Новости модель молекулы воды

это в два раза больше, чем в модели Зенина.

Модель молекулы воды

Исследователи из NASA и Немецкого космического агентства DLR впервые обнаружили молекулы воды на поверхности астероидов. Модель молекулы воды Вода образует водородные связи Благодаря водородным связям вода, являясь жидкостью, обладает аномальными свойствами При нагревании вода сжимается, при замерзании же расширяется, в то время как другие жидкости сжимаются. Стоковая иллюстрация: модель молекулы воды, научная или медицинская справка, 3d иллюстрация. Смотрите 62 онлайн по теме фото молекулы воды.

Химическое строение и свойства

  • 3d-модель молекулы воды на черном фоне
  • Ученые наблюдают за перемещением молекул воды вокруг Луны - RW Space
  • Ученые впервые увидели процесс, который обеспечивает «странные» свойства воды
  • Физики доказали способность света испарять молекулы воды - Pro город будущего
  • Орбитальная модель молекулы воды (Аркадий Серков) / Проза.ру
  • Открыто новое состояние молекулы воды

Продолжается изучение структуры воды

По словам Дебенедетти, это во многом связано с тем, что ледяная вода обычно превращается в лед. По этой причине исследователи решили прибегнуть к использованию компьютерных моделей. Процесс по-настоящему трудоемкий. Несмотря на высокую мощность современных суперкомпьютеров, для создания моделей ученые 18 месяцев занимались необходимыми вычислениями. В симуляциях, когда температура была еще далека от точки замерзания, плотность воды начала сильно колебаться. В итоге ученым удалось обнаружить критическую точку, которую они искали в двух разных компьютерных моделях воды.

При этом для поиска критической точки воды в обеих моделях были применены разные вычислительные подходы. Как и при переходе от жидкой фазы к газовой фазе, ледяная вода может переходить в две разные фазы, в зависимости от того, как перегруппировались ее молекулы. Таким образом, в жидкости низкой плотности четыре молекулы группируются вокруг центральной молекулы, образуя тетраэдр.

В результате подобной обработки на поверхности образовывались одномерные ледяные структуры толщиной всего в один атом и шириной около нанометра. При помощи сканирующего туннельного микроскопа и инфракрасной спектрометрии исследователям удалось установить, что цепочки состоят из пятиугольников, в вершинах которых находятся молекулы воды. Ранее предполагалось, что при образовании упорядоченной структуры льда молекулы воды собираются в шестиугольники.

Теоретический анализ, проведенный авторами работы, показал, что пятиугольники образуются в результате взаимодействия воды с металлической поверхностью.

Оказалось, что энергия сильно зависит от температуры: ее среднее значение было на 50 процентов больше предсказанного электростатической моделью при низких температурах, и на 20 процентов - при комнатной температуре. Внутри нанотрубок с диаметром 1,4 нанометра средняя энергия протонов оказалась на 30 процентов ниже, чем у воды, не помещенной в ограниченное пространство. Также исследователи проверили, как будут распределяться по энергиям протоны в воде, помещенной в особый мембранный материал Nafion, который используется для производства топливных элементов. Ученые показали, что средняя энергия была на 30 процентов выше, чем у воды в "обычном" состоянии. Авторы новой работы полагают, что, когда молекулы воды находятся на очень близком расстоянии друг от друга и "сдавлены" из-за маленького объема доступного пространства, протоны в них переходят в пока не описанное физиками квантовое состояние.

Ученые отмечают, что квантово-механические свойства воды могут определять ее "поведение" в живых клетках, так как там расстояние между молекулами примерно соответствует тому расстоянию, на котором они находились в эксперименте.

Сама молекула воды очень устойчива. А множество молекул друг относительно друга из-за сложной формы и наличия электрического заряда могут располагаться по-разному. Секрет крылся в структуре, в которую самоорганизуются молекулы жидкой воды. Он долгое время оставался неразгаданным. Только в последнее время ученым удалось объяснить аномальные свойства воды существованием в воде двух типов структур, в которые самоорганизуются молекулы жидкости.

