Нейросети стали частью жизни пользователей сети Интернет. Промты для ChatGPT Новости нейросетей.
Нейронные сети
мы находим и публикуем самые свежие и интересные новости со всего мира - Aimatics. Показатели знания и использования текстовых нейросетей у мужчин немного выше, чем у женщин. Главные новости к утру 2 апреля. Здесь вы найдете новости о последних достижениях в области машинного обучения, нейронных сетей, робототехники и других областях, связанных с ИИ. В данном разделе вы найдете много статей и новостей по теме «нейросети». читайте последние и свежие новости на сайте РЕН ТВ: По "музыке сердца" и ушам.
#Нейросеть
Кроме того, нейросети активно используются в финансовом секторе, принимая решение о выдаче кредитов потенциальным клиентам банков. Голосовые помощники та же Алиса от «Яндекса» или Siri от Apple используют нейросети для распознавания голосовых команд и обработки запросов. С каждым днем сфера применения нейросетей расширяется, упрощая наше взаимодействие с цифровым миром. Ранее мы рассказывали: Как технологии меняют нашу еду? Преимущества и недостатки нейросетей Очевидно, что само изобретение нейросетей было направлено на то, чтобы приносить как можно больше пользы человечеству. Их основное преимущество перед другими сложными математическими моделями заключается в распознавании более сложных и глубоких закономерностей, позволяющих решать любые поставленные перед ними задачи. При грамотной настройке нейросети способны выдавать пугающе точные результаты, но нейросети бывают и неточными, а их результаты — слишком приблизительными или только отдаленно напоминающими что-то, что вы хотели бы увидеть. Соответственно, нельзя полностью полагаться на результаты работы нейросети, но их можно использовать в качестве дополнительного инструмента решения конкретных задач. Хоть нейросети и можно назвать своего рода искусственным интеллектом, пусть и в зачаточном состоянии, до полноценного ИИ нейросетям еще очень далеко. Это связано с тем, что вычислительные возможности человеческого мозга пока что просто невозможно повторить, так как в теле человека содержится 86 млрд биологических нейронов, а в самых современных нейросетях — не более 10 млрд. Какими бы сложными математическими моделями ни были нейросети в своей основе, до человеческого мозга они пока что недотягивают.
Примеры самых полезных и интересных нейронных сетей Нейросетей в интернете великое множество. Среди них можно выделить несколько полезных и интересных простому обывателю. Ваши друзья, скорее всего, уже установили себе на смартфон приложение Lensa, превращающее обычные селфи в удивительные яркие аватарки. На YouTube можно найти множество примеров подобных роликов: А одна российская студия недавно даже сняла целый DeepFake-сериал с поддельными западными актерами. Можно даже послушать поток бесконечной генеративной музыки. Но это все развлекательные примеры использования нейросетей. Есть ли какие-то полезные? Нейросеть DeOldify позволяет раскрашивать старые черно-белые фотографии. Looka поможет создать логотип для вашего бренда.
Зато после этого базовую модель можно дообучить на другие специфические задачи. В 2022 году в открытом доступе также появилась модель YaLM 100B на 100 млрд, которая умеет генерировать тексты на русском и английском языках. Это самые мощные суперкомпьютеры в России и Восточной Европе. У нас очень сильная команда разработчиков и экспертов в области машинного обучения, которая постоянно расширяется", — поделился собеседник "ДП". ИИ повсюду Дмитрий Иванков, эксперт Центра искусственного интеллекта СКБ "Контур", отмечает, что есть ещё множество российских нейросетей, на которые стоит обратить внимание. Это приложение для генерации изображений, которое после выпуска, а также благодаря хорошему продвижению попало в топ—чарт российского App Store. При этом обучение модели всё ещё продолжается для бета—версии было использовано 240 млн примеров картинок из 500 млн доступных компании. И разработчики обещают в дальнейшем поэтапно улучшать качество получаемых изображений. Вячеслав Борисов, владелец продукта "Сфера. Данная сеть может повышать качество и разрешение видео", — говорит эксперт. Многие опрошенные эксперты отмечают, что индустрия нейросетей в России развивается стремительно.
