Новости фрактал в природе

Приводим примеры фракталов в природе, жизни, математике, алгебре, геометрии и не только. нечто невероятное – Самые лучшие и интересные новости по теме: Геометрия, идеально, красота на развлекательном портале

Компьютерные игры

  • Фракталы в природе (53 фото) - 53 фото
  • Фракталы в живой природе
  • Фракталы в Природе
  • Что такое фрактал? Фракталы в природе
  • Феномен жизни во фрактальной Вселенной / Наука / Независимая газета

Фракталы: бесконечность внутри нас

То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский правда, выросший во Франции математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами от латинского fractus — изломанный. С береговой линией, а точнее, с попыткой измерить ее длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы». Речь идет об эксперименте, который поставил Льюис Ричардсон Lewis Fry Richardson — весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются.

Этот фрактальный объект представляет собой треугольный узор, в котором каждый треугольник является уменьшенной копией целого. До сих пор ученым не встречались подобные молекулярные образования, сохраняющие самоподобие на разных масштабных уровнях. Уникальная сборка Изображение белковой молекулы было получено с помощью электронного микроскопа.

В процессе своего роста фрактал образует внутри себя треугольные пустоты, что не делает ни одна из ранее известных белковых структур.

На её основе математик продемонстрировал и самоподобие, и рекурсию. Позже учёные обнаружили рекурсию в объектах живой природы: деревьях, молниях, облаках и других. Оказалось, что структура таких объектов подобна структуре их частей, а значит, их можно описать неким математическим законом и не пытаться изобразить квадратами, кругами и другими классическими геометрическими фигурами. Читайте также: Сегодня модели на основе фракталов применяются в физике, биологии, медицине и других науках. А учёные продолжают находить закономерности, связанные с ними, в самых разных явлениях нашей Вселенной. Виды фракталов Фракталы принято делить на геометрические, алгебраические и стохастические. Геометрические — строятся на основе исходной фигуры, которая определённым образом делится и преобразуется на каждой итерации. Алгебраические — строятся на основе алгебраических формул.

Стохастические — образуются в том случае, если в итерационной системе случайным образом изменяется один или несколько параметров. Далее мы подробно разберём каждый класс. Геометрические фракталы Эти фигуры основаны на прямых линиях, квадратах, кругах, многоугольниках и многогранниках. Рассмотрим несколько примеров от самого простого к сложному. Множество Кантора В 1883 году Георг Кантор — немецкий математик, автор теории множеств — придумал множество, которое повторяло само себя снова и снова. Кантор взял произвольный отрезок и разделил его на две части, потом каждую — ещё на две и так далее: Изображение: Лев Сергеев для Skillbox Media Каждый этап деления прямых на две части называется итерацией. Итерация — это повторение одного и того же действия, или, по аналогии с программированием, одно прохождение тела цикла. На первой итерации у нас был один отрезок, на второй мы получили два, на третьей — четыре и так далее. Если повторять это несложное действие бесконечное количество раз и увеличить масштаб изображения, то мы увидим ту же самую картину, что и в самом начале.

Это и есть визуальное воплощение самоподобия: Изображение: Лев Сергеев для Skillbox Media Снежинка Коха aka кривая Коха Изображение: Лев Сергеев для Skillbox Media Шведский математик Хельге Фон Кох в 1904 году описал кривую, воспользовавшись треугольником и методом самоподобия, в результате чего получилась фрактальная снежинка. Ниже показаны четыре итерации построения такой фигуры. Слева изображены исходные кривые, а справа — получившаяся из этих кривых снежинка. Нетрудно заметить, что в снежинки идеально вписывается как равносторонний треугольник, так и сама кривая: Изображение: Лев Сергеев для Skillbox Media На какой бы итерации мы ни увеличили масштаб изображения, мы всегда сможем увидеть знакомый паттерн, как и с множеством Кантора.

Фракталы также имеют связь с хаосом и теорией динамических систем. Хаос - это состояние системы, когда даже небольшие изменения в начальных условиях могут привести к значительным изменениям в будущем. Фракталы могут помочь понять и описать хаотические системы и предсказать их поведение.

Наконец, фракталы имеют важное значение для нашего понимания природы и ее эволюции. Фрактальные структуры можно найти во многих биологических системах, таких как листья растений, коралловые рифы или формы костей и мышц. Изучение фрактальных структур может помочь понять принципы, которые лежат в основе этих систем, и использовать их для создания новых технологий и материалов. Фракталы часто ассоциируются с мистикой и духовностью. Некоторые люди считают, что фрактальные формы отражают глубинные законы природы и космоса, а также являются символами бесконечности и единства всего сущего. Фракталы также используются в медитации и визуализации для достижения состояния гармонии и равновесия.