Ученые выяснили, что существовавшие до сих пор представления о молекулярной структуре воды были неверными - оказалось, что её молекулы формируют не одну структуру, а одновременно два типа структур,-сосуществующих в жидкости вне зависимости от температуры. Один тип структуры формируется в виде сгустков - кластеров, из сотен молекул, структура которых напоминает структуру льда. Второй тип структуры, окружающей сгустки, гораздо менее упорядочен, рис. Оба типа структур непрерывно взаимодействуют друг с другом, обмениваясь отдельными молекулами воды. Структура воды Увеличение температуры вплоть до точки кипения воды приводит к некоторому искажению структуры сгустков и уменьшению их количества и доминированию разупорядоченной структуры. Это, в частности, объясняет нелинейную зависимость плотности воды от температуры - упорядоченные скопления молекул имеют меньшую плотность, чем неупорядоченные, и она мало меняется с изменением температуры.

Модель структурированной воды определяет почти все её аномальные свойства, имеющие огромное практическое значение - вода самое аномальное из всех известных природе веществ. Исходя из этого, следует предположить, что внутри воды должны быть пустоты, где нет молекул Н20, то есть воде присуща особая структура. Несмотря на то, что разные модели предлагают отличающиеся по своей геометрии кластеры, все они постулируют, что молекулы воды способны объединяться с образованием полимеров. А если в воде есть полимеры воды, то даже слабые воздействия на абсолютно чистую воду, а тем более ее растворы, могут иметь важные последствия. До разработки моделей структурированной модели воды было совершенно непонятно, почему после определенных воздействий на воду её свойства могут меняться и сохраняться в измененном виде в течение длительного времени после прекращения воздействия, то есть вода «помнит», что с ней происходило До сих пор ещё никто не знает, что происходит с водой, протекающей сквозь сильное магнитное поле. Физики-теоретики совершенно уверены, что ничего с ней при этом происходить не может и не происходит.

Из их теоретических расчетов следует, что после прекращения действия магнитного поля вода должна мгновенно вернуться в прежнее состояние и остаться такой, какой была. А опыт показывает, что она изменяется и становится другой. И эту до сих пор необъясненную особенность воды «помнить» магнитную обработку широко используют в промышленности. Из обычной воды в паровом котле растворённые соли, выделяясь, отлагаются плотным и твёрдым, как камень, слоем на стенках котельных труб, а из омагниченной воды так её теперь стали называть в технике выпадают в виде рыхлого осадка, взвешенного в воде. Во многих промышленных процессах например, на тепло- и электростанциях используется магнитная подготовка воды, а как и почему этот способ «работает», не знают ни инженеры, ни учёные. Кроме того, на опыте подмечено, что после магнитной обработки воды в ней ускоряются процессы кристаллизации, растворения, адсорбции, изменяется смачивание.

Эффекты невелики, но они есть. Действие магнитного поля на воду обязательно быстротекущую длится малые доли секунды, а «помнит» вода об этом десятки часов. Почему - неизвестно. В этом вопросе практика далеко опередила науку. Ведь даже неизвестно, на что именно действует магнитная обработка - на воду или на содержащиеся в ней примеси. Чистой-то воды ведь не бывает.

Память" воды не ограничивается только сохранением последствий магнитного воздействия. В науке существуют и постепенно накапливаются многие факты и наблюдения, показывающие, что вода «помнит» о том, что она раньше была заморожена. Талая вода, недавно получившаяся при таянии куска льда, отличается от той воды, из которой этот кусок льда образовался. В талой воде быстрее и лучше прорастают семена, быстрее развиваются ростки; даже, как утверждают очевидцы, быстрее растут и развиваются цыплята, которые получают талую воду. Кроме удивительных свойств талой воды, установленных биологами, известны и чисто физико-химические отличия. К примеру, талая вода отличается по вязкости, по значению диэлектрической проницаемости.

Вязкость талой воды принимает своё обычное для воды значение только через 3-6 суток после плавления. Почему это так, тоже никто не знает. Большинство исследователей называют эту область явлений «структурной памятью» воды, считая, что все эти странные проявления влияния предыдущей истории воды на её свойства объясняются изменением её структуры. Может быть это и так, но... По-прежнему в науке существует важная проблема: почему и как вода «помнит», что с нею было. Одним из объяснений «памяти» воды может быть следующее.

