Новости гелий 3 на луне

Содержание Гелия 3 на Луне в 10 тысяч раз выше, чем на Земле. Гелий-3 является побочным продуктом реакций, протекающих на Солнце.

Редкий изотоп: как Росатом создаёт Гелий-3 из жидкого гелия

Гелий-3 — это газ, который потенциально может быть использован в качестве топлива для будущих термоядерных электростанций, но крайне редко встречается на Земле, хотя в изобилии существует на Луне. Образование гелия-3: гелий формируется на Солнце, космическое излучение превращает гелий в гелий-3, атмосфера Земли и ее магнитное поле отбрасывают гелий-3, гелий-3 концентрируется на Луне. Американский стартап Interlune намерен организовать добычу гелия-3 на Луне уже к 2030 году.

Термоядерный синтез, ITER, гелий-3 и Луна

В практической плоскости о гелии-3 заговорили, когда стало ясно, что нефть закончится в ближайшие десятилетия. Угля и газа хватит чуть подольше, но тоже не надолго. Очевидно, что единственный способ решения энергетической проблемы — это использование энергии атомного ядра. Однако и запасы урана тоже не бесконечны… Поэтому уже полвека неизменно популярна идея использования термоядерного синтеза. В термоядерных реакциях, происходящих на Солнце, четыре атома легкого изотопа водорода соединяются в один атом гелия с выделением энергии. Именно это низкое сечение реакции обеспечивает устойчивость Солнца — иначе на нем шла бы не устойчивая термоядерная реакция, а термоядерный взрыв. Для термоядерных реакций, производимых на Земле, нужен "тяжелый водород" - дейтерий. Однако, кроме дейтерия, для термоядерной реакции нужен второй компонент, атом которого должен быть в 3 раза тяжелее водорода. Это может быть либо "сверхтяжелый водород", который называется тритий, либо тот самый гелий-3. Тритий на Земле не существует, кроме того, он очень сильно радиоактивен и неустойчив.

Именно такая реакция рассматривается как основная в планируемых проектах, в частности, в создаваемом международном проекте ИТЭР. Однако недостатком такой реакции является, во-первых, необходимость для нее сильно радиоактивного трития, а, во-вторых, то, что в ходе такой реакции возникает сильное нейтронное излучение. Поэтому в последнее время создаются проекты «безнейтронной» термоядерной реакции, топливом для которой служит гелий-3 — легкий изотоп гелия. Преимущество реакций на гелии-3 по сравнению с дейтериево-тритиевой реакцией в том, что, во-первых, для нее не требуется радиоактивных изотопов в качестве топлива, а, во-вторых, получаемая энергия уносится не с нейтронами, а с протонами, из которых извлечь энергию будет легче. Единственная проблема — практическое отсутствие гелия-3 на Земле. Но, как сказано выше, гелий-3 есть в лунном грунте. Поэтому для того, чтобы иметь источники энергии после того, как подойдет к концу ископаемые виды топлива, космические агентства разных стран разрабатывают планы строительства базы на Луне, которая будет перерабатывать лунный грунт который называется реголит , добывать из него гелий-3 и в сжиженном виде доставлять его на термоядерные электростанции на Земле. Одной тонны гелия-3 хватит, чтобы обеспечить энергетические потребности всего человечества на несколько лет, что окупит все затраты на создание лунной базы. Буш уже поставил задачу: создать американскую лунную базу в 2015-2020 годах.

А что же сегодня предпринимается в России? Приведем подборку сообщений информационных агентств "Россия может возобновить лунную программу в течение нескольких лет 15 января 2004 г. По словам Моисеева, "со стороны ученых поступает много инициатив по организации экспедиций на Луну и Марс, однако пока неизвестно, какая из них будет включена в федеральную программу". Лунную программу Россия может реанимировать в течение нескольких лет, считает первый заместитель генерального директора Научно-производственного объединения им. Лавочкина Роальд Кремнев. По его словам, в настоящее время на предприятии, где был создан легендарный "Луноход", "есть серьезный задел по лунным автоматам". Создание и запуск такого аппарата, по оценке Кремнева, обойдется в 600 млн рублей. Лунные источники энергии могут спасти Землю от глобального энергетического кризиса, считает член бюро Совета по космосу РАН, академик Эрик Галимов. Добытый на Луне и доставленный на Землю тритий может быть использован для термоядерного синтеза, утверждает ученый.