Фрактальность в окружающем нас мире

  • Бесконечность фракталов. Как устроен мир вокруг нас | Капитал страны
  • Немного о фракталах и множестве Мандельброта
  • Природный фрактал | Пикабу
  • Последние записи
  • Воспроизведение эволюции в лаборатории
  • Художники интуитивно понимают привлекательность фракталов

Прекрасные фракталы в природе

нечто невероятное – Самые лучшие и интересные новости по теме: Геометрия, идеально, красота на развлекательном портале Фракталы в природе Подготовила Андреева Алина Р-12/9. Природа создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. ПРОСТО ФРАКТАЛ. Фракталы в природе.

Сейчас на главной

  • Самостоятельная сборка треугольников Серпинского
  • Фракталы. Чудеса природы. Поиски новых размерностей: solar_activity — LiveJournal
  • С чего все началось
  • Уникальная сборка

Фракталы. Чудеса природы. Поиски новых размерностей

Термин «фрактал» введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы». Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств. Если изучить фрактальную геометрию природы, то наблюдая природные явления человек перестанет видеть хаос. Он увидит, насколько просты принципы развития и распределения в природе.

Фракталы. Чудеса природы. Поиски новых размерностей

Однако это не помешало ее дальнейшему развитию. Функция Вейерштрасса. Иллюстрация: Eeyore22, www. Сама же теория проделала долгий путь от рисования занимательных и необычных фигур и поиска их аналогов в реальном мире до практического использования при решении серьезных научных задач. Например, одно из свойств фракталов основано на их способности иметь дробную размерность.

Рассмотрим в качестве примера необычную кривую Гильберта с размерностью, очень близкой к 2, и нарисуем ее на плоскости. Она будет настолько извилистой, что полностью займет всю предоставленную ей плоскость, при этом оставаясь кривой с бесконечной длиной. Аналогично можно представить объемную структуру с небольшим объемом и бесконечной площадью — это человеческие легкие. Способность поглощать кислород напрямую зависит от площади дыхательной поверхности легких, но при этом они должны занимать относительно небольшой объем.

Именно поэтому небольшие человеческие легкие имеют дыхательную поверхность большую, чем стандартный теннисный корт. Теорию фракталов используют в материаловедении. Шероховатости и неровности, остающиеся на поверхности любого металла после его полировки или изготовления, имеют фрактальную природу. И более того, по ним можно предсказать прочностные характеристики металла — существует прямая зависимость между фрактальной размерностью и энергией, необходимой для разрушения металла.

Аналогичные результаты были в исследованиях полимеров. Оказалось, что полимерные цепочки образуют сложные и запутанные структуры, которые определяют ключевые показатели полимеров. И эти запутанные цепочки — тоже фракталы! Отдельное развитие получили алгоритмы для генерации фракталов.

Часть из них придумали еще в XIX веке, другие появились, когда возникла теория фракталов. Вместе они стали основой раздела в искусстве, посвященного фрактальным узорам. Вскоре выяснилось, что можно генерировать компьютерную графику при помощи фракталов. Особенно актуально это оказалось для биологических структур: деревьев и растений.

У капусты Романеско, например, невооруженным глазом видна фрактальная структура. Капуста романеско, www. В свою очередь, математическая теория перколяции широко используется в статистической физике и химии. Более того, теория фракталов вместе с теорией перколяции широко применимы при добыче нефти и газа.

Вместо ожидаемой регулярной решетки молекул они увидели завораживающий фрактальный узор. Секрет асимметрии Разгадка тайны фрактального белка кроется в его асимметрии. Обычно при самоорганизации белковых молекул каждая цепь занимает одинаковое положение относительно своих соседей. Это приводит к формированию симметричных, упорядоченных структур. Но в случае с цитратсинтазой все иначе. Различные белковые цепи взаимодействуют друг с другом по-разному, создавая сложный и непредсказуемый узор, подобный треугольнику Серпинского. Эволюционная игра Зачем же цианобактерии понадобился фрактальный фермент? Удивительно, но, похоже, это всего лишь игра случая, эволюционный каприз. Ученые провели эксперимент, в котором генетически модифицировали цианобактерии, лишив их цитратсинтазу способности собираться во фрактальные структуры.

Оказалось, что это никак не повлияло на жизнедеятельность бактерий. Чтобы разобраться в этой загадке, исследователи заглянули в прошлое. Используя специальные методы, они реконструировали эволюционную историю цитратсинтазы и обнаружили, что фрактальная структура возникла внезапно, в результате нескольких случайных мутаций.

