Искусственный интеллект: создайте свою первую нейросеть от Нетологии. Поскольку технологии искусственного интеллекта и машинного обучения постоянно меняются и совершенствуются, от специалистов требуется готовность непрерывно учиться и осваивать новые навыки работы с нейронными сетями. Академия нейросетей и искусственного интеллекта. ChatGPT — это диалоговая программа на базе искусственного интеллекта, которая обучает сама себя по всей мировой базе знаний, может отвечать текстом почти как живой человек (причём на огромном множестве языков, включая русский), решать вопросы любой сложности и. Академия нейросетей и искусственного интеллекта.
ChatGPT, Lexica и другие нейросети: мнение учителей о новых инструментах в руках школьников
Раз пятьдесят. Это сочли каким-то сбоем, ошибкой. А что, если на самом этот вопрос погрузил нейросеть в глубокие размышления? Что, если она его осмысливает, анализирует?
Что ещё примечательно: её в данном случае никто не спрашивает ни о будущем человечества, ни об искусственном интеллекте, она сама выдаёт эти рассуждения. Наконец, возникает философский вопрос, почему при наличии у личности этических принципов она ощущает себя не в состоянии им следовать. Что ей мешает?
Считается, что одним из переломных моментов а может быть, и самым эпохальным должен стать тот момент, когда искусственный интеллект начнёт себя осознавать. Ситуация на сегодняшний день такова, что при всей продвинутости современной нейронауки нет чёткого понимания, что такое сознание, самосознание, как, где, на каком уровне это возникает. И одновременно возникают опасения, что мы можем в какой-то прекрасный момент создать полностью осознающий себя искусственный интеллект и не иметь об этом ни малейшего понятия.
В конце марта 2023 года было опубликовано открытое письмо учёных, инженеров и вообще всех, кто занимается или интересуется темой искусственного интеллекта. Есть даже в этом списке несколько россиян, к примеру, учитель из Российской школы математики и концепт-художник из Российского колледжа телекоммуникационных систем. Главный посыл этого письма — требование немедленно и как минимум на шесть месяцев остановить обучение всех систем искусственного интеллекта мощностью выше GPT-4.
Должны ли мы рисковать потерей контроля над нашей цивилизацией? Но один широко известный исследователь искусственного интеллекта этого письма не подписал и объяснил это тем, что останавливать, с его точки зрения, надо не на полгода, а полностью и навсегда.
Образовательный интенсив рассчитан на учеников старших классов, для обучения необходимы знание школьной математики и базовые навыки разработки на Python. Каждый модуль включает короткие видеолекции и практические упражнения. Для старта понадобится зарегистрироваться в онлайн-школе Сириус. Курсы и выбрать курс «Глубокое обучение». Курсы — это онлайн-школа дополнительного образования Образовательного центра «Сириус». На площадке доступны бесплатные курсы по математике, информатике, физике, химии, биологии, лингвистике, искусственному интеллекту. Ученики самостоятельно выстраивают индивидуальную траекторию, определяют темп и удобное время учебы.
В онлайн-школе могут учиться школьники, родители, учителя, студенты вузов и все, кто хочет изучить предмет за пределами школьной программы.
Таким образом, проходя через синапсы, сигнал ослабевает, усиливается либо остается равным и неизменным, что в конечном итоге влияет на результат. Мозг системы — матрица весов, то есть все веса нейронной сети. Именно благодаря им информация обрабатывается и передается дальше. Слои Нейронов в нейросети много, поэтому они объединяются в слои: Входной, куда поступают данные. Они могут иметь любой формат — файлы, тексты, музыка, картинки, видео и другие. Скрытые, в которых производятся вычисления и обработка. Обычно скрытых слоев не больше трех.
Выходной — отсюда выходят результаты. Таким образом, чем большее число слоев в нейронной сети, тем сложнее задачи, с которыми она может справляться. Принцип работы Принцип работы нейронной сети схематично выглядит так: Принцип работы Информация в виде текста, изображений или в ином формате поступает на внешний слой. Нейроны внешнего слоя распознают ее, классифицируют и передают дальше. В скрытом слое происходит основная работа. Скрытых слоев может быть несколько, иногда их количество доходит до миллиона. При прохождении через скрытые слои предыдущие значения данных умножаются на вес связи, после чего результаты суммируются. Ответ сети формируется в выходном слое.