Летим строго арабскими авиакомпаниями. И еще так, чтобы в бизнес апгрейднутся можно было максимум за 600 долларов». И так — вообще всё и везде. Лично я жду интерфейс, основанный на эмодзи. Фантастика пугала нас историями про роботов, которые причинят людям вред а фантасты даже описывали это в законах робототехники. Но никто не пугал нас тем, что машины могут нам врать, причем ни мы, ни машины, об этом не догадываемся. Думаю, это будет важным направлением работы — как сделать так, чтобы нейронки говорили только правду, при этом не теряя в мощности своей работы. В ближайшем будущем использование нейросетей будет не просто возможной частью работы, она станет просто обязательной как «уверенное владение ПК». Я доживу до времени, когда нейронки будут ходить на встречи с людьми и другими нейронками , добывая для своих хозяев конспекты разговоров. Нейронка станет цифровым оруженосцем. Ну, мы это уже сегодня видим, даже далеко в будушее идти не нужно. Вырастет спрос на аналоговое фото и видео — как то, что очень трудно сгенерировать и подделать. Конституцию прекрасной России будущего сфотографируют на «Полароид», и будут хранить по снимку в каждой мэрии. Будет вообще все приватно и ничего не будет не приватного вообще. В смартфоне будущего на фотографиях будут автоматически блюриться изображения людей, которые не давали на это согласие. А ваш собственный снимок Эйфелевой башни будет дополняться деталями с миллионов других снимков миллионов других людей — чтобы вы могли порадоваться хайрезу.
Я бы сказал, что сейчас мы находимся в самом начале пути, интерес к нейросетям будет расти экспоненциально. Сейчас активно развиваются мультимодальные модели. Например, есть попытки скрестить сегментаторы изображений с чат-ботами для создания пайплайна автоматической разметки данных для задач компьютерного зрения. Из-за спроса на нейросети в России, выросла потребность и в специалистах этой сферы. ИИ уже применяют в образовании, финансовом секторе, ритейле, медицине. Для наглядности, помотрим на статистику hh. Однозначно спрос на ИИ-специалистов растет. К 2030 году России может понадобится 70 000 кадров. Спрос на ИИ-специалистов растет во всем мире. Быстрее всего росла сфера генеративного ИИ. С 2018 по 2022 годы в сфере разработки прикладного ИИ и ПО следующего поколения было опубликовано почти 1 млн вакансий. Данные исследовательского сервиса Glassdoor. Минимальная зафиксированная зарплата — 32 000 рублей, максимальная — 348 000 рублей. Спрос на ML-инженеров, как и на ИИ-специалистов в целом, растет. Но спрос в ближайшие годы будет превышать предложение. Требования к ML-инженеру не изменились и остаются такими же, как и в 2023. К тому же в этом году в общем доступе появилось много моделей текстовых чат-боты, в частности, chatGPT , моделей компьютерного зрения. Полезно иметь иметь навыки применения и дообучения подобных моделей. Для этих специалистов важна математическая подготовка математический анализ, статистика, теория вероятностей. В России можно выделить нехватку специалистов Big Data, обработки естественного языка и компьютерного зрения в направлении ML. Дефицит кадров по этим направлениями есть в области медицины, инфобеза и финансов. Сергей Снегирев Руководитель отдела разработки игр и приложений компании Dobro Games ИИ был в центре бизнеса последние несколько лет. Но сейчас ситуация стала еще более поразительной. Новые алгоритмы и нейросети позволяют внедрить искусственный интеллект практически в любые сферы. Я — старший геймдизайнер и руководитель проектов в игровой компании. Художники используют его для прототипирования концепт-артов и интерфейса, продакты чтобы составлять документацию и работать с большим количеством информации. Моделлеры используют сетки для создания текстур к моделям. Благодаря нейросетям сильный толчок в 2023 году получило zero-code направление. Нейросети начали активно использовать для создания рекламы, улучшения качества изображения, поиска информации и даже для диагностирования заболеваний. Область применений практически безгранична. На текущий момент мы находимся только в начале пути. Перспективы роста сохраняются и на 2024 и включают в себя создание новых профессий и перестройку множества текущих. Этот процесс с нами на долгие годы, потому что ИИ полезен для бизнеса. Он повышает эффективность работы и снижает издержки. В целом в 2023 году наблюдался революционный прорыв в технологиях машинного обучения. Успешные кейсы были зафиксированы практически во всех ключевых областях и особенно в разработке. Сильно вырос интерес к автоматизации и интеллектуализации бизнес-процессов. Спрос на нейросети естественным образом увеличил потребность в ML-инженерах и повлек рост зарплат для специалистов в этой области. В 2024 году ML-инженерам будут нужны глубокие знания в машинном обучении, владение программными инструментами и языками PyTorch, TensorFlow и т. Елена Кравченко Нейромаркетолог, эксперт по искусственному интеллекту Утверждение, что в 2023 все были без ума от нейросетей — не совсем верное. Восхищались нейросетями только пионеры, но есть огромное количество людей, которые замерли и думают о том, что ИИ уйдет из их жизни. При этом они забывают о том, что уже все банки и приложения давно работаю с помощью ИИ и с нами давно общаются боты.
