Направление работы алгоритма показывают линии соединения блоков.

Похожие новости:

Оцените статью
Добавить комментарий