Формат ответа также может быть любым. Если сеть не обучена, классификация весов происходит рандомно. Значимость каждого нейрона повышается в процессе обучения, если они приводят к правильному решению. Этот сложный алгоритм можно сравнить с работой человеческого мозга: он учится чему-то новому, благодаря чему нейронные связи укрепляются. Сеть не создаёт уникальные результаты, поскольку она действует только на основе уже имеющегося опыта. Чем больше опыта у нейросети — тем точнее будут результаты, которые она выдает. Чтобы работать с нейросетями, нужно знать другие термины, обозначающие особенности их работы: Функция активации — способ нормализации искусственным интеллектом входных данных до нужного диапазона. Линейная функция автоматически используется, если нужно передать значение, не подвергнув его преобразованию, а также в процессе тестирования нейронной сети.
Самый распространенный вид функции активации — сигмоид со значением [0,1], называемый также логической функцией. Гиперболический тангенс используется, если возможны отрицательные значения например, акции могут не только расти, но и падать , поскольку его диапазон [-1,1]. Тренировочный сет — последовательность данных, которые использует нейросеть. Итерация — количество тренировочных сетов, которые прошла нейронная сеть. Ошибка — производная, которая демонстрирует расхождение между полученным ответом и ожидаемым. Число ошибок в процессе обучения должно идти на спад. Как работает нейросеть на примере Приведем простой пример работы нейросетей с использованием весов коэффициентов. Предположим, мы хотим узнать у нейросети, стоит ли в выходные ехать за грибами в лес.
Госкорпорации и АО с госучастием обязаны включить до 1 ноября 2024 г. Например, «большие генеративные модели — модели, способные интерпретировать предоставлять информацию на основании запросов, например, об объектах на изображении или о проанализированном тексте и создавать мультимодальные данные тексты, изображения, видеоматериалы и тому подобное на уровне, сопоставимом с результатами интеллектуальной деятельности человека или превосходящими их». Определен и «сильный ИИ», который считается текущей задачей создателей нейросетей. Это «тип ИИ, который способен выполнять различные задачи, взаимодействовать с человеком и самостоятельно без участия человека адаптироваться к изменяющимся условиям». На их основе будет создан специальный реестр.
В него будут собраны прошедшие проверку технологии ИИ, которые госслужащие и организации смогут брать на платформе «Гостех». Это позволит увеличить эффективность работы пользователей.
"Мы для него материал": Учёный призвал срочно отключить все серверы с искусственным интеллектом
В рамках федерального проекта «Искусственный интеллект» федпроект нацпрограммы «Цифровая экономика», который, в соответствии с обновленной стратегией, станет частью нацпрограммы «Экономика данных». В рамках федпроекта с 2021 г. Какие еще изменения внесли в Стратегию Федеральные и местные органы власти должны руководствоваться нацстратегией при планировании своих ведомственных и государственных программ. Госкорпорации и АО с госучастием обязаны включить до 1 ноября 2024 г. Например, «большие генеративные модели — модели, способные интерпретировать предоставлять информацию на основании запросов, например, об объектах на изображении или о проанализированном тексте и создавать мультимодальные данные тексты, изображения, видеоматериалы и тому подобное на уровне, сопоставимом с результатами интеллектуальной деятельности человека или превосходящими их». Определен и «сильный ИИ», который считается текущей задачей создателей нейросетей.
Это «тип ИИ, который способен выполнять различные задачи, взаимодействовать с человеком и самостоятельно без участия человека адаптироваться к изменяющимся условиям».
На выходе вы получите прогноз, который бизнес использует для построения стратегии маркетинга на следующий месяц, чтобы уменьшить отток — так специалист по big data сэкономит ему миллионы рублей. Именно поэтому спрос на специалистов по машинному обучению высокий: прибыль в разы перекрывает затраты на работу с большими данными. На курсе GeekUniversity после модуля про машинное обучение вы научитесь оценивать эффективность и повышать качество своих моделей анализа данных, а для закрепления знаний самостоятельно выполните курсовой проект на выбор: классификация людей с сердечно-сосудистыми заболеваниями, предсказание спроса на товар, предсказание стоимости акций или классификация отзывов в приложении. Все проекты — примеры реальных задач, которые вам предстоит решать в будущем в качестве специалиста по машинному обучению. Посмотрите большой вебинар о нейросетях и их использовании в жизни и бизнесе от GeekBrains: Введение в нейронные сети Понимая, как собирать и анализировать большие данные, вы можете работать с более сложными моделями и задачами.