Взаимное расположение молекул воды в кластерах хранит информацию о внешнем воздействии, приведшем к его образованию. Кластеры разной структуры, в зависимости от глубины локальной энергетической выгоды их образования, могут сохраняться надолго или быстро разрушиться. Если следующее воздействие окажется энергетически сильнее связей внутри кластера, то старый кластер разрушается и образуется новый. В различных взаимных зафиксированных расположениях групп молекул и заключается память воды. Размеры этих кластеров - примерно одна миллиардная доля метра. И их структуры теперь можно изучать нанометодами.

Активированная вода Что такое активированная вода? Это вода, подвергнутая какому-либо воздействию, не изменяющему её химического состава, но изменяющему, не до конца понятным образом, электрохимические и биологические свойства воды. На языке термодинамики активированная вода - это вода, находящаяся в метастабильном неравновесном состоянии. В течение определенного времени, зависящего от характера и интенсивности активирующего воздействия, свойства активированной воды изменяются и вода становится не активированной. Воздействия могут быть разные, например, как уже упоминалось - с помощью магнитного поля, так называемая магнитная активация. Активированную воду можно получить также облучением ультрафиолетовым светом, с помощью ультразвука, замораживанием и размораживанием воды и многими другими способами.

В настоящее время, наиболее разработанным и воспроизводимым способом воду активируют с помощью электрохимической активации, в специальных электрохимических реакторах. Раствор в анодной камере в популярной русскоязычной литературе именуется «мертвой» водой, а в русскоязычной научной и медицинской литературе - анолитом или электроактивированным раствором анолита. Раствор в катодной камере в популярной русскоязычной литературе именуется «живой» водой, а в русскоязычной научной и медицинской литературе - католитом или электроактивированным раствором католита.

Физики записали, как молекулы воды движутся вокруг ионов соли

Используя инструмент на борту Лунного орбитального аппарата НАСА (LRO), ученые наблюдали, как молекулы воды движутся вокруг светлой стороны Луны. Они увидели, как атомы водорода в молекулах воды взаимодействуют с соседними молекулами при возбуждении лазерным светом. Как сообщает информационное издание «МедиаПоток», специалистами Национальной ускорительной лаборатории SLAC Министерства энергетики США впервые была зафиксирована ионизация молекул воды. Комплексы ион-вода колеблются медленно по сравнению с быстро движущимися молекулами воды. молекулы воды 3d PNG, модель, вода, молекулы PNG картинки и пнг PSD рисунок для бесплатной загрузки.

Современная модель воды

Схематически суммарные электронные орбитали этих пар показаны в виде эллипсов, вытянутых от общего центра — ядра O2-. Каждый из оставшихся двух электронов кислорода образует пару с одним электроном водорода. Эти пары также тяготеют к кислородному ядру. Поэтому водородные ядра — протоны — оказываются несколько оголенными, и здесь наблюдается недостаток электронной плотности. Таким образом, в молекуле воды различают четыре полюса зарядов: два отрицательных избыток электронной плотности в области кислородного ядра и два положительных недостаток электронной плотности у двух водородных ядер. Для большей наглядности можно представить, что полюса занимают вершины деформированного тетраэдра, в центре которого находится ядро кислорода рис. Общий вид электронного облака молекулы воды показан на рис. Вода - диполь: полярность воды Почти шарообразная молекула воды имеет заметно выраженную полярность, так как электрические заряды в ней расположены асимметрично.

Под воздействием диполей воды в 80 раз ослабевают межатомные или межмолекулярные силы на поверхности погруженного в нее вещества. Иначе говоря, вода имеет высокую диэлектрическую проницаемость, самую высокую из всех известных нам соединений. Также, последние исследования установили полярность кластеров воды. Вода растворяет все! Во многом благодаря диэлектрической проницаемости, вода проявляет себя как универсальный растворитель. Ее растворяющему действию в той или иной мере подвластны и твердые тела, и жидкости, и газы.