Очень многозначительным представляется то, что буквально в последние годы появился в теории первый объект, в отношении которого можно думать, что он обладает именно пространством фрактальной структуры и, возможно, дробной размерности. История науки показывает, насколько принципиальным оказывается почти всегда такой первый шаг, открывая новую область явлений, хотя по единственному, уникальному объекту не удавалось, естественно, установить ни меру типичности, ни степень нетривиальности нового объекта. Вспомним из истории астрономии открытие первого кольца у планеты, первой периодической кометы, первого астероида, первого квазара и т. Вернемся, однако, к нашему, по самой своей сути уникальному и единственному известному да и то пока гипотетически объекту с фрактальной размерностью пространства во Вселенной. Этот объект — сама Большая Вселенная в модели хаотического раздувания Линде [ 1 ].

Фрактальную природу и структуру эта модель имеет «по построению», в силу стохастического по законам случая ветвления процесса раздувания в пространстве и времени 8. Композиция из фрактальных множеств Мандельброта Первые попытки численного моделирования подобного явления были проведены самим А. Имеющиеся последующие оценки пока не позволяют количественно указать размерность пространства стохастически раздувающейся Вселенной. Процесс этот «стабильно неустойчив». Размерность такой модели Вселенной может оказаться и не обязательно дробной подобно тому, как целочисленной, но более высокой, чем у обычной линии, оказывается размерность броуновской траектории — см. Через несколько лет после пионерской работы Линде фрактальность в космологии — нецелочисленность с изменением — от нормальной тройки в лаборатории до двойки на космологическом горизонте заподозрила А. Попова ГАИШ в цикле работ 90-х гг. Собственный оригинальный подход к этой проблеме развивает известный специалист по общей теории относительности ОТО и релятивистской космологии Р.

Правда, еще несколькими годами ранее группа итальянских астрофизиков А. Грасси и др. По существу, проблема фрактальной размерности пространства Метагалактики лишь начинает входить в науку, и различные исследователи только еще нащупывают варианты существующих здесь возможностей. Какой же окажется размерность нашей локальной и, далее, «Большой Вселенной» в конце концов? Или 50610? Вопрос пока, насколько мне известно, открыт. Тем более, остается неясной проблема смысла и физической реализации во Вселенной комплексной в частном случае — чисто мнимой размерности пространства. И, пожалуй, совершенно не в наших силах представить себе, что могла бы значить дробная размерность да еще комплексная космологического времени!

Впрочем, вспомним слова Л. Ландау о том, что мы, если надо, можем понять даже то, что не можем представить! Генрих Герц В математическом плане фрактальный подход отождествляется пока что почти исключительно с фрактальной геометрией. Это было заложено еще в основополагающих трудах Мандельброта, и ситуация не изменилась за два десятилетия интенсивного развития концепции фракталов. Геометрические изображения фракталов к тому же иногда весьма впечатляющи, а подчас и потрясающе красивы, бесконечно разнообразны и чрезвычайно эвристичны [ 7 ]. Кстати, эта красота — один из эмпирически и эвристически надежных критериев фундаментальности фракталов как объектов Природы, Космоса [ 8 ]. Компьютеры же, способные наглядно демонстрировать фрактальные геометрические объекты, открывают исследователям пока практически единственный путь в мир фракталов [ 4 ], [ 9 ] 10. Вспомним здесь упомянутые выше яркие провидения художника Эсхера, первым увидевшего фрактальный мир.

Однако, сколь ни впечатляющи успехи компьютерной математики, обобщающая мощь аналитического подхода в самой математике, в физике, астрономии и в других науках не должна недооцениваться. Бесконечный спектр качественных возможностей, заложенный в единой аналитической формуле, алгоритме, — законе, в конце концов! Да и саму формулу «закона природы» компьютеры открывать не умеют. Наиболее перспективно сочетание этих двух математических подходов. Фракталы, по общему признанию специалистов, — пока самый результативный если не единственно эффективный, а то и единственно возможный путь к проникновению в «законы хаоса»! Сам Мандельброт подчеркивал, что здесь речь идет именно об «изучении порядка в хаосе». В частности, фрактальными оказываются фундаментальные свойства выходящих ныне на первый план как в математике, так и в физике «странных аттракторов» 11. Топология их, похоже, из всех современных методов математики под силу лишь фрактальному подходу.