Каким будет будущее нейросетей в 2024 году
ChatGPT в формате диалога может генерировать уникальные тексты, учитывая контекст. А поисковый сервис Bing с помощью ИИ может выполнять за вас поиск и обобщать найденную информацию. Всего 386 материалов.
Образование и развитие: каналы предоставляют обучающие материалы, которые помогут вам углубиться в тему и повысить свои знания. Применение в практике: Вы узнаете, как можно использовать нейросети в своей работе или проектах. Обмен опытом: возможность общаться с единомышленниками и специалистами помогает расширить свой кругозор и найти партнеров для совместных проектов. Инновации и карьерные возможности: знание о нейросетях может открыть перед вами новые возможности в карьере и проектах. Телеграм-каналы про нейросети — это окно в захватывающий и быстроразвивающийся мир искусственного интеллекта и машинного обучения. Они позволяют вам быть в курсе последних новостей и научиться использовать передовые технологии в своих интересах и проектах.
На первый взгляд, результат не кажется впечатляющим из-за завышенных ожиданий на старте. Но по факту трудозатраты сокращаются в 2 раза, а скорость выдачи материалов повышается вдвое. А здесь достигается удвоение результата с помощью подключения всего одного инструмента. Если посчитать трудозатраты, то можно в цифрах определить эффективность использования нейросетей в работе журналистов. На диаграмме ниже отражен результат наиболее пессимистичных расчетов при использовании браузерной версии ChatGPT на платном тарифе. Драматичность экономии времени следует оценивать, глядя на цифры, потому что для отражения маленьких значений совместно с большими применена логарифмическая шкала при построении диаграммы. Трудозатраты на работу с типовыми материалами: журналист, нейросеть и комбинированный метод. Указаны трудозатраты в секундах Подготовка полноценного ответа нейросетью, длиной около 3000 символов на русском языке, занимает около 1 минуты, в зависимости от времени суток и загруженности программы. Стоит отметить, что генерация текстов на английском существенно быстрее. Человек может составить 5 вариантов заголовков на выбор примерно за 60 секунд. Нейросеть - за 15. Однако совместная работа подразумевает генерирование 5 заголовков нейросетью, выбор и корректировка журналистом наилучшего из предложенных. По той же логике журналист может составить тезисный план к готовому тексту или к новой идее, изложив нейросети суть того, что он планирует написать. Когда требуется удлинить текст "налить воды" - нейросеть незаменима, журналисту останется корректировать готовый материал, поскольку литературный русский у ChatGPT не так хорош, как английский. Сокращение текста также сэкономит время вдвое, когда журналист с нейросетью работают в команде, в сравнении с индивидуальным трудом представителя естественного интеллекта. Наибольшая экономия времени видна при подготовке рерайта. Журналисту чаще всего достаточно внести правки по стилистике. Но иногда нейросеть досочиняет несуществующие факты, что может привести к плачевным последствиям для СМИ. Поэтому пока рискованно допускать нейросеть в админку СМИ с правом публикации без человеческого контроля. Читатель может самостоятельно перевести экономию времени в экономию денег применительно к своему проекту и принять одно из двух возможных решений: экономить на зарплате журналистов и райтеров, делегируя половину работы нейросети , сохранить штат, но увеличить минимум вдвое объем произведенного контента. Кроме написания рерайтов, можно автоматически генерировать дайджесты и сводки, наподобие итогов недели или итогов дня. Нейросеть вполне способна справиться с кратким пересказом основных событий, отмеченных редактором. Таким образом, использование нейросетей существенно ускоряет процесс написания материалов и позволяет сэкономить время журналистов, увеличивая объем производимого контента, или снижать затраты на оплату труда райтеров и журналистов. Нейросеть может быть особенно полезна при написании рерайтов и редактировании готовых материалов. Однако пока что использование нейросетей требует контроля со стороны человека, чтобы избежать публикации некорректной или ложной информации. Извлечение смыслов из текста Извлечение смыслов для нейросети - более простая задача. Однако это тоже упрощает труд людей, работающих с большими объемами данных. Нейросеть может выделить теги, написать подзаголовки для материала, составить аннотацию и заключение, сформировать оглавление. Что касается тегов, то категоризация, или, другими словами, автоматическая расстановка тегов - задача, над которой прямо сейчас бьются ИТ -отделы многих крупных информационных агентств. Теги должны аккумулировать основной смысл материала. Это необходимо для связи с другими материалами, с похожим смыслом. Многие годы журналисты из-под палки расставляют теги вручную.