Источник: NEWSru.

Но для выделения из него энергии нужно приложить немало сил нагреть его до сотен миллионов градусов, чтобы запустить термоядерную реакцию. В природе подобные процессы происходят в недрах звёзд. Люди подобную реакцию могут повторить пока только в военных целях водородная бомба. Чтобы удержать такую энергию в каком-нибудь месте и использовать в своих целях, нужны более сложные технологии.

Одним из теоретических вариантов являются термоядерные реакторы токамаки , в которых изначально планировалось синтезировать гелий из дейтерий-тритиевой смеси. Главный недостаток системы — высокая радиоактивность трития, период полураспада которого составляет всего 12,5 лет. В промышленном реакторе внутренние стенки камеры сгорания необходимо будет менять через каждые несколько лет из-за радиационного разрушения материала. Кроме того, выделяемую энергию уносят в основном нейтроны, не имеющие электрического заряда и плохо взаимодействующие с веществом, что усложняет её сбор. Одним из лучших альтернатив является замена трития на гелий-3.

Реакции дейтерий-гелиевой смеси практически радиационно безопасны, так как в них используются только стабильные ядра, и не производят неудобные нейтроны. Что такое гелий-3 и где его искать Из химии мы знаем, что гелий — это инертный одноатомный газ без цвета, вкуса и запаха, являющийся вторым по распространенности во Вселенной элементом после водорода. Однако на Земле его содержание крайне мало. Более того, на нашей планете при распаде радиоактивных химических элементов вылетают альфа-частицы — ядра гелия-4. Гелий-3 же в относительно больших количествах содержится в космическом гелии, который образуется, например, на Солнце при термоядерных реакциях.

Данный газ очень лёгкий, поэтому, попадая в атмосферу Земли, он быстро улетучивается.

Из каждого килограмма гелия можно получить максимум 0,3 г 3He с процессом сжижения и хранения неизбежно сопряжены потери. Понятно, что первоначальные затраты, связанные с завозом оборудования, развертыванием лунной базы и организацией крупномасштабной добычи, будут велики. В то же время следует учесть, что в инженерном отношении все процедуры хорошо известны и достаточно просты.

Гелий заключен в сорбированном состоянии в рыхлом лунном грунте, залегающем на самой поверхности. Поэтому после создания необходимого производства расходы на добычу и эксплуатацию соответствующей инфраструктуры должны быть умеренными. По расчетам американского астронавта Харрисона Шмитта, по профессии геолога, побывавшего в 1972 г. По мнению Шмитта, предварительные расходы на стадии исследований их, очевидно, должно взять на себя государство составят около 15 млрд.

Затем ранее небывалый энергетический проект станет привлекательным для частных инвестиций, поскольку перейдет в разряд прибыльных. При переработке грунта и десорбции гелия выделяться будет не только последний, но в еще больших объемах другие элементы, в том числе водород и углерод. Нетрудно также наладить получение кислорода из силикатов. Это значит, что непосредственно на Луне можно организовать синтез топлива и окислителя для ракет-носителей.

Лунный грунт богат титаном. Выплавка его позволит изготовлять тяжелые фрагменты конструкции и корпусов ракет прямо на Луне. С Земли придется доставлять только высокотехнологичные элементы. Необходимую для жизнедеятельности людей и некоторых технологических процессов воду также можно получать на Луне.

Упомянутый Х. Шмитт описал спроектированный в США комбайн, предназначенный для извлечения 3He и других летучих компонентов из поверхностного слоя лунного фунта. Развертывание постоянных баз на спутнике откроет возможность использовать пребывание человека не только для добычи гелия-3, но и для иных целей. Луна - самый экономичный космодром, который сделает доступным крупномасштабное исследование Солнечной системы.

Там могут и должны быть развернуты системы контроля астероидной опасности, мониторинга и раннего предупреждения катастрофических явлений и событий на Земле, изучения дальнего космоса и многое другое, что сейчас даже трудно предвидеть. Повторю: прежде всего нужно осознать, что нехватка энергии в ближайшие десятилетия - реальная проблема для всех землян, от которой не спрятаться, не уйти. Во-вторых, очевидно: единственным тотальным и долговременным ее решением, одновременно удовлетворяющим условиям энергетической эффективности и экологической безопасности, является термоядерный синтез на базе использования 3He. В-третьих, освоение нового источника энергии - не очередной проект, реализуемый как бы между делом.