Между тем, нередки утверждения, что до сих пор эта область математики не имеет адекватного аппарата в традиционной математике. Такая позиция отражает то, что «фрактальная геометрия» и компьютерные исследования фракталов недостаточны на новом пути познания Мира. Правомерен вопрос: а не может ли быть создан соответствующий математический аналитический аппарат, по мощи и общности аналогичный дифференциальному и интегральному исчислениям, который «обслуживал» бы фрактальный аспект исследования Вселенной средствами не геометрии, а математического анализа? Когда меня очень давно осенила эта идея, «... Говоря откровенно, я задаю сей вопрос чисто риторически и даже в расчете на весьма вероятную недостаточную здесь информированность большинства читателей. Все дело в том, что такой аппарат уже давно существует, но незаслуженно мало известен. Основы его созданы точнее, завершены почти полтораста лет назад! Вспомним аполлониеву теорию конических сечений, две тысячи лет ждавшую Кеплера; тензорное исчисление Риччи и «воображаемую геометрию» Лобачевского — «заготовки» для будущей ОТО.

Мы говорим об исчислении, обобщающем подобно дробным степеням в биноме Ньютона операции дифференцирования и интегрирования на дробные включая комплексные порядки производной и, соответственно, кратности интеграла. Масштаб этого обобщения грандиозен, даже в чисто количественном плане: от математического аппарата дифференциального и интегрального исчисления, пригодного построенного для счетного множества значений «аргумента», т. Поставлена задача столь широкого обобщения была еще 300 лет назад самим Лейбницем. Однако достаточно полное решение, в главных чертах, было найдено лишь во второй половине XIX в. Первый вариант указан в 1858 г. Летниковым в России и пражским математиком Л. К сожалению, обобщение это осталось мало известным. Во всяком случае, от студентов его почему-то тщательно «хранили в секрете» в течение многих десятилетий!

Непонятное пренебрежение вопросом, которым интересовались названные выше корифеи математики и который неизбежно должен был возникать хотя бы у пытливых но не слишком эрудированных студентов, привело к тому, что стали неизбежными попытки «изобретений велосипеда». Мне, например, известны целых три такие «изобретения» в России за полтора десятка лет в середине XX в. Главная причина более чем вековой невостребованности данного обобщения обычна и естественна: отсутствие в природе, как казалось, объектов, систем, процессов, которые требовали бы для своего понимания и описания операции дифференцирования интегрирования произвольного нецелого порядка кратности , например: f n х , где n — произвольно. Стоит отметить и еще один момент. С эпохи Лейбница и до наших дней для указанного обобщения аппарата математического анализа не было предложено ни удачной символики, ни яркого и компактного термина. В наше время, после открытия фрактальности Вселенной, для соответствующего математического аппарата прямо-таки напрашивается и представляется неизбежным термин «фрактальное исчисление». Он лаконичен, емок, логичен, историчен и физичен. Мне кажется разумным остановиться именно на нем для наименования обобщения дифференциального и интегрального исчисления на дробные включая комплексные порядки производной и кратности интеграла.

Человек тоже весь построен на основе фракталов: кровеносные сосуды, лёгкие, бронхи имеют фрактальную природу. Посмотрите через увеличительное стекло на свою кожу, и вы увидите фракталы. Примеров фракталов можно привести массу, потому что, они окружают нас повсюду. Самыми интересными, простыми и популярными фрактальными свойствами в природе обладают — кроны деревьев, цветная капуста, облака, кровеносная система человека и животных, кристаллы, снежинки, горные хребты, берега рек, морозные узоры на стекле, многие растения и морские раковины… Галактика и Вселенные тоже фракталы и обладают свойством самоподобия. Вселенная складывается, как матрёшка, и все её составные части выглядят примерно так же.

Человек — это фрактал Вселенной — микрокосмос, разумная клетка Вселенной, которая способна включиться в активную работу, используя свои уникальные данные, записанные во фрактальной структуре человеческой ДНК. Всё, что окружает нас, ближний и дальний Космос, являются фракталом.

Что такое фрактал, как он проявляется в природе и что еще о нем нужно знать

В природе фрактальные особенности проявляются в таких вещах, как снежинки, молнии или дельты рек. (с) Примеры фракталов в природе встречаются повсеместно: от ракушек до сосновых шишек. Фракталы — еще одна интересная математическая форма, которую каждый видели в природе. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Фрактал — термин, означающий геометрическую ф Смотрите видео онлайн «Фракталы. Посмотрите больше идей на темы «фракталы, природа, эрнст геккель». Смотрите 27 онлайн по теме фрактал в природе.

Фракталы вокруг нас

Деревья, как и многие другие объекты в природе, имеют фрактальное строение. В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы». Просмотрите доску «Фракталы» пользователя Katrine в Pinterest. Посмотрите больше идей на темы «фракталы, природа, закономерности в природе». О природе ков Виталий7 (Высоцкий В С.). Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен (как описанный выше) зачастую приводит к фрактальным структурам.

Похожие новости:

Оцените статью
Добавить комментарий