Даже руководство компании-разработчика не знает до конца пределов возможностей своего продукта. Я полагаю, что невозможно контролировать ситуацию только в лаборатории. Этот продукт попадет в широкое употребление и столкнется с реальностью. Мы должны совершать ошибки, пока ставки невысоки», - заявил генеральный директор Open AI Сэм Альтман. Нейросеть уже заявила о себе на мировом уровне и дала интервью ведущей на телеканале Arab News. Ведущая задала «Джи-Пи-Ти» каверзный вопрос, но нейросеть оказалась еще и политкорректной. Моя роль состоит в том, чтобы предоставлять информацию и отвечать на вопросы в меру своих возможностей», - так нейросеть ответила на вопрос ведущей о том, кто виноват в палестино-израильском конфликте. Также в интервью нейросеть призналась, что не собирается отнимать у людей их работу. Однако некоторые ее «выходки» всерьез настораживают пользователей, например, новая версия «Джи-Пи-Ти» наняла человека через интернет и притворилась слепой, чтобы доказать, что она не робот - то есть попросила решить за нее тест, представляющий собой изображение с искаженным текстом.
НЕЙРО АЛЬМАНАХ
Москва, ул. Правды, д. Почта: mosmed m24.
Фантастика пугала нас историями про роботов, которые причинят людям вред а фантасты даже описывали это в законах робототехники. Но никто не пугал нас тем, что машины могут нам врать, причем ни мы, ни машины, об этом не догадываемся. Думаю, это будет важным направлением работы — как сделать так, чтобы нейронки говорили только правду, при этом не теряя в мощности своей работы. В ближайшем будущем использование нейросетей будет не просто возможной частью работы, она станет просто обязательной как «уверенное владение ПК». Я доживу до времени, когда нейронки будут ходить на встречи с людьми и другими нейронками , добывая для своих хозяев конспекты разговоров. Нейронка станет цифровым оруженосцем. Ну, мы это уже сегодня видим, даже далеко в будушее идти не нужно. Вырастет спрос на аналоговое фото и видео — как то, что очень трудно сгенерировать и подделать. Конституцию прекрасной России будущего сфотографируют на «Полароид», и будут хранить по снимку в каждой мэрии. Будет вообще все приватно и ничего не будет не приватного вообще. В смартфоне будущего на фотографиях будут автоматически блюриться изображения людей, которые не давали на это согласие. А ваш собственный снимок Эйфелевой башни будет дополняться деталями с миллионов других снимков миллионов других людей — чтобы вы могли порадоваться хайрезу. Уже сейчас смартфоны «Самсунга» прифотошопливают Луну на снимки ночного неба. А в будущем вся фотография будет вычислительной. Через 10 лет людям будет непросто узнать, как они выглядят на снимках на самом деле — разве что в жестокое обычное зеркало смотреть. Совсем скоро ваш контент будет полностью персонализированным.