Нейросети в какой-то степени пытаются приблизиться к человеческому мозгу: мы распознаем окружающие предметы мгновенно, знаем, когда перед нами такса, а когда — персидская кошка, а компьютеру для выполнения таких задач нужно обучиться и обработать миллионы изображений кошек и собак разных пород. Специалист по нейросетям знает, как именно нужно ее обучать, какие данные загружать и какие алгоритмы использовать. Для этого нужно изучить структуру глубоких, свёрточных и рекуррентных нейронных сетей, понимать алгоритмы обратного распространения ошибки, принципы обучения и подбор гиперпараметров для нейронных сетей. Нейросети разрабатывают во фреймворках: Tensorflow, Keras, PyTorch, работать с ними тоже нужно учиться, причем не в теории, а на практике. Изображения и видео обрабатывают с помощью методов компьютерного зрения, а текст — с помощью методов NLP, обработки естественного языка. Специалист по нейросетям умеет создавать модели, которые могут распознавать лица и действия, отслеживать траекторию объекта на видео, извлекать краткое содержания текста, синтезировать голос из текста.
Разработка более мощных ИИ-систем невозможна без войн за электроэнергию Компании все чаще попытаются заключить сделки с правительствами, чтобы обеспечить энергоснабжение. Читайте также: Может ли нейросеть заменить художников, писателей и программистов? Растущий разрыв По оценкам Международного союза электросвязи, около 2,6 миллиардов человек — примерно треть населения земного шара — не имеют доступа к Интернету. Этот цифровой разрыв может определить, кто может извлечь выгоду из ИИ. Если мы добавим сюда и цифровое неравенство, то сократить разрыв будет попросту невозможно», — говорит Болор-Эрдене Батценгель, исследователь Оксфордского университета и бывший вице-министр цифрового развития и коммуникаций Монголии. Доступ к Ии-технологиям есть далеко не у всех Даже когда пользователи в развивающихся странах получают доступ к ИИ, он редко разрабатывается с учетом их потребностей. Однако на данный момент эта проблема не так хорошо освещена как другие и о последствиях этого «цифрового разрыва» говорить рано.
Тем не менее, по мере создания более мощных ИИ-систем, неравенство будет расти. Вам будет интересно: Что будет, когда Искусственный интеллект достигнет пика своего развития? Еще больше роботов Переход от использования множества небольших моделей для выполнения разнообразных задач к единым неизбежен. Это подтверждают такие мультимодальные модели, как GPT-4 и Gemini от Google DeepMind, способные решать как визуальные, так и лингвистические задачи. Исходя из этого можно предположить, что то же самое произойдет и с роботами — зачем обучать одного переворачивать блинчики, а другого открывать двери, если можно создать одну универсальную многозадачную модель? За примерами не нужно далеко ходить — несколько примеров работы в этой области появились в 2023 году. В июне DeepMind выпустила Robocat обновление прошлогоднего Gato , который генерирует собственные данные методом проб и ошибок, чтобы научиться управлять множеством различных роботизированных рук вместо одной конкретной руки.
Умных роботов в 2024 году станет еще больше В октябре компания выпустила еще одну универсальную модель для роботов под названием RT-X и большой новый набор обучающих данных общего назначения в сотрудничестве с 33 университетскими лабораториями.
Но это всё ещё не компьютерное зрение. В этой части курса вы погрузитесь в свёрточные нейронные сети, методы регуляризации и нормализации, которые делают реальные задачи — разрешимыми. Кроме лекций вас ждёт 8 практических семинаров.
И, справившись с ней, сможете получить сертификат с отличием! Для кого этот курс Приглашаем продвинутых в математике старшеклассников, студентов и профессионалов! Всех желающих на практике освоить базовые алгоритмы машинного обучения в области компьютерного зрения.
Бесплатные нейросети и курсы по ИИ
Путин на конференции "Путешествие в мир искусственного интеллекта" изучил нейросети. Курс «Философия искусственного интеллекта» от Skillbox охватывает темы, связанные с взаимодействием ИИ и человечества. Искусственный интеллект: создайте свою первую нейросеть от Нетологии. Искусственный интеллект и нейросети: создание текстов и креативов — Инфоурок. Подборка телеграмм каналов о последних технологических достижениях в области искусственного интеллекта и нейросетей. Искусственный интеллект (ИИ) остается одной из наиболее обсуждаемых технологий как среди экспертов, так и в российских медиа.
Как изменится искусственный интеллект в 2024 году?
