Исследования, эксперименты и научные обоснования и комментарии о том, сколько же Гц видит глаз обычного человека, и отличаются ли геймеры от нас. Человеческий глаз верит в картинку(в то что последовательность кадров живое изображение) при частоте в 10 кадров в секунду, т.е. это минимальный порог для видео, обусловленный "инерцией зрения"(погуглите в вики). Существуют люди, способные воспринимать большее количество кадров в секунду. Например, пилоты и игроки в видеоигры могут воспринимать до 60 кадров в секунду. Некоторые люди утверждают, что человеческий глаз может воспринимать только определенное количество кадров в секунду, основываясь на устаревшей информации или заблуждениях. Сегодня я вам расскажу сколько кадров в секунду видит глаз человека!
Сколько человеческий глаз видит кадров в секунду?
Некоторые люди утверждают, что человеческий глаз может воспринимать только определенное количество кадров в секунду, основываясь на устаревшей информации или заблуждениях. Сколько там этих воображаемых кадров видит человек,никто не в состоянии во-первых. Мы поддержим ученых, которые подтверждают тот факт, что человеческий глаз видит до 50-60 кадров в секунду. Сколько кадров в секунду видит человеческий глаз | Комфортное число FPS для игр и кино. Сколько там этих воображаемых кадров видит человек,никто не в состоянии во-первых.
Сколько кадров в секунду видит человек
Чтобы определить, сколько кадров в секунду может различить глаз человека, нужно учесть его физиологические особенности. Человеческий глаз верит в картинку(в то что последовательность кадров живое изображение) при частоте в 10 кадров в секунду, т.е. это минимальный порог для видео, обусловленный "инерцией зрения"(погуглите в вики). Сколько кадров в секунду видит человеческий глаз в кино и играх. Больше 24 кадров – человеческий глаз не видит.
Сколько видит ФПС человеческий глаз?
Главное помнить, что зрение — это не только сознательное распознавание. Несмотря на то, что наши глаза могут быть ограничены в том, на чем они могут сосредоточиться, информация, поступающая в наш мозг, гораздо более обширна. Это странно, мы знаем. Звучит как оксюморон, но мы действительно замечаем вещи, о которых даже не подозреваем, каждый божий день.
Давайте разберемся в этом подробно. Что такое FPS и зачем это нужно FPS frames per second - это количество кадров, которое видеокарта или дисплей может отобразить за 1 секунду. Чем выше это число, тем плавнее и реалистичнее выглядит видео или игра. Например, при 30 FPS на экране за секунду сменяется 30 кадров. А при 60 FPS - уже 60 кадров. FPS напрямую влияет на плавность отображаемого видеоряда. Чем он выше, тем меньше "рывков" и "дерганий" будет в динамичных сценах. Высокий FPS особенно важен в компьютерных играх и фильмах, где много быстрых движений камеры или объектов. Например, шутеры или гоночные симуляторы требуют FPS не ниже 60, чтобы геймплей был комфортным. А для кинематографических фильмов достаточно стандарта в 24 кадра в секунду. Как устроен человеческий глаз Чтобы понять, какое количество FPS способен различать человек, стоит разобраться, как устроен наш глаз. В сетчатке глаза есть два типа фоторецепторов: Палочки - чувствительны к яркости, отвечают за черно-белое изображение. Колбочки - чувствительны к цвету, отвечают за цветное изображение. Эти рецепторы преобразуют свет в нервные импульсы, которые затем поступают в мозг. У палочек и колбочек есть важное свойство - инертность. Это время, которое требуется рецептору, чтобы воспринять изображение и отправить сигнал в мозг. Чем ниже инертность, тем быстрее глаз успевает "переключаться" между кадрами и тем выше эффективный FPS. Инертность палочек составляет около 20 мс, а колбочек - около 50 мс.