Таким образом, расчётные данные, приведенные в таблицах 1 и 2, достаточно точно отражают реальную картину строения атомов кислорода и водорода и были использованы для построения модели молекулы воды, которая представлена на рис. Модель молекулы воды: 1- ядро атома кислорода, 2,3- ядра атомов водорода, 4- орбита ковалентного радиуса кислорода, 5- орбита ковалентного радиуса водорода, 6- вандерваальсов радиус кислорода, 7- вандерваальсов радиус водорода, 8- поверхность вращения молекулы воды.

На рис. Основную часть молекулы составляет атом кислорода, представляющий собой сферу с радиусом 140 пм вандерваальсов радиус. В центре сферы расположено ядро, вращающееся с частотой 0,192. Благодаря вращению и вязко-упругим свойствам окружающего поля вокруг ядра образуются слои с разной ориентацией силовых линий поля. В слоях с высокой концентрической ориентацией орбитальные тела движутся без сопротивления. Это разрешённые орбиты. В слоях с преимущественно радиальной ориентацией силовых линий поля орбитальные тела испытывают сопротивление, что сопровождается излучением волновой энергии и переходом на низлежащую разрешённую орбиту с меньшим уровнем потенциальной энергии. Они удалены друг от друга на расстояние 154 пм.

Однако, хотя силу сигналов можно измерить, этот метод не позволяет определить, являются ли сигналы положительными или отрицательными, что затрудняло интерпретацию результатов в прошлом. Кроме того, использование только экспериментальных данных может дать неоднозначные результаты. Затем они разработали усовершенствованные компьютерные модели для моделирования интерфейсов в различных сценариях. Катионы и анионы простых электролитов ориентируют молекулы воды как вверх, так и вниз. Это полная противоположность моделям из учебников, которые учат, что ионы образуют двойной электрический слой и ориентируют молекулы воды только в одном направлении. Соавтор исследования д-р Яир Литман из химического факультета Юсуфа Хамида сказал: «Наша работа демонстрирует, что поверхность растворов простых электролитов имеет другое распределение ионов, чем считалось ранее, и что обогащенная ионами подповерхностная поверхность определяет, как будет выглядеть граница раздела.

Так что же сокрыто в воде? Шаг за шагом мы узнаем все больше, пытаясь заглянуть в самую суть вещей. Поэтому пятиклассники обратились к основам и попробовали нарисовать модель молекулы воды в масштабе. На этом ребята не остановились и даже использовали 3D-печать!

Моделирование оказалось совсем не простым; от пятого центра требовалось все их внимание и сосредоточенность.

В исследовании использовали высокоточную электронную камеру

  • Информация
  • Modeling of interaction between a water molecule and crystal surfaces
  • Содержание:
  • Модели молекул исследуемых жидкостей, Молекула воды

Молекула воды: удивительное строение простого вещества

Кипячение устраняет только временную карбонатную жёсткость. Находит применение в быту. Качество тканей, стираемых в жесткой воде, и тканей, при отделке которых она применяется, ухудшается вследствие осаждения на тканях кальциевых и магниевых солей высших жирных к-т мыла.

Схематически суммарные электронные орбитали этих пар показаны в виде эллипсов, вытянутых от общего центра — ядра O2-. Каждый из оставшихся двух электронов кислорода образует пару с одним электроном водорода. Эти пары также тяготеют к кислородному ядру. Поэтому водородные ядра — протоны — оказываются несколько оголенными, и здесь наблюдается недостаток электронной плотности. Таким образом, в молекуле воды различают четыре полюса зарядов: два отрицательных избыток электронной плотности в области кислородного ядра и два положительных недостаток электронной плотности у двух водородных ядер. Для большей наглядности можно представить, что полюса занимают вершины деформированного тетраэдра, в центре которого находится ядро кислорода рис.