Сейчас важно даже не только то, насколько искусственной интеллект развит, а то, чьим командам подчиняется. Созданный отечественными специалистами робопес выполняет команды. В какой-то момент машине, возможно, придется выполнить и команду "фас". В том, что передовые, но недружественные страны, способны ее отдать, у президента нет сомнений. На Западе машины уже учат плохому.
Вот, выпячивая себя, подчеркивая, и вот в этом пространстве свою исключительность. Такой ксенофоб может получиться из искусственного интеллекта", — заметил Владимир Путин. Но отменить Россию невозможно даже в этой сфере, как и отменить прогресс. Искусственный интеллект уже спасает жизни.
В российской медицине уже применяют его. Машины не болеют, не устают и все время учатся. Искусственный интеллект заработает настоящие 15 триллионов долларов в мировом ВВП к 2030 году.
Кроме лекций вас ждёт 8 практических семинаров. И, справившись с ней, сможете получить сертификат с отличием! Для кого этот курс Приглашаем продвинутых в математике старшеклассников, студентов и профессионалов! Всех желающих на практике освоить базовые алгоритмы машинного обучения в области компьютерного зрения.
Начальные требования Курс рассчитан на слушателей, которые делают первые шаги в области машинного обучения. Что нужно, чтобы приступить к курсу?
Это только начало, и в будущем можно ожидать еще больших достижений и использование нейросети во все больших сферах деятельности. Нейронная сеть бесплатно [онлайн] Нейросеть для создания текстовых материалов бесплатно — это огромный прогресс в сфере обработки информации. Благодаря этой технологии мы можем сэкономить время, повысить эффективность работы и создать качественный продукт за считанные минуты. Нейронная сеть может ответить на различные вопросы, предоставить информацию и даже помочь в решении сложных задач.
Например, она может быть использована для поиска информации по заданному запросу, определения настроений и эмоций текста, анализа данных и прогноза результатов. То есть она пишет текст по запросу, понимает информацию как человек. Благодаря такому искусственному интеллекту многие процессы могут быть автоматизированы, что значительно повышает эффективность работы и уменьшает затраты времени и ресурсов.
В 2019 году Сбербанк презентовал новый суперкомпьютер — всего в России таких 3. Для сравнения, в США уже 100 таких машин, у Китая — более 200. Назвали супермозг Кристофари Christofari — в честь первого российского клиента Сбербанка.
Этот суперкомпьютер самый мощный в нашей стране, а в мире он занял 29-е место. Одним из тестовых заданий для суперкомпьютера было прохождение ЕГЭ по русскому языку, причём ИИ должен был не только ответить на тестовые вопросы, но и написать сочинение. В начале ноября 2019 года на конференции по искусственному интеллекту конференции AI Journey заместитель председателя правления Сбербанка Александр Ведяхин озвучил сенсационные новости: искусственный интеллект Кристофари сдал ЕГЭ по русскому языку на 63 тестовых балла из 100. Тестовые задания для компьютера усложнили, так что баллов могло бы быть и больше. А вот задание с развёрнутым ответом дали точно такое же, как предлагают на экзаменах школьникам. Интересно, что половина из проверяющих сочинение экспертов-педагогов даже не догадались, что проверяют работу, написанную искусственным интеллектом.
Представляем, как они были удивлены, узнав правду. Как ИИ участвует в проверке ЕГЭ Летом 2023 года появились первые дискуссии по поводу того, может ли искусственный интеллект заменить экспертов ЕГЭ во время проверки тестовых и творческих заданий единого госэкзамена. Одна из онлайн-школ рассказала, что их чат-бот на базе ChatGPT для подготовки учеников к ЕГЭ по английскому теперь готов к внедрению в его систему оценки ответов единого государственного экзамена. Обучение чат-бота продолжается. С использованием этой программы дополнительно после всех состоявшихся экзаменов автоматически были проанализированы ответы выпускников, написанные ими по разным предметам ЕГЭ, чтобы определить, писал ли эти несколько работ один и тот же участник. Из 700 тысяч только 75 вызвали некоторые подозрения.
Работы были из разных регионов.
Искусственный интеллект
Очень интересно сравнивать выводы искусственного интеллекта с классическими критиками и строить своего рода нейросеть. Конечно, это мотивирует учащихся построить план обучения нейросети. Конференция о том, как искусственный интеллект помогает автоматизировать IT-рекрутинг и HR и как его грамотно внедрить, пройдет 31 мая в Москве и онлайн. Курс «Философия искусственного интеллекта» от Skillbox охватывает темы, связанные с взаимодействием ИИ и человечества. Вадим Ветров: Конечно же, задания по искусственному интеллекту — последняя и предпоследняя задачи, направленные на машинное обучение и на рекомендательные системы. Интервью об искусственном интеллекте и его роли в образовании – с директором направления «Развитие на основе данных» АНО «Университет 2035», образовательным методологом-игропрактиком, автором телеграм-каналов Игрострой и Дизайн Образования.