Перед вами фотография, которая выявит несовершенство наших глаз. Откройте наше видео на экране побольше, желательно на компьютере, закройте правый глаз, посмотрите левым глазом на плюсик в кружочке. Правый плюсик исчез! Поздравляю, вы только что обнаружили слепое пятно вашего глаза. Что происходит? Абсолютно все сигналы воспринимаемые нашими палочками и колбочками отправляются в наш мозг с помощью зрительного нерва. Его соединение находится прямо на сетчатке, поэтому там нет никаких сенсоров. Более того это не единственный конструктивный недостаток. Наш глаз нуждается в постоянном питании, поэтому всё глазное яблоко покрыто сосудами, которые поставляют энергию нашим глазам. На самом деле, вот так мы видим по настоящему! Большой чёрный кружок, это наше слепое пятно, мы видим сосуды нашего глаза, а краски по окружности серые, так как там преобладают палочки. Обратите внимание, что посередине цветное изображение, это благодаря центральной ямке и концентрации в ней колбочек. Ах да, ещё мы видим наш нос, если смотрим прямо. Но как же в итоге получается это потрясающе четкая и широкоугольная картинка, которой вы наслаждаетесь прямо сейчас? Мозг Я думаю вы уже догадались, что без мощной нейронной сети тут не обошлось. Мозг — наш процессор, который в идеале освоил «фотошоп»! Давайте разберемся, как он с этим справляется. Проблемы слепого пятна, наш процессор решает очень элегантно. У правого глаза пятно находится справа, у левого слева. Поэтому наш мозг накладывает на правый глаз изображение из левого и наоборот. Происходит взаимозамена и мы не видим никаких чёрных точек. Сосуды, равно как и нос, наш мозг стирает из нашего восприятия. Есть предположения, что когда мы только появляемся на свет, наши глаза видят сосуды. Но со временем мозг учиться их игнорировать. Кстати, тут можно провести прямую параллель с камерами смартфона! У FSI провода, питающие камеру находятся над пикселями, то есть так же как и наши сосуды. Потому она и устаревшая, так как эти провода препятствовали проходимости света. У BSI уже пиксели находятся над проводами, соответственно уже ничего не препятствует прохождению света. Получается наши глаза сделаны по устаревшей технологии FSI. Надо не забывать, что изображение которое делают наши глаза плоское. Мозг сопоставляет их между собой и делает трёхмерными. Что-то похожее мы ощущаем когда смотрим фильм в 3D-очках. Надевая очки обратно, нашему мозгу становится проще объединить эти изображения и картинка становится объёмнее. Так же происходит и у нас. Наконец, изображение переворачивается, становится чётким и цветным! Если с переворотом изображения всё понятно, то почему картинка становится цветной и чёткой? Ежесекундно, глаза делают множество микро-движений, так называемые саккады. Глаза сканируют окружающее пространство, а мозг объединяет снимки и превращает в видеоряд прекрасного качества. Это похоже на заполнение пустых фрагментов пазла. Объясняю — у нас есть небольшой участок матрицы, который может делать цветное и чёткое фото. То есть у нашего мозга уже есть представление о том, каким цветом окрашен тот или иной объект благодаря сканированию. Всё что ему остаётся это сопоставить всю полученную информацию, объединить их в единую чёткую и цветную картинку. Немного напоминает раскрашенную версию 17 мгновений весны, но мозг справляется получше. Фактически, мозг сам дорисовывает за нас итоговую картинку. Придумывает наше мировосприятие. Забавный факт, для этой обработки и сопоставления результатов сканирования или собирания этого пазла, мозгу необходимо примерно 150 миллисекунд. Во время этого процесса наше зрение отключается. Мы ничего не видим. Но из-за такого малого промежутка по времени, наше сознание этого не замечает. То есть каждую секунду, мы страдаем временной слепотой! Что там с ретиной? Сканирование нам нужно из-за того, что в человеческом глазу очень ограниченное пространство. И сделать как в камере, чтобы к каждому пикселю был подключен свой проводок не получается. Эволюция наградила нас зрительной ямкой, в которой, хоть и ограничено, но есть похожая технология как на матрице смартфона. Чтобы каждый участок видимого пространства попал на эту ямку и мы получили хорошую картинку, нам нужны две функции. Первая, это сканер. Нужно захватить каждую точку в пространстве с помощью микродвижений, их как мы помним называют саккады. Саккады сканируют объект или пространство. Мы получаем кучу мелких пазлов, которые нам нужны для итоговой картинки. Вторая функция, это наш мозг. Он собирает эти пазлы в единую картинку. Придаёт чёткости, дорисовывает объекты, наполняет красками. Создаёт виртуальное пространство в нашем сознании, из фотонов, которое мы воспринимаем как реальность.