Новое вещество может стать лекарством только после нескольких этапов клинических испытаний — оно должно оказаться эффективным, не токсичным и так далее. То, что удалось сделать с помощью ИИ — по сути, дотестовая оптимизация, то есть лишь начальный этап разработки лекарства. Без ИИ формулы таких лекарств подбирают 2-3 года. Здесь же ИИ справился с перебором разных комбинаций и параметров молекулы всего за год. В общем, всё как в большинстве новостей про ИИ — машины пока не дают таких фантастических результатов, как хотелось бы то есть до «нажали кнопку — получили новое лекарство» ещё очень далеко , но позволяют заметно оптимизировать рутинные процессы. Создание анимаций с большими значениями FPS Следующий пример искусственного интеллекта позволяет создавать новые кадры в видео и анимациях, делая движение объектов более гладким. Вот пример с Чебурашкой. Чтобы почувствовать более гладкое движение, нужно поставить на YouTube 720p50. Распознавание дорожных знаков для ограничения скорости автомобиля В автомобилях Tesla есть опция Speed Assist — камера распознаёт дорожные знаки с ограничением скорости и передаёт данные системе круиз-контроля. Удобная фича — водителю не надо лишний раз обращать внимание на дорожные знаки, машина сама их видит и разгоняется только до разрешенной скорости. Но в лаборатории McAfee нашли занятный баг — наклеив на дорожный знак всего одну наклейку, систему распознавания можно обмануть и заставить машину разгоняться до 85 миль в час вместо 35. Баг не работает в новых моделях Driver Assistant, но много машин используют старую версию. Побыстрее бы его пофиксили, а то ведь такую наклейку могут наклеить на знак не только исследователи в рамках эксперимента. Источник Оценка привлекательности Есть такой краудсорсинговый сервис Photofeeler для отбора фотографий для резюме, тиндера и т.
Новости 05. Кнопка будет располагаться Новости 31. Это приложение интегрирует технологию чат-помощника.
Версия Прекрасной России Будущего от «Шедеврум» («Яндекс»)
- Телеграм-каналы про нейросети
- Нейросети превратят обычных роботов в адаптивных: Будущее: Наука и техника:
- Что умеют нейросети: 10 крутых примеров из недавних новостей
- нейросети – последние новости
- Telegram: Contact @neirosetblog
#Нейросеть
Будьте в курсе последних новостей и технологических открытий в области нейросетей и искусственного интеллекта. Здесь вы найдете новости о последних достижениях в области машинного обучения, нейронных сетей, робототехники и других областях, связанных с ИИ. Новости Искусственного Интеллекта (ИИ), машинное обучение, квантовые компьютеры, нейронные сети и другие научные новости и открытия в сфере Искусственного Интеллекта. В интерфейсе AI Studio нейросеть сейчас доступна с ограничением в 20 запросов в день.
Нейросети против человечества: возможности искусственного интеллекта уже не удивляют, а пугают
Нейросеть уже работает в приложении «Шедеврум», которое компания представила в апреле 2023 года, и. Нейросети используют для анализа снимков с беспилотных летательных аппаратов и камер городского видеонаблюдения. Новости. Midjourney заблокировала доступ всем сотрудникам конкурирующей Stability AI. Читайте последние новости по теме нейросетей и искусственного интеллекта. Сегодня нейросети умеют читать по губам, водить автомобили, придумывать лица несуществующих людей и даже превращать пару мазков в полноценные картины. Главные новости к утру 2 апреля.
Все материалы
- Новости искусственного интеллекта - Каталог НЕЙРОСЕТЕЙ и ИИ инструментов —
- 4. Искусственный интеллект научили рассуждать и превратили в ученого
- Последние комментарии
- 4. Искусственный интеллект научили рассуждать и превратили в ученого
Статьи и новости
Читайте последние новости высоких технологий, науки и техники. Перепечатка материалов без согласования допустима при наличии активной ссылки на страницу-источник. Направляя нам электронное письмо или заполняя любую регистрационную форму на сайте, Вы подтверждаете факт ознакомления и безоговорочного согласия с принятой у нас Политикой конфиденциальности.
А взлом с помощью джейлбрейк-промптов постепенно станет невозможным.
Виктор Носко генеральный директор компании «Аватар Машина», создатель чат-бота-психолога « Сабина Ai », соавтор проекта FractalGPT — Думаю, что в больших языковых моделях в мировом масштабе наступила эпоха стагнации: теперь новые эмерджентные свойства не будут возникать с ростом числа параметров. А совершенствование свойств, которые уже проявились, замедлится. При этом новая нейросеть от Google — Gemini, анонсированная с помпой как конкурент GPT-4, не показала существенного превосходства над ней и не оправдала ожиданий пользователей.