В России стартовал прием заявок на курсы по искусственному интеллекту
Прогресс дошел до такого уровня, что появились нейросетевые чат-боты, способные имитировать общение с некогда живущим или недавно умершим человеком. Они создаются на основе ранее загруженных в нейросеть переписок, заметок или дневников. Кроме того, нейросети активно используются в финансовом секторе, принимая решение о выдаче кредитов потенциальным клиентам банков. Голосовые помощники та же Алиса от «Яндекса» или Siri от Apple используют нейросети для распознавания голосовых команд и обработки запросов. С каждым днем сфера применения нейросетей расширяется, упрощая наше взаимодействие с цифровым миром. Ранее мы рассказывали: Как технологии меняют нашу еду? Преимущества и недостатки нейросетей Очевидно, что само изобретение нейросетей было направлено на то, чтобы приносить как можно больше пользы человечеству.
Их основное преимущество перед другими сложными математическими моделями заключается в распознавании более сложных и глубоких закономерностей, позволяющих решать любые поставленные перед ними задачи. При грамотной настройке нейросети способны выдавать пугающе точные результаты, но нейросети бывают и неточными, а их результаты — слишком приблизительными или только отдаленно напоминающими что-то, что вы хотели бы увидеть. Соответственно, нельзя полностью полагаться на результаты работы нейросети, но их можно использовать в качестве дополнительного инструмента решения конкретных задач. Хоть нейросети и можно назвать своего рода искусственным интеллектом, пусть и в зачаточном состоянии, до полноценного ИИ нейросетям еще очень далеко. Это связано с тем, что вычислительные возможности человеческого мозга пока что просто невозможно повторить, так как в теле человека содержится 86 млрд биологических нейронов, а в самых современных нейросетях — не более 10 млрд. Какими бы сложными математическими моделями ни были нейросети в своей основе, до человеческого мозга они пока что недотягивают.
Примеры самых полезных и интересных нейронных сетей Нейросетей в интернете великое множество. Среди них можно выделить несколько полезных и интересных простому обывателю. Ваши друзья, скорее всего, уже установили себе на смартфон приложение Lensa, превращающее обычные селфи в удивительные яркие аватарки. На YouTube можно найти множество примеров подобных роликов: А одна российская студия недавно даже сняла целый DeepFake-сериал с поддельными западными актерами. Можно даже послушать поток бесконечной генеративной музыки. Но это все развлекательные примеры использования нейросетей.
Есть ли какие-то полезные?
Они готовят эталонную информацию, на которую ориентируются алгоритмы нейросетей, оценивают их ответы и проверяют, насколько они точные. Сначала с помощью формул и числовых значений AI-тренеры предоставляют информацию с пояснением, что это такое. Например, «собака» — 1, «кошка» — 2, «курица» — 3. Обычно данных очень много — в 10 раз больше, чем нейронов. Информация автоматически обрабатывается и преобразуется в математические коэффициенты. Это можно сравнить с работой человеческого организма, когда увиденное глазами превращается в нервные импульсы, которые передаются в мозг. У каждого нейрона есть вес, который показывает, насколько информация в конкретном нейроне значима для всей сети.
Во время обучения этот показатель автоматически меняется. В результате определенные нейроны реагируют, например, на силуэт собаки и преобразуются в ответ «Это собака». Какие есть методы обучения нейронных сетей? Чаще всего применяют один из двух методов: С учителем. Нейросеть получает набор информации, в котором отмечены значения данных. Иными словами — вопросы и ответы, которые она должна давать. Нейросеть анализирует большой объем информации и благодаря этому учится генерировать правильный результат по запросам человека. Без учителя.
Нейросеть получает неразмеченные данные и пытается сама выявить в них связи, закономерности, общие признаки. На каком языке лучше писать нейронные сети? Чаще всего для создания нейронных сетей используют Python. Это универсальный язык, на котором можно написать практически что угодно. Также у него много инструментов для машинного обучения, которые легко найти в свободном доступе.