Тем не менее в кинематографе уже не одно десятилетие идут разговоры о необходимости перехода с привычного стандарта 24 кадра в секунду. Но этому мешал ряд проблем, связанных в основном с технологическими сложностями. Однако в последние годы, когда фильмы стали всё чаще снимать и показывать в залах при помощи цифрового оборудования, задача в этом плане существенно упростилась. Но есть ещё один аспект, касающийся кинематографичности видеоряда. Становится заметна искусственность декораций и визуальных эффектов, создаётся впечатление, что вы присутствуете на театральной постановке или прямо в студии, где снимают фильм. Это отрицательным образом влияет на аутентичность кинокартины, зачастую сводя на нет некоторые режиссёрские и операторские приёмы. Зато всё это нисколько не отменяет всех тех положительных свойств, какими обладает видео с высокой частотой кадров. Это и потрясающая плавность изображения, и естественность картинки — прямо как в реальной жизни, что создаёт отличный эффект присутствия и веры в происходящее. И наконец, большее число кадров нивелирует мерцание особенно заметное по краям экрана , снижая утомляемость глаз. Джеймс Кэмерон, главный киноноватор на нашей планете, заставивший весь мир полюбить 3D, всерьёз пообещал совершить ещё одну революцию в индустрии. Его следующие проекты «Аватар-2» и «Аватар-3» будут сняты в формате 60 кадров в секунду и наглядно продемонстрируют человечеству все достоинства подобной технологии. Однако Питер Джексон со своим «Хоббитом» собрался опередить режиссёра «Титаника» — уже в конце этого года мы сможем посмотреть картину по роману Толкиена с 48 полноценными кадрами в секунду. История 25 кадра Сублиминальную рекламу а это не что иное, как 25 кадр разработал Дмеймс Вайкери. Он опубликовал результаты о действии такого маркетингового хода: большинство людей после сеанса покупали ту вещь, реклама которой присутствовала на дополнительном 25 кадре. Однако впоследствии автор признался, что данные были сфабрикованы. Что происходит, когда мы видим 25 кадр? Приглядитесь к фаер-шоу: когда человек быстро крутит горящий предмет, Вам он покажется огромным огненным кругом — Вы не сможете различить движение объекта. На инерции основаны и оптические иллюзии: например, круги, которые мы воспринимаем как движущиеся. В действительности движение отсутствует. На картинке Вы видите только один кадр, но боковое зрение посылает сигнал в мозг, говоря ему, что что-то там нечисто и надо бы это проверить. В итоге мозг посылает сигнал обратно, преобразовывая 1 кадр в несколько. Это необходимо, чтобы Вы обернулись и удостоверились, что за ближайшими кустами не кроется опасность. Иными словами, это продиктовано инстинктом самосохранения. Комфортное число FPS для игр и кино В чем отличие между fps в играх и кадрами в кино В кино, в отличии от видеоигр используется постоянная частота кадров, которая неизменна на протяжении всего фильма. Исключение могут составлять сцены с замедленной, либо ускоренной съемкой, которые, как правило, занимают очень малую часть времени. Из-за сохраняющейся периодичности зрение и мозг адаптируются, тем самым на время утрачивая способность, воспринимать происходящее в виде отдельных кадров, фрагментов. В видеоиграх все немного иначе. Постоянная чистота кадров невозможна, потому как все игровые локации «места» и сцены генерируются «создаются» в реальном времени. Помимо этого, различные локации обладают разным количеством объектов, качеством детализации. Кино снято в 2D, то есть обладает только шириной и высотой, а видеоигры предстают перед нашими глазами, в том виде, в котором мы видим, то есть в 3D. В видеоиграх за обработку изображения отвечают два основных компонента — видеокарта для обработки графики и процессор для расчётов. Игровой мир, неспособен загрузиться полностью сразу. Он подгружается частями, исходя из действий и передвижений игрока. Следовательно, количество объектов меняется в большую или меньшую сторону, что постоянно изменяет используемую мощность и нагрузку на компоненты. Вследствие чего, постоянно изменяется и частота кадров. Фиксированного значения не существует, возможны только рамки, между которыми происходят