Общий вид электронного облака молекулы воды показан на рис. Вода - диполь: полярность воды Почти шарообразная молекула воды имеет заметно выраженную полярность, так как электрические заряды в ней расположены асимметрично. Под воздействием диполей воды в 80 раз ослабевают межатомные или межмолекулярные силы на поверхности погруженного в нее вещества. Иначе говоря, вода имеет высокую диэлектрическую проницаемость, самую высокую из всех известных нам соединений. Также, последние исследования установили полярность кластеров воды. Вода растворяет все! Во многом благодаря диэлектрической проницаемости, вода проявляет себя как универсальный растворитель. Ее растворяющему действию в той или иной мере подвластны и твердые тела, и жидкости, и газы.

Такой вывод был сделан учеными по итогам серии экспериментов. Статья исследователей пока не опубликована в рецензируемом научном журнале, но ее препринт доступен на сайте arXiv. Коротко о работе пишет портал Physics World. Вода обладает рядом свойств, которые делают эту жидкость уникальной. В частности, H2O обладает максимальной плотностью при температуре плюс четыре градуса Цельсия. Благодаря этой особенности земные водоемы замерзают не снизу вверх, а сверху вниз, и в них в холодное время года могут обитать живые существа.

На каждой грани такого куба существует уже по 24 центра образования водородных связей. Данные цифры были подтверждены экспериментально. На уровне 24 центров связывание по водородным связям практически прекращается ввиду того, что поверхность образований становится насыщенной нейтральной. Кластеры почти не взаимодействуют между собой, а скользят друг по другу, поэтому вода не отличается высокой вязкостью.

В таком "режиме" из кластеров формируются метастабильные структуры, пример которых показан на рисунке 17 микроизображение в режиме фазового контраста. Рисунок 17 - Микроизображение объемной структуры воды. Теория Зенина хорошо объясняет электропроводные свойства воды, уменьшение плотности при плавлении, но плохо согласуется с большими значениями коэффициента самодиффузии и малым временем диэлектрической релаксации. Интересно, что по мнению Зенина, если степень возмущения структурных элементов воды недостаточна для перестройки всей структуры, то после снятия возмущения система релаксирует 30-40 минут до возвращения в исходное состояние. Если же переход к другому взаимному расположению структурных элементов воды оказывается энергетически выгодным, то оказанное воздействие отразится на новом состоянии. Альтернативную, но похожую теорию выдвинул М. В его теории структурные элементы - это икосаэдры. Кластеры из 100 молекул могут образовывать цепочки с уменьшенными напряжением и степенью деформации водородных связей. В дальнейшем теоретически формируются сети, как показано на рисунке 18. Рисунок 18 - Формирование упорядоченной сети кластерных образований икосаэдрической формы, формирующих структуру воды.

Компьютерные расчеты. Показаны только атомы кислорода. Однако практически существование регулярных матриц в воде маловероятно. Кластеры из 280 молекул также могут формировать цепочки, но с более напряженными водородными связями. Кластеры могут разрастаться в суперкластеры гигантские икосаэдры , примеры которых приведены на рисунке 19. Рисунок 19 - Гигантсские икосаэдры из молекул воды по М. В 2002 Беркли методом рентгеноструктурного анализа показала, что молекулы воды действительно способны образовывать структуры, представляющие собой топологические цепочки и кольца из множества молекул. Смирновым в бидистиллированной воде и некоторых растворах методами акустической эмиссии, лазерной интерферометрии и термического анализа удалось визуализировать надмолекулярные образования с размерами частиц от 1 до 100 мкм, распределенных в водной среде рисунок 20. Свойства таких частиц были сходны со свойствами частиц, образующих эмульсию, поэтому они были названы "эмулонами". Микроизображения 2х2 мм.

Размеры и пространственная организация эмулонов зависят от состава водного раствора, температуры и предыстории раствора. Наибольшее число фракций имеют размеры 30, 70 и 100 мкм. При этой температуре вода имеет наибольшую плотность. Таким образом, с рассмотренной точки зрения жидкая вода - это дисперсная система, каждая форма которой существует в определенном температурном диапазоне. Как уже упоминалось ранее, наряду с кластерной развивалась клатратная теория, основоположником которой в 1946 году стал О. Он представлял структуру жидкой воды льдоподобной, полости которой частично заполнены мономерами одна полость - одна молекула воды. Каркас структуры нарушен тепловым движением молекул. Клатраты в целом не только вода делятся на два класса, зависящие от соединения-хозяина. Молекулярные клатраты образуются "хозяевами", имеющими внутримолекуярные полости. Такие клатраты могут существовать как в растворе, так и в кристаллическом состоянии.