Ситуацию подпортил и их фейл с пиаром в виде смонтированного демонстрационного ролика. До сих пор российские учёные отставали от зарубежных примерно на один год по мощности моделей и на два года по уровню научных исследований. Однако в 2024-м этот разрыв может сократиться: главным драйвером здесь может стать Fusion Brain от «Сбера», развивающий идею MoE для мультимодальных решений и VisualQA.
Ещё одним драйвером может стать разработка собственной модификации архитектуры «трансформер» — особенно если учесть, что за рубежом даже небольшие компании разрабатывают модификации моделей с механизмом внимания attention model. Роман Душкин генеральный директор ООО «А-Я эксперт» , компании — разработчика систем искусственного интеллекта — LLM продолжат развиваться в сторону мультимодальных моделей и роста числа параметров. Но всё это лишь количественные показатели.
Да, они будут расти. Но приведёт ли этот тренд к качественным прорывам? Я сомневаюсь.
Моё мнение: большие языковые модели — это бездумные «обезьянки», которые просто достают из «мешков со словами» каждое следующее слово. Они по своей сути такими и останутся, что бы мы с ними ни делали. Используемая сегодня архитектура нейросетей просто не позволит им совершить качественный скачок.
Поэтому стоит ожидать концентрации усилий разработчиков на создании когнитивных архитектур, которые называют BICA biologically inspired cognitive architectures. Здесь могут появиться очень интересные решения. Такие модели способны конвергировать с архитектурами, основанными на других принципах.
Сейчас есть все предпосылки для развития в этом направлении. Развитие опенсорсных моделей и демократизация ИИ Что случилось за год Параллельно с закрытыми проприетарными моделями развились нейросети с открытым исходным кодом. Если в 2022 году анонс свободной языковой модели BLOOM BigScience large open-science open-access multilingual language model стал громким событием, то в 2023 году IT-комьюнити представило сотни опенсорсных нейронок.
Начало этому процессу положила представленная в феврале 2023 года цукерберговская модель LLaMA , а затем её более продвинутый вариант LLaMA 2 , разработанный совместно с Microsoft. Нейросетка, представленная в типоразмерах на 7, 13, 33, 65 и 70 миллиардов параметров, по ряду показателей показала результаты, сопоставимые с GPT-3. Цукерберг решил сыграть против тренда на закрытость и объявил, что LLaMA будет доступна с рядом ограничений для научных организаций, которые его компания посчитает заслуживающими доверия.
Но модель вскоре «утекла» в интернет , где её начали распространять и «допиливать» энтузиасты ИИ и свободного ПО. Она стала основой для множества проектов, развивающих модель за счёт экспериментов с архитектурой, вариантами тонкой настройки и обучения. Следующий прорыв случился, когда учёные из Стэнфорда провели тонкую настройку модели и научили один из вариантов LLaMA следовать инструкциям пользователя, затратив на это всего лишь 600 долларов.
Нейросеть получила название Alpaca. Сейчас таких проектов стало больше и не все они основаны на LLaMA. Вот некоторые из самых интересных опенсорсных моделей, которые появились в 2023 году: Dolly от компании Databricks, специализирующейся на разработках в области больших данных.
Отечественная ruGPT-3. Для неё опубликована лишь предобученная версия «претрейн» , поэтому для выполнения инструкций её нужно дообучать.
На подходе технологии с ещё более внушительными параметрами — до 1—2 миллионов токенов. Инженеры работают над уменьшением числа галлюцинаций и токсичного вывода в моделях. Нейросети учатся понимать промпты на локальных языках и отвечать на них. Сегодня существующие модели охватывают лишь сотню языков из более чем 7000 известных. В 2023 году для формирования набора данных для 1100 неохваченных ранее языков запущен проект Massively Multilingual Speech MMS. IT-гиганты повышают секретность в отношении своих проприетарных моделей.