Речь идет о гигантской промышленной революции, полное осуществление которой может занять целое столетие. Одновременно в нашем мышлении поэтический образ далекой Луны должен смениться представлением о ней как об объекте практической экономики. Словом, после великих географических открытий прошлых веков наш спутник станет следующим объектом приложения изыскательского духа, свойственного человечеству. По последствиям для развития цивилизации его освоение будет аналогично освоению новых континентов на Земле.

Луна и есть новый континент, отделенный от нас океаном космического пространства, который сегодня, однако, легче пересечь, чем Атлантику во времена Христофора Колумба. Однако несмотря на все рассмотренные перспективы, приходится возвращаться к факту: пока мы еще очень далеки от их реализации. Когда можно ожидать построения установок термоядерного синтеза на основе 3He? По данным американских источников, возможно, через 15 - 20 лет, если на этом будут сфокусированы усилия общества и соответствующие инвестиции.

Вероятно, решение нужно искать на пути синтеза с инерционным удержанием плазмы, а не с магнитным, которое используют в токамаках и заложено в основу проекта ИТЭР. Как уже упоминалось, в июне нынешнего года гостем нашего института был профессор Джералд Калсински - один из пионеров в исследовании проблемы термоядерного синтеза на 3He. На семинаре с участием российских экспертов ученый рассказал о состоянии исследований этой проблемы в США, в частности, об экспериментах на установках с инерционным электростатическим синтезом или инерционным электростатическим удержанием плазмы. Суть процесса состоит в том, что между двумя концентрическими сферическими сетками прилагается сверхвысокое напряжение порядка 100 кВ.

Под действием разности потенциалов ионы устремляются от периферии к центру и сталкиваются с энергией, достаточной для возбуждения термоядерной реакции. Построены опытные установки нескольких типов. Выход термоядерной энергии при этом еще очень мал по сравнению с подводимой для зажигания. В случае описанных Калсински экспериментов Q составляет пока ничтожную величину порядка 10-5.

Правда, как считает исследователь, нет фундаментальных трудностей для решения проблемы. Они в основном носят инженерный характер, причем разрешение их в рамках последовательных проектов вплоть до построения реактора, дающего полезную энергию, потребует не столь значительных средств. Речь идет о 10 - 15 годах и 6 - 8 млрд. А в проекте ИТЭР предполагают получить уже полезный выход энергии.

Ведь реактор типа токамак в рамках ИТЭР представляет собой весьма массивное сооружение, а выделяющийся поток нейтронов довольно быстро приведет к разрушению материалов, образующих внутреннюю часть конструкции. При эксплуатации возникнет не только необходимость захоронения радиоактивных отходов, но и проведения громоздких, дорогостоящих и неизбежно частых каждые несколько лет восстановительных работ. Впрочем, с такими утверждениями не все согласятся. Безусловно, этой категоричной точке зрения можно противопоставить контраргументы.

Многие известные физики, с которыми я затрагивал эту тему, проявляют изрядный скептицизм в отношении термоядерной энергетики на 3He. Вместе с тем нельзя не учитывать, что научная карьера большинства крупнейших специалистов в области термоядерного синтеза связана с исследованием процессов магнитного удержания плазмы и традиционными установками типа токамак. Да и в изысканиях, связанных с термоядерным оружием, вопрос о 3He не был актуален, поскольку решались другие задачи. Здесь нужно, по-видимому, прежде всего серьезное внимание к проблеме и адекватное наращивание экспериментальных и теоретических работ.

Глобальная энергетика, основанная на 3He, возможна только при доставке его с Луны.

В-третьих, многие элементы конструкции тритиевого реактора после окончания эксплуатации будут высокоактивными и потребуют захоронения на длительный срок в специально созданных для этого хранилищах. Читайте также: Куда пропала луна или что от нас скрывают?! В случае же использования в термоядерном реакторе дейтерия с изотопом гелия-3 вместо трития большинство проблем удается решить. Интенсивность нейтронного потока падает в 30 раз — соответственно, можно без труда обеспечить срок службы в 30-40 лет. После окончания эксплуатации гелиевого реактора высокоактивные отходы не образуются, а радиоактивность элементов конструкции будет так мала, что их можно захоронить буквально на городской свалке, слегка присыпав землей. В чем же проблема?