изменения. Существует минимальное, максимальное и среднее значение, которое будет отличаться в зависимости от игры и сцены. По причине постоянно изменяющегося количества кадров, мозг неспособен адаптироваться, что позволяет замечать даже незначительные изменения. В данном случае работает правило, чем больше, тем лучше, так как среднее значение может иметь к примеру пределы от 27к. Из чего следует, что 27 будет мало, а 40 и более достаточно для комфортного восприятия. Как проводят исследования? Механизм восприятия видео человеком Глаз человека начинает идентифицировать смену неподвижных картинок в секунду как прерывистое движение, когда их число достигает 12. Если значение FPS мало, то анимация выглядит неровной, а если слишком велико — возникает эффект гиперреалистичности. Придумываем надежный пароль Одним из главных компонентов создания реалистичного видео является размытие движения. Когда мы наблюдает за объектами вокруг нас, то при их быстром перемещении упускаем детализацию. Иными словами, нам не хватает времени для восприятия полной визуальной информации и теряется острота зрения. В кино такой эффект получают размытием, которое происходит естественным образом при смене кадров. Но если уровень FPS слишком высок, то данный эффект пропадает, и наблюдатель видит гиперреалистичную картинку. Это мешает ему поверить в происходящее на экране. Какие способности имеет зрение Стоит рассмотреть строение человеческого глаза. Колбочки и палочки — составляющие фоторецепторов, так называемой системы восприятия.
Сколько всё же кадров в секунду способен воспринимать человеческий глаз?
Зрительная система настроена таким образом, чтобы видеть цельную картину. Вот почему если показывать по 1 кадру в секунду некоторое время, то человек увидит полное изображение. Однако доказано, что резкие перепады fps дискомфортные и их с трудом воспринимает человеческий глаз. Во времена немого кино количество кадров равнялось 16, но жадные владельцы кинотеатра намеренно увеличивали до 30, что негативно влияло на впечатления от просмотра. Стандартом, комфортным для зрения, является 24 фпс. Зрительная система уникальна: комфортным может быть восприятие 60—100 кадров в секунду. Однако это вовсе не предел, так как известны случаи, где фпс было 220. Предел ли это? Ученых интересуют ответы на вопросы, какая частота кадров максимальна и что произойдет, если увеличить fps, каков в этом смысл.
И правда, логичнее было бы ничего не менять, однако производителей компьютерных игр такое решение не устроило. И в этом может убедиться каждый геймер. Создатели начали проводить эксперименты. Целью этого было узнать, какое количество кадров необходимо, чтобы видимая картинка на мониторе казалась реалистичной. Хотя в стандартных мультфильмах, кино и видео норма этого показателя равна 24, но результаты опытов помогли киноиндустрии и игровым компаниям продвинуться вперед. А основным количеством кадров в гонках, аркадах, шутерах и других стало 50, однако может изменяться из-за скорости интернета. Комфортное число FPS для игр и кино В чем отличие между fps в играх и кадрами в кино В кино, в отличии от видеоигр используется постоянная частота кадров, которая неизменна на протяжении всего фильма. Исключение могут составлять сцены с замедленной, либо ускоренной съемкой, которые, как правило, занимают очень малую часть времени.
Из-за сохраняющейся периодичности зрение и мозг адаптируются, тем самым на время утрачивая способность, воспринимать происходящее в виде отдельных кадров, фрагментов. В видеоиграх все немного иначе. Постоянная чистота кадров невозможна, потому как все игровые локации «места» и сцены генерируются «создаются» в реальном времени. Помимо этого, различные локации обладают разным количеством объектов, качеством детализации. Кино снято в 2D, то есть обладает только шириной и высотой, а видеоигры предстают перед нашими глазами, в том виде, в котором мы видим, то есть в 3D. В видеоиграх за обработку изображения отвечают два основных компонента — видеокарта для обработки графики и процессор для расчётов. Игровой мир, неспособен загрузиться полностью сразу. Он подгружается частями, исходя из действий и передвижений игрока.