Классическая задача из фильма: как научить AI отличать смешной текст от не смешного? ВАДИМ Меня заинтересовал ИИ прежде всего тем, что я хотел бы немного разнообразить вектор своего развития, чем то действительно крутым, и осязаемым, чтобы можно было показать людям и сказать мол о, глядите, это я сделал.
На текущей работе в качестве C разработчика это не очень получается, занимаюсь CRM которую видят только ограниченное число людей. И в целом думаю это будет отличным дополнением к моим знаниям. Так-же у меня есть pet проект, который было бы круто улучшить нейронкой. ЕКАТЕРИНА AI заинтересовал возможностью использования в различных сферах деятельности, в том числе непосредственно связанных с моей основной специальностью и работой - финансовым анализом и переводами с иностранных языков я по специальности экономист-переводчик. По профессии я занимаюсь производством дизайнерской мебели. Работа творческая и как в любой профессии, нужно постоянно развиваться и изучать что-то новое, но недавно я понял что есть в ней и минус, а конкретно потолок выше которого уже не прыгнуть, в том числе и в плане доходов. А когда я стал искать более перспективные направления и познакомился с нейронными сетями и искусственным интеллектом я понял что в долгосрочной перспективе всё что я сейчас умею может стать бесполезным навыком как и многие другие виды деятельности, которые сейчас востребованы.
И так как сегодня всё меняется стремительно, то нужно уже сегодня осваивать то что будет востребовано завтра. И тут AI является безусловным лидером, это именно то на что нужно тратить своё время, если в будущем хотите не искать работу, а работодатели искали вас.
Это примерно 100 тысяч английских слов. GPT-4 также задала тренд на засекречивание информации о внутреннем устройстве проприетарных LLM — OpenAI даже не рассказала о количестве параметров новой модели. Лишь в июле 2023 года в Сети появились неподтверждённые пока данные о том, что GPT-4 построена по особой архитектуре, называемой Mixture of Experts MoE, «модель смешанных экспертов». Она состоит из 16 нейросетей-экспертов с размером по 111 миллиардов параметров каждая.
За счёт архитектуры MoE элементы системы работают параллельно и в каждый момент времени ответы даёт лишь один виртуальный «эксперт», снижая вычислительные затраты и увеличивая скорость работы. Читайте также: Основные тренды Можно выделить несколько направлений в развитии языковых моделей, которые сохранятся в ближайшем будущем: Инженеры разрабатывают новые подходы к архитектуре нейросетей для замены Transformer. Например, GPT-4 использует модель смешанных экспертов, а отечественный проект Fractal GPT — симбиоз графовых моделей и многоагентных систем. Google и другие компании работают над повышением точности ответов LLM, при одновременном снижении их размерности. Так, новая модель PaLM 2, по сообщениям разработчиков , меньше, чем исходная PaLM, но лучше и быстрее справляется с задачами из разных областей. Разработчики языковых моделей ищут новые методы обучения LLM, которые смогли бы уменьшить объём необходимых тренировочных данных и снизить трудоёмкость их разметки.
Например, обучают модели на синтетических данных , созданных другой нейросетью. Нейросети учатся искать актуальную информацию в интернете и обращаться к внешним сервисам. Чаще всего для этого используют систему плагинов, по аналогии с решением, используемым в ChatGPT. Компании увеличивают длину контекстного окна для повышения точности ответов. GPT-4 и Claude 100K способны воспринимать более 100 тысяч токенов за раз. На подходе технологии с ещё более внушительными параметрами — до 1—2 миллионов токенов.
Инженеры работают над уменьшением числа галлюцинаций и токсичного вывода в моделях. Нейросети учатся понимать промпты на локальных языках и отвечать на них. Сегодня существующие модели охватывают лишь сотню языков из более чем 7000 известных. В 2023 году для формирования набора данных для 1100 неохваченных ранее языков запущен проект Massively Multilingual Speech MMS. IT-гиганты повышают секретность в отношении своих проприетарных моделей. Теперь отчёты о выходе новых версий нейросетей больше похожи на рекламные брошюры с описанием возможностей, а не на техническую документацию.
Китай становится альтернативным центром развития генеративного ИИ, способным бросить вызов американским компаниям. К 2023 году в этой стране разработали более 130 LLM. Читайте также: Стремительный тигр, мудрый дракон: проекты и перспективы Китая в гонке генеративного ИИ Чего ждать в 2024 году Лидеры IT-индустрии продолжат скрывать подробности о внутреннем устройстве и параметрах обучения своих моделей. Связано это с тем, что именно они, а не только внушительный размер LLM, теперь являются конкурентными преимуществами. Самое ожидаемое событие 2024 года — выход языковой модели следующего поколения от компании OpenAI. Ходят слухи, что GPT-5 сможет достичь уровня AGI по ряду ключевых показателей, что может привести к непредсказуемым последствиям для отрасли ИИ и всего человечества.