Теперь отчёты о выходе новых версий нейросетей больше похожи на рекламные брошюры с описанием возможностей, а не на техническую документацию. Китай становится альтернативным центром развития генеративного ИИ, способным бросить вызов американским компаниям. К 2023 году в этой стране разработали более 130 LLM. Читайте также: Стремительный тигр, мудрый дракон: проекты и перспективы Китая в гонке генеративного ИИ Чего ждать в 2024 году Лидеры IT-индустрии продолжат скрывать подробности о внутреннем устройстве и параметрах обучения своих моделей. Связано это с тем, что именно они, а не только внушительный размер LLM, теперь являются конкурентными преимуществами. Самое ожидаемое событие 2024 года — выход языковой модели следующего поколения от компании OpenAI. Ходят слухи, что GPT-5 сможет достичь уровня AGI по ряду ключевых показателей, что может привести к непредсказуемым последствиям для отрасли ИИ и всего человечества. Читайте также: Новый уровень искусственного интеллекта: что такое AGI, когда он появится и каким будет В любом случае нейросети следующего года станут более эффективными, то есть будут работать лучше при тех же или даже меньших размерах.
Они смогут за один проход понимать тексты, сопоставимые по объёму с романами Льва Толстого, на лету считывать новости из интернета, решать сложные задачи за счёт обращения к внешним сервисам и быстро учиться на актуальных данных, в том числе синтезированных. Мы ждём от них умения общаться с пользователями на их родных языках, включая редкие местные наречия. И конечно, будем следить за нейросетями из Китая, эффективность и качество работы которых продолжат расти, догоняя лучшие западные аналоги. При этом LLM ближайшего будущего, скорее всего, будут более стабильны, безопасны и, возможно, скучны. Они не станут генерировать бред и обсуждать скользкие темы. А взлом с помощью джейлбрейк-промптов постепенно станет невозможным. Виктор Носко генеральный директор компании «Аватар Машина», создатель чат-бота-психолога « Сабина Ai », соавтор проекта FractalGPT — Думаю, что в больших языковых моделях в мировом масштабе наступила эпоха стагнации: теперь новые эмерджентные свойства не будут возникать с ростом числа параметров. А совершенствование свойств, которые уже проявились, замедлится.
При этом новая нейросеть от Google — Gemini, анонсированная с помпой как конкурент GPT-4, не показала существенного превосходства над ней и не оправдала ожиданий пользователей. Ситуацию подпортил и их фейл с пиаром в виде смонтированного демонстрационного ролика. До сих пор российские учёные отставали от зарубежных примерно на один год по мощности моделей и на два года по уровню научных исследований. Однако в 2024-м этот разрыв может сократиться: главным драйвером здесь может стать Fusion Brain от «Сбера», развивающий идею MoE для мультимодальных решений и VisualQA. Ещё одним драйвером может стать разработка собственной модификации архитектуры «трансформер» — особенно если учесть, что за рубежом даже небольшие компании разрабатывают модификации моделей с механизмом внимания attention model. Роман Душкин генеральный директор ООО «А-Я эксперт» , компании — разработчика систем искусственного интеллекта — LLM продолжат развиваться в сторону мультимодальных моделей и роста числа параметров. Но всё это лишь количественные показатели. Да, они будут расти.
Но приведёт ли этот тренд к качественным прорывам? Я сомневаюсь. Моё мнение: большие языковые модели — это бездумные «обезьянки», которые просто достают из «мешков со словами» каждое следующее слово.
При этом обучение нейросетей для повышения эффективности их работы ведется на постоянной основе», — отметили представители Департамента информационных технологий Москвы. Нейросети, внедренные Госинспекцией по недвижимости совместно с Департаментом информационных технологий Москвы, применяются с 2020 г.
Ведомства планируют совершенствовать работу алгоритмов искусственного интеллекта и других цифровых решений для повышения эффективности контроля за использованием объектов недвижимости и земельных участков.
Нейросети: IT, ChatGPT, ИИ
Российские нейросети уже вполне могут составить конкуренцию нашумевшим ChatGPT и Midjourney. Последние новости: Постепенное отключение CDN и Google Global Cache в России: последствия ухода Google. Самые свежие новости и события в мире нейросетей. Узнайте о последних разработках, технологических трендах и применении искусственного интеллекта. Эта серия о том, как генеративные модели приучают нас всё делать по-новому: искать в интернете то, чего до нас никто не искал, решать математические задачи з. В данном разделе вы найдете много статей и новостей по теме «нейросети». Почему бы не поручить генерировать тематические изображения к новостям или постам нейросетью?