Следовательно, количество объектов меняется в большую или меньшую сторону, что постоянно изменяет используемую мощность и нагрузку на компоненты. Вследствие чего, постоянно изменяется и частота кадров. Фиксированного значения не существует, возможны только рамки, между которыми происходят изменения. Существует минимальное, максимальное и среднее значение, которое будет отличаться в зависимости от игры и сцены. По причине постоянно изменяющегося количества кадров, мозг неспособен адаптироваться, что позволяет замечать даже незначительные изменения. В данном случае работает правило, чем больше, тем лучше, так как среднее значение может иметь к примеру пределы от 27к. Из чего следует, что 27 будет мало, а 40 и более достаточно для комфортного восприятия. Сколько кадров в секунду видит глаз человека?
Если вы покажете человеку один кадр в секунду на протяжении длительного периода времени, со временем он станет воспринимать не изображения по отдельности, а картину движения в общем. Однако демонстрация видеоизображения в таком ритме дискомфортна для человека. Еще во времена немого кино частота кадров доходила до 16 в секунду. При сравнении кадров немого кино и современных фильмов остается ощущение, что в начале 20-го века снимали в замедленном темпе. При просмотре так и хочется немного поторопить экранных героев. В настоящее время стандарт для съемки — 24 кадра в секунду. Это та частота, которая комфортна для человеческих органов зрения. Но предел ли это, что там за границами этого диапазона?
Сколько кадров в секунду видит человек, теперь вам известно. Пределы человеческого зрения сколько кадров в секунду видит человеческий глаз 24 кадра в секунду — не предел возможностей человеческого глаза. Это оптимальное количество кадров, при котором видеоряд воспринимается наиболее удобно: нет провисаний или скачков. Когда кинематограф был немой и киномеханики крутили ручки, они самостоятельно выбирали скорость видеоряда исходя из темперамента зрителей: для спокойной публики частота составляла 20-24 кадра, а для активной — 24-30. Изменяя параметры, Вы сможете установить личную скорость зрения: Когда Вы концентрируете внимание на чём-либо, то способны воспринимать до сотни кадров в секунду, не упуская при этом семантической нити происходящего. Статья сколько кадров в секунду видит человеческий глаз опубликована в рубрике — Познавательное. Откуда взялся миф про 24 кадра Стандартная кинопленка 35 мм после проявки Center for Teaching Quality Миф о том, что человеческий глаз видит максимум 24 кадра в секунду, имеет вековую историю. Он уходит корнями в эпоху зарождения кинематографа.
Первые фильмы, снятые в конце XIX века братьями Люмьер, имели 16 кадров в секунду. Эту цифру выбрали потому, что расход стандартной пленки 35 мм при такой частоте составлял ровно 1 фут в секунду.
Это означает, что до 150 кадров человек распознает изображение идеально. Если они увеличиваются, это вызывает неприятные ощущения в глазах, дискомфорт. При этом считается, что при высокой смене кадров за одну секунду показывается большое число картинок, человеческий глаз распознает их плавно. Но даже если он не видит смену кадра, головной мозг все равно ее воспринимает. Об исследованиях Учеными проводилось множество исследований на тему распознания разного количества кадров, которое воспринимает человеческий мозг и органы зрения. Наиболее часто опыты ставили рекламщики, так как считали, что скрытый кадр приведет к подсознательному восприятию, что заставит человека покупать определенный продукт: Разные группы людей садили перед телевизором.
Им предоставляли видеоматериал, который содержал дефектные кадры с изображением предмета, являющийся лишним для данного кинофильма. После его просмотра большинство людей рассказывали, что видели какое-то непонятное мелькание на телевизоре. Это достаточно интересно, так как FPS находился за пределами числа 220. То есть означает, что человек может распознавать число кадров намного более 24. Учеными было исследовано периферийное зрение. Обнаружилось, что оно имеет отличие от прямого зрения по частоте изображения. Поэтому при создании шлемов используют значения не 30-60 Герц, как для телевизора, а выше — 90 Герц. В пятидесятых годах прошлого века выпустили американский фильм, в котором во многих кадрах были вставлены надписи «Ешь попкорн, пей Кока-колу».