Если "хозяин" способен образовывать только межмолекулярные или кристаллические полости, то из него получаются решетчатые клатраты рисунок 21 , устойчивые лишь в твердом состоянии. Рисунок 21 - Гидрат метана - пример решетчатого клатрата. В поздних модификациях клатратной модели воды допускается образование водородных связей между молекулами в каркасе и молекулами в пустотах. При этом сами молекулы в обеих микрофазах соединены водородными связями. В заключение отметим, что существует целый ряд воздействий, которые могут приводить к определенному структурированию воды: Сверхкритические температуры и давления; Магнитные и электромагнитные поля, акустические и вибрационные воздействия с определенными характеристиками; Растворение электролитов, образующих при диссоциации ионы с относительно малым радиусом и большим зарядом; Растворение неэлектролитов, вызывающих явление гидрофобной гидратации; Длительный контакт с поверхностью нерастворимых в воде минералов, таких, как кварц. Возможность такого рода воздействий обуславливается тем, что вода - очень чувствительная система множества метастабильных состояний. Вода, по сути, может откликаться на воздействия практически любой природы. Более подробно структурирование воды под воздействием внешних сил будет рассмотрено в отдельной статье. Особенности строения воды в твердом виде. Рисунок 22 - Фрагмент фазовой диаграммы воды.

Джоном получены первые результаты по рентгеноструктурному исследованию льда. Джон отметил, что лед собран из прямых треугольных призм. Деннисон уточняет это предположение. Брэгг в статье "Кристаллическая структура льда" пытается выяснить причины возможных ошибок при расшифровке положений ядер кислорода. Он убежден, что ни Джон, ни Деннисон не смогли найти истинного расположения ядер кислорода в структуре льда. Брэгг сделал важное замечание: каждый атом кислорода в структуре льда должен быть окружен четырьмя другими. Атом же водорода располагается между двумя кислородами как бусинки на нитке. При этом, что важно, бусинки сдвинуты, смещены, относительно центра льда. Варне обнаружил, что молекулы во льду полностью ионизированы, а каждый водород находится на равном расстоянии между двумя соседними ядрами кислорода. Он заявил о трехмерности каркаса льда, который должен иметь форму тетраэдра.

Другие новости

До сих пор эксперименты с использованием реальных молекул воды для проверки второй критической точки «суперохлаждения» воды не могли дать однозначных доказательств его существования. В эксперименте Национальной ускорительной лаборатории SLAC в США ученые впервые напрямую наблюдали, как возбужденные атомы водорода в молекуле воды. Ионы в водном растворе обычно окружены четырьмя-шестью молекулами воды, но ученым неясно, движутся ли они как единое целое.

Ученые обнаружили, что молекулы воды определяют материалы вокруг нас

Они увидели, как атомы водорода в молекулах воды взаимодействуют с соседними молекулами при возбуждении лазерным светом. Нейтронное рассеяние и компьютерное моделирование выявили уникальное и неожиданное поведение молекулы воды, нетипичное для какого-либо из известных газов, жидкостей или твердых тел. уникальное искусство складывания бумаги, которое позволяет создать трехмерную модель молекулы воды. Используя инструмент на борту Лунного орбитального аппарата НАСА (LRO), ученые наблюдали, как молекулы воды движутся вокруг светлой стороны Луны. Модель квантового гармонического осциллятора служит первым приближением для описания колебательного движения в молекулах и является одной из немногих систем, для которой может быть получено точное решение уравнения Шредингера.

Подписка на дайджест

  • Modeling of interaction between a water molecule and crystal surfaces
  • 3d модель молекулы воды H2O для печати
  • РАЗБИЕНИЕ КОКСТЕРА, СИСТЕМЫ КОРНЕЙ И ТАЛАЯ ВОДА | Наука и жизнь
  • Похожие товары
  • Подписка на дайджест

Похожие новости:

Оцените статью
Добавить комментарий