Почему мы до сих пор не используем такое выгодное термоядерное топливо? Прежде всего, потому, что на нашей планете этого изотопа чрезвычайно мало. Рождается он на Солнце, отчего иногда называется «солнечным изотопом». Его общая масса там превышает вес нашей планеты. В окружающее пространство гелий-3 разносится солнечным ветром. Магнитное поле Земли отклоняет значительную часть этого ветра, а потому гелий-3 составляет лишь одну триллионную часть земной атмосферы — примерно 4000 т. На самой Земле его еще меньше — около 500 кг.

На Луне этого изотопа значительно больше. Там он вкрапляется в лунный грунт «реголит», по составу напоминающий обычный шлак. Речь идет об огромных — практически неисчерпаемых запасах! Высокое содержание гелия-3 в лунном реголите еще в 1970 году обнаружил физик Пепин, изучая образцы грунта, доставленные американскими космическими кораблями серии «Аполлон». Однако это открытие не привлекало внимания вплоть до 1985 года, когда физики-ядерщики из Висконсинского университета во главе с Дж. Кульчински «переоткрыли» лунные запасы гелия. Анализ шести образцов грунта, привезенных экспедициями «Аполлон», и двух образцов, доставленных советскими автоматическими станциями «Луна», показал, что в реголите, покрывающем все моря и плоскогорья Луны, содержится до 106 т гелия-3, что обеспечило бы потребности земной энергетики, даже увеличенной по сравнению с современной в несколько раз, на тысячелетие!

Пациент Neuralink играет в шахматы мыслью, Добыча ГЕЛИЯ-3 на ЛУНЕ, Новое обновление робота H1

Луна на очереди: в Китае хотят добывать гелий-3 с поверхности спутника Земли «Гелий-3 — единственный ресурс, цена которого достаточно высока, чтобы обеспечить полет на Луну и возвращение его на Землю, — заявил он.
Зачем американцы собрались присвоить Луну «Индия может создать производство на Луне для разработки огромных запасов ценного сырья — гелия-3 — и доставки его на Землю.
Гелий-три — энергия будущего - Статья НЛО МИР Китайские ученые рассматривают возможность полного обеспечения национальной экономики собственной энергией за счет добычи на Луне изотопа гелия-3 и его использования на Земле в качестве топлива для нового поколения термоядерных реакторов.
На Луну спешим летим!:-) ГЕЛИЙ-3 забрать хотим!:-) — DRIVE2 Запасов же гелия-3 на Луне около 1 млн. т. Таким образом, их хватит более чем на тысячу лет.
Зачем американцы собрались присвоить Луну Для добычи гелия-3 нужно будет переработать прямо на спутнике миллионы тонн лунного грунта (даже при условии, что на Луне изотопа сильно больше, чем на Земле, его содержание все равно не больше 0,01 г на тонну).

Луна и грош, или история гелиевой энергетики

Вы точно человек? Radia Windrunner который вскоре станет самым большим грузовым самолётом в мире и Стартап Interlune который собирается добывать безумно дорогой гелий-3 на Луне.
Американский стартап Interlune планирует добывать гелий-3 на Луне В последние годы возник интерес к добыче гелия-3 на Луне в связи с исследованиями потенциала использования этого изотопа в ядерной энергетике.
Китай проанализировал количество гелия-3 на Луне Основанная в 2022 году в США компания Interlune планирует заняться добычей изотопа гелий-3 на поверхности Луны с целью транспортировки на Землю и последующей продажи на коммерческих условиях.
На Луне ищут замену нефти — Forbes Kazakhstan Добытый на Луне гелий-3 предполагается использовать для проведения квантовых вычислений, медицинской визуализации, а также, возможно, в качестве топлива для термоядерных реакторов.

Что еще почитать

  • Луна и грош, или история гелиевой энергетики
  • Другие новости
  • Китай находит гелий-3 на Луне: начинается великая гонка
  • Китай обнаружил на Луне новый минерал и ценный источник гелия-3
  • Коммерческая добыча гелия-3 из лунного грунта: стартап хочет попробовать |

Что за новый источник энергии нашли в арктических скалах?

Согласно э.в. википедии на Луне запасы указанного изотопа восполняются за счёт облучения солнечным ветром, который земная атмосфера не пропускает, поэтому на Земле его гораздо меньше. Стоит отметить, что ещё в 2006 году в ракетно-космической корпорации "Энергия" говорили, что главной целью России на Луне будет разработка гелия-3. «Гелий-3 — единственный ресурс