Так встраивали кадры, которые распознавались только на бессознательном уровне. Маркетинговая компания, которая занималась этим исследованием, рассказала, что продажа попкорна и кока-колы после этого выросла во много раз. В американском телевидении было исследование на тему содержания 25 кадра. В одном популярном американском телешоу вставляли 350 раз на высокой скорости слова «Звони прямо сейчас». Но никто так и не позвонил. В конце телешоу ведущий рассказал, что в шоу содержалось послание, и попросил прислать правильный ответ про содержание. Было прислано множество писем, но ни одно из них не содержало правильного ответа. Американскими торговыми компаниями было разработано множество исследований на тему 25 кадра и внедрения информации в подсознательную область человеческого мозга.
Но ни одно из исследований не подтвердило правдивости данной теории. Тем не менее, во многих странах была запрещена реклама на уровне подсознательной деятельности человека. В США применение такого метода может привести к потере лицензии для телевещания. Полезное видео Сколько кадров в секунду воспринимает человеческий мозг Редактор PC Gamer Алекс Уилтшир Alex Wiltshire поговорил с нейробиологами и психологами, чтобы выяснить, сколько кадров в секунду в играх нужно человеческому глазу и мозгу. Ответ на вопрос оказался непростым. Многие геймеры знают, что в играх важно не только количество кадров, но и стабильность их поступления: например, ровные 30 кадров могут восприниматься намного приятнее, чем «болтание» в промежутке от 40 до 50. Это связано с тем, что просадки в некоторых сценах воспринимаются как те самые пресловутые «тормоза» мозг ожидает увидеть определённое движение с той же плавностью, что и остальные, но компьютер не успевает обработать картинку с нужной скоростью. Поэтому иногда разработчики, уделившие недостаточно внимания оптимизации, выпускают игру с ограничением в 30 кадров даже на ПК, что обычно вызывает заметное возмущение среди геймеров.
А для консольных игр без многопользовательского режима 30 кадров вообще являются стандартом. Однако в своём исследовании Уилтшир затронул только стабильную частоту кадров и не касался вопроса вертикальной синхронизации и других параметров компьютера, влияющих на восприятие картинки. Глаза и мозг работают в тандеме Споры о том, сколько человеческий глаз может воспринимать кадров в секунду, ведутся давно во многом потому, что на этот вопрос нет однозначного ответа. Как отмечает Уилтшир, человек не считывает реальность как компьютер, а визуальное восприятие целиком строится на совместной работе глаз и мозга. Поэтому, например, люди по-разному видят движение и свет, а периферийное зрение лучше справляется с некоторыми аспектами картинки, чем основное — и наоборот. Читайте также: Слезные каналы глаза Время, за которое человек воспринимает визуальную информацию, суммируется из скорости света, попадающего глаза, скорости передачи полученной информации в мозг и скорости её обработки. По словам профессора психологии Джордана Делонга Jordan DeLong , обрабатывая визуальные сигналы, мозг постоянно занимается калибровкой, высчитывая средние показатели с тысяч и тысяч нейронов, поэтому вся система более точна, чем её отдельные составляющие. Как отмечает исследователь Эдриен Чопин Adrien Chopin , скорость света едва ли можно изменить, а вот часть визуального восприятия, проходящую в мозгу ускорить вполне реально.
Игры — едва ли не единственный способ заметно улучшить основные показатели вашего зрения: чувствительность к контрасту, внимание и способность отслеживать движение множества объектов одновременно. Эдриен Чопин, исследователь когнитивных функций мозга Как отмечает Уилтшир, именно геймеры, которые чаще всего пекутся о высокой частоте кадров, способны воспринимать визуальную информацию быстрее любых других людей. Отличия в восприятии движения и света Если лампочка работает на частоте в 50 или 60 Гц, большинству людей освещение кажется постоянным, однако есть те, кто в таком случае замечает мерцание. Этого эффекта также можно добиться, если крутить головой смотря на LED-фары автомобиля. Однако оба эти примера не говорят о том, как человеческий глаз воспринимает игры, где главным параметром является движение. Как отмечает профессор Томас Бьюзи Thomas Busey , на высоких скоростях задержка меньше 100 миллисекунд начинает действовать так называемый закон Блоха. Человеческий глаз не способен отличить яркую вспышку, которая длилась наносекунду, от менее яркой протяжённостью в десятую долю секунды. По схожему же принципу работает фотокамера, которая на большой выдержке может впустить в себя больше света.