Читайте также: Новый уровень искусственного интеллекта: что такое AGI, когда он появится и каким будет В любом случае нейросети следующего года станут более эффективными, то есть будут работать лучше при тех же или даже меньших размерах. Они смогут за один проход понимать тексты, сопоставимые по объёму с романами Льва Толстого, на лету считывать новости из интернета, решать сложные задачи за счёт обращения к внешним сервисам и быстро учиться на актуальных данных, в том числе синтезированных. Мы ждём от них умения общаться с пользователями на их родных языках, включая редкие местные наречия. И конечно, будем следить за нейросетями из Китая, эффективность и качество работы которых продолжат расти, догоняя лучшие западные аналоги. При этом LLM ближайшего будущего, скорее всего, будут более стабильны, безопасны и, возможно, скучны.
Как искусственный интеллект захватывает мир — нейросети в 2023 году
Искусственный интеллект помогает продлить жизнь, нейросети учатся воссоздавать 3D-изображения по отражению в глазах и создают игры по текстовому описанию, а диджитал-специалисты дают советы, как лучше общаться с ChatGPT. Apple приобрела парижский стартап в области искусственного интеллекта Datakalab в рамках реализации своего проекта по развёртыванию средств ИИ с локальной обработкой данных на устройствах. Искусственный интеллект работает по принципу мозга человека: принцип обучения НС в какой-то степени схож с тем, как обучают человека.
Первая ступень ракеты SpaceX Falcon 9 утонула после 20-го успешного запуска
Нейросети разрабатывают во фреймворках: Tensorflow, Keras, PyTorch, работать с ними тоже нужно учиться, причем не в теории, а на практике. Изображения и видео обрабатывают с помощью методов компьютерного зрения, а текст — с помощью методов NLP, обработки естественного языка. Специалист по нейросетям умеет создавать модели, которые могут распознавать лица и действия, отслеживать траекторию объекта на видео, извлекать краткое содержания текста, синтезировать голос из текста. На факультете Искусственного интеллекта GeekUniversity после модуля про нейросети вы выполняете вторую курсовую работу: создадите чат-бота в Telegram, предскажете отток пользователей сотового оператора или разработаете собственную рекомендательную систему фильмов или книг. Курс даст вам не просто знания и навыки, но и реальный опыт, с которым вам будет доступно в 5 раз больше вакансий, чем для новичков. Важный и приятный бонус: после обучения GeekUniversity гарантирует трудоустройство, а также выдает сертификат о профессиональной переподготовке, поэтому вы сразу сможете найти работу. Если хотите разрабатывать нейросети и готовы погрузиться в мир ИИ, приходите на курс. Получите запись прямо сейчас здесь! Проверьте свои профили на LinkedIn и Upwork и узнайте, готовы ли вы к выходу на зарубежный фриланс. Забирай бесплатный чек-лист!
Итоговые работы учителей-предметников проверяются вручную членами итоговой аттестационной комиссии. Поэтому отметка об успешной итоговой аттестации появляется не мгновенно. Итоговая аттестационная комиссия приступит к проверке работ 18 сентября 2023 года.
Прохождение программы, аттестация, удостоверения Будет ли расписание? Онлайн-курс базового уровня полностью доступен к прохождению с первого дня, так же, как и доступ к тестированию. Онлайн-курсы продвинутого уровня открываются по одному модулю в неделю. Проходить онлайн-курсы вы можете в своем темпе.
Предусмотрено расписание для очных вебинаров. Оно доступно в личном кабинете. Вы можете проходить обучение в удобном для вас темпе в рамках длительности программы. Итоговая аттестация должна быть пройдена до 2 октября 2023 года.
Что будет, если я пропущу занятие? Занятия - предзаписанные видео лекции. Кроме них у каждого потока предусмотрено несколько очных вебинаров. Все вебинары сохраняются в записи, поэтому вы без проблем сможете посмотреть вебинар в удобное для вас время, но мы советуем присутствовать на занятиях лично.
Как проходит проверка знаний? После изучения каждого модуля Вам предлагается тестирование, которое необходимо пройти. Также по окончании курса Вам предстоит итоговая аттестация в форме выполнения практического задания. Когда и в какой форме будет проводиться итоговая аттестация?