15 удивительных вещей, которые научились делать нейросети
Даже сейчас нельзя назвать какой-то конкретный признак, по которому можно определить близость этого события. Многие эксперты утверждают, что таким признаком выступает качество перевода текста на иностранные языки. Когда ИИ начнет переводить человеческую речь на том же уровне, что и профессиональные переводчики, мы однозначно станем на шаг ближе к сингулярности. Понимание интернет-мемов, как ни странно, тоже выступает неплохим показателем сознательности машинного интеллекта.
Что произойдет, когда ИИ достигнет сингулярности Пока никто не может сказать, на что способен машинный супер-интеллект. Научное сообщество может лишь спекулировать на эту тему: если компьютерные системы действительно превзойдут человеческий интеллект, то мы физически не сможем предсказывать их поведение. ИИ не обязательно будет действовать, исходя из плохих побуждений.
Если рассуждать критически, ИИ — это всего лишь компиляция кода, поэтому поведение искусственного интеллекта можно объяснить девиациями в запрограммированных функциях. Мы не хотим, чтобы беспилотные автомобили проезжали на красный свет или сбивали пешеходов, но бортовой компьютер может решить, что наезд в толпу прохожих на полной скорости — это самый эффективный способ добраться до пункта назначения. По подсчетам аналитиков IBM, лишь треть разработчиков знает, как правильно тестировать системы на предмет подобных девиаций.
Такие системы уже упрощают повседневную жизнь обычных людей и специалистов, выполняя задачи по обработке данных, автоматизации процессов и предоставлению информации. Например, Dall-E и Midjourney создают уникальные изображения на основе текстовых запросов, облегчая работу дизайнеров и художников. ChatGPT в формате диалога может генерировать уникальные тексты, учитывая контекст.
Если мы опубликуем предложенную Вами информацию, мы придадим ей визуальное решение, созвучное нашему онлайн-изданию и обязательно уведомим Вас об этом, а также укажем Вас, как источник.
Вы могли видеть об этом заголовки вроде «ИИ создал новое лекарство», но всё немного сложнее. Новое вещество может стать лекарством только после нескольких этапов клинических испытаний — оно должно оказаться эффективным, не токсичным и так далее. То, что удалось сделать с помощью ИИ — по сути, дотестовая оптимизация, то есть лишь начальный этап разработки лекарства. Без ИИ формулы таких лекарств подбирают 2-3 года. Здесь же ИИ справился с перебором разных комбинаций и параметров молекулы всего за год.
В общем, всё как в большинстве новостей про ИИ — машины пока не дают таких фантастических результатов, как хотелось бы то есть до «нажали кнопку — получили новое лекарство» ещё очень далеко , но позволяют заметно оптимизировать рутинные процессы. Создание анимаций с большими значениями FPS Следующий пример искусственного интеллекта позволяет создавать новые кадры в видео и анимациях, делая движение объектов более гладким. Вот пример с Чебурашкой. Чтобы почувствовать более гладкое движение, нужно поставить на YouTube 720p50. Распознавание дорожных знаков для ограничения скорости автомобиля В автомобилях Tesla есть опция Speed Assist — камера распознаёт дорожные знаки с ограничением скорости и передаёт данные системе круиз-контроля. Удобная фича — водителю не надо лишний раз обращать внимание на дорожные знаки, машина сама их видит и разгоняется только до разрешенной скорости. Но в лаборатории McAfee нашли занятный баг — наклеив на дорожный знак всего одну наклейку, систему распознавания можно обмануть и заставить машину разгоняться до 85 миль в час вместо 35. Баг не работает в новых моделях Driver Assistant, но много машин используют старую версию. Побыстрее бы его пофиксили, а то ведь такую наклейку могут наклеить на знак не только исследователи в рамках эксперимента.
Статьи о нейросетях
Здесь вы найдете новости о последних достижениях в области машинного обучения, нейронных сетей, робототехники и других областях, связанных с ИИ. Нейросети стали частью жизни пользователей сети Интернет. В данном разделе вы найдете много статей и новостей по теме «нейросети». Нейросеть сегодня — открыла доступ к реставрирующей старые фотографии нейросети. Камера. прибор: в России разработали виртуального режиссера. Пишем новости о настоящем и будущем в сфере искусственного интеллекта.