Тем не менее закон Блоха не значит, что ограничение в восприятии для человека останавливается на 100 миллисекундах. В некоторых случаях люди различают артефакты в изображении при 500 кадрах в секунду задержка в 2 миллисекунды. Как отмечает профессор Джордан Делонг, восприятие движения во многом зависит и от того, в каком положении человек находится. Если он сидит на месте и следит за объектом, то это одна ситуация, а если сам куда-то идёт, то совершенно другая. Это связано с отличиями между основным и периферийным зрением, которые достались людям от их первобытных предков. Когда человек смотрит прямо на объект, он различает мельчайшие детали, однако его зрение плохо справляется с быстро движущимися предметами. Периферийное зрение, напротив, страдает недостатком деталей, но действует намного быстрее. Именно с этой проблемой столкнулись разработчики шлемов виртуальной реальности.
Если 60 и даже 30 Гц вполне хватает для монитора, на который человек смотрит прямо, то для того, чтобы зритель нормально чувствовал себя в VR, частоту кадров необходимо повысить до 90 Гц. Всё потому, что шлем даёт картинку и для периферийного зрения.
Для этого нужно активировать хотя бы 10 палочек. И здесь мы возвращаемся к вопросу об эффективности «матрицы» глаза. То есть, из 100 фотонов, попавших на сетчатку, палочками поглотится в лучшем случае 20 фотонов. Остальное будет «утилизировано» специальным слоем, который предотвращает хаотическое движение фотонов внутри глаза, чтобы не возникало никаких отражений, «засветки» и прочих проблем. Именно из-за такого поглощения всех «лишних» фотонов наш зрачок кажется черным. Оттуда просто не возвращается свет. А если бы возвращался, мы бы видели кровь в сосудах задней части глаза.
Собственно, иногда это и происходит, когда мы используем вспышку яркий источник света при плохом освещении. Зрачки не успевают отреагировать на мощный поток света и прикрыть «диафрагму объектива». Слишком много фотонов залетает в глаз и, отражаясь, вылетает оттуда. Процессор как секрет успеха! Или что нас ждет дальше? Возможно, вы уже догадались, что весь секрет качественного изображения заключается в мощнейшем «процессоре» обработки фотографий. Мозг действительно получает плохую картинку, если сравнивать ее с тем, что выдает смартфон. Но глаза работают не покадрово. Они непрерывно ритмично совершают очень мелкие движения саккады , сканируя сцену своими жалкими 1.
Мозг объединяет две плоские картинки с двух глаз и строит трехмерное изображение. Он убирает тени от сосудов, силуэт носа, разукрашивает слепые пятна, делает догадки и превращает их в «реальную» картинку. Чтобы вы осознали масштаб его художественной самодеятельности, скрытой от вашего сознания, просто посмотрите на луну или солнце. Вы замечали, какие они громадные над горизонтом и мелкие в зените? Бывало ли у вас такое, что вы даже говорили кому-то полюбоваться большой и красивой луной и желательно сделать это быстрее, пока она не поднялась вверх и не стала маленькой? Что же это за такое загадочное физическое явление? Может всё дело в орбитах? Или в атмосфере, которая как-то не так преломляет свет и увеличивает размеры небесных тел? На самом деле, ни солнце, ни луна никак не изменяют своих размеров, будь они в зените или над горизонтом.
Это просто ваш мозг так развлекается, «делая снимок» маленькой луны над горизонтом, а затем в своем «фотошопе» увеличивает ее до захватывающих размеров и демонстрирует результаты своей работы вашему сознанию. Вы поражаетесь его талантам, звоните знакомым и советуете посмотреть на эту красоту. Но объективно никакой красоты нет. Ваши знакомые посмотрят на крохотную луну, а их мозг точно также «отфотошопит» снимок, сделав луну покрупнее и поэффектнее. И вы вместе насладитесь несуществующим пейзажем! Просто осознайте весь это сюрреализм. Те жалкие 1. Всё остальное — это, если так можно выразиться, вычислительная фотография. И именно по этому пути пошло развитие смартфонов.