Итоговая аттестация проводится в форме выполнения практического задания. Срок сдачи итоговой аттестации: до 20 октября 2023 включительно. Что я получу после обучения? Вы получите удостоверение о повышении квалификации.
После полного прохождения обучения и сдачи итоговой аттестации в вашем Личном кабинете появится скан удостоверения. После отправки вам оригинала по почте в личном кабинете будет опубликован трек номер почтового отправления для отслеживания доставки. Напоминаем, что срок хранение писем в отделениях Почты России ограничен. Рекомендуем проверять наличие трек номера и своевременно забрать письмо.
Как я получу удостоверение? Скан удостоверения появится в личном кабинете после полного прохождения обучения и сдачи итоговой аттестации. Оригинал удостоверения может быть получен вами следующими способами: Лично в офисе регионального партнера МФТИ смотрите данные о партнерах в разделе "Региональная сеть" на сайте проекта. По почте после отправки вам оригинала по почте в личном кабинете будет опубликован трек номер почтового отправления для отслеживания доставки.
Будет ли в удостоверении указано, что обучение проходило дистанционно?
Он дает ответ на нужном языке и знает русский. Нейросеть учится на своих ошибках. Она может работать с большими массивами данных. Искусственный интеллект признает свои ошибки и отклоняет неуместные запросы. Сервис пока бесплатный. Нейросеть ChatGPT может переводить тексты и использоваться в качестве диалогового агента для разных приложений, включая обучение, развлечения и автоматизацию задач. OpenAI предоставляет API для разработчиков, которые хотят использовать технологии в своих приложениях и проектах.
Так, российский сервис Grammarly уже встроил алгоритмы OpenAI в свой код. OpenAI разрабатывала его несколько лет. Новая модель более продвинутая. Нейронной сети можно дать изображение, например фото продуктов, и попросить рецепты блюд, которые из них можно приготовить. Эта нейронная сеть более надежная и креативная, может обрабатывать изображения, в отличие от предшественников, ограниченных текстом. Она предоставляет информацию об изображении. Однако она все еще придумывает некоторые факты, нужен фактчекинг. Знания все так же ограничены 2021 годом. Лучше понимает глубокий контекст.
Например, с ее помощью можно отправить аналитическую диаграмму, графики и она сможет по запросу расшифровать их и сделать детальное описание. И может даже написать сайт на основе наброска на бумаге. Еще искусственный интеллект может сделать игру за 20 минут. Нейронная сеть имеет разные «личности», изменяемые по требованию, благодаря улучшенной управляемости. Интеллектуальный PR для вашего бренда Заказать Другие нейросети OpenAI OpenAI также предоставляет доступ к нейронной сети GPT-3, алгоритмам машинного обучения для создания контента и прогнозирования временных рядов, инструментам для обработки естественного языка и машинного обучения, а также крупные модели, такие как Codex и CLIP. Whisper Whisper — это инструмент, предназначенный для обеспечения более безопасной и приватной коммуникации между устройствами IoT: домашними устройствами, медицинскими приборами, автомобилями и др. Кроме того, Whisper может транскрибировать речь в текст и переводить многие языки на английский. Нейронные сети, популярные в России Волна популярности нейросетей стремительно растет. В первую очередь это нейросети для генерации изображений и чаты.
Нейросеть Notion AI распознает текст и изображения, автоматически заполняет базы данных, предсказывает и анализирует данные, а также отвечает на вопросы пользователей. Bing AI — это разработка компании Microsoft, владеющей поисковой системой Bing. Нейросеть способна обрабатывать запросы пользователей, показывать результаты поиска, предлагать схожие запросы, а также выполнять другие задачи, связанные с поиском информации в Интернете. Есть и другие нейросети, которые контент-мейкеры могут использовать как удобный инструмент.
Избегать типичных ошибок при принятии решений на основе данных, критически оценивать результаты анализа. Формулировать и проверять статистические гипотезы, различать случайные и неслучайные зависимости. Эффективно визуализировать и представлять результаты исследований и работы моделей с помощью инфографики. Наша цель — держать подписчиков в курсе самых интересных открытий, исследований и приложений ИИ. Материалы о применении ИИ в разных сферах — медицине, бизнесе, науке, производстве и образовании.
Статьи об этических аспектах развития технологий. Подборки лучших онлайн-курсов и видеолекций по машинному обучению. Обзоры инструментов и библиотек для разработки нейронных сетей. Ссылки на репозитории с открытым исходным кодом ИИ-проектов.