Разница лишь в том, что смартфон должен делать четким весь снимок, а не только его кусочек в центральной части, как это делает мозг. Поэтому матрица смартфона в целом выдает гораздо более качественное и четкое изображение, нежели сетчатка глаза. И в этом плане технологии давно опередили биологию. Будет интересно наблюдать за реакцией людей, когда все смартфоны будут проделывать тот же трюк с луной, что и наш мозг. И не только с луной! Эстеты будут выражать свое недовольство тем, что смартфоны больше не передают реальность, а занимаются ерундой: «Зачем мне фотошоп!? Я хочу видеть натуральный снимок! Где старые-добрые времена, когда в камере была главной физика, а не алгоритмы!? Алексей, глав.
Не забудьте подписаться в Telegram на наш научно-популярный сайт о мобильных технологиях, чтобы не пропустить самое интересное! Если вам понравилась эта статья, присоединяйтесь к нам на Patreon - там еще интересней!
Под FPS подразумевают число самостоятельных кадров, отображаемых в секунду. Частота обновления — это общее количество показов всех изображений за то же время. Дело в том, что для большей реалистичности и минимизации прерывистости видео один кадр может показываться два и более раз, что сопряжено с увеличением скорости кадросмены.
Читайте также: Как сделать синяки под глазами от недосыпания Пределы человеческого зрения сколько кадров в секунду видит человеческий глаз 24 кадра в секунду — не предел возможностей человеческого глаза. Это оптимальное количество кадров, при котором видеоряд воспринимается наиболее удобно: нет провисаний или скачков. Когда кинематограф был немой и киномеханики крутили ручки, они самостоятельно выбирали скорость видеоряда исходя из темперамента зрителей: для спокойной публики частота составляла 20-24 кадра, а для активной — 24-30. Изменяя параметры, Вы сможете установить личную скорость зрения: Когда Вы концентрируете внимание на чём-либо, то способны воспринимать до сотни кадров в секунду, не упуская при этом семантической нити происходящего. Статья сколько кадров в секунду видит человеческий глаз опубликована в рубрике — Познавательное.
Механизм восприятия видео человеком Глаз человека начинает идентифицировать смену неподвижных картинок в секунду как прерывистое движение, когда их число достигает 12. Если значение FPS мало, то анимация выглядит неровной, а если слишком велико — возникает эффект гиперреалистичности. Что влияет на скорость работы компьютера Одним из главных компонентов создания реалистичного видео является размытие движения. Когда мы наблюдает за объектами вокруг нас, то при их быстром перемещении упускаем детализацию. Иными словами, нам не хватает времени для восприятия полной визуальной информации и теряется острота зрения.
В кино такой эффект получают размытием, которое происходит естественным образом при смене кадров. Но если уровень FPS слишком высок, то данный эффект пропадает, и наблюдатель видит гиперреалистичную картинку. Это мешает ему поверить в происходящее на экране. Исследования Так как эта тема интересна для многих людей, то количество проводимых опытов тоже велико. Ведь все хотят узнать о возможностях своего зрения.
Одним из самых необычных и удивительных экспериментов можно по праву считать следующий: Когда группа испытуемых просматривала высокочастотное видео, то заметила лишний предмет на экране. Читайте также: Спектральная оптическая когерентная томография: принципы и возможности метода Ученые создавали группы людей. Предоставляли им видеоматериал, в котором присутствовали еле видимые дефектные кадры с изображением чего-то лишнего.
Сколько кадров в секунду видит человек. Строение глаза и интересные факты
Исследования, эксперименты и научные обоснования и комментарии о том, сколько же Гц видит глаз обычного человека, и отличаются ли геймеры от нас. На самом деле, количество кадров в секунду, которые мы видим глазами, может варьироваться у разных людей и в разных условиях. Отвечая на вопрос о том, сколько fps видит человеческий глаз, можно смело назвать цифру 100.
Сколько кадров в секунду видит человек
Именно ~50 мм соответствуют восприятию человеческого глаза, а вот перспектива на 70 мм уже будет отличаться, несмотря на то, что в видоискателе конкретной камеры размеры объектов могут быть идентичными тому, что видит глаз. Количество кадров, которые человек может видеть, зависит от его возраста, физического состояния и других факторов. 120 кадров видит муха, глаз человека так не может. Ирландские ученые провели исследование, в рамках которого выяснилось, что некоторые люди способны видеть больше кадров в секунду, чем остальные. Сколько кадров в секунду видит человеческий глаз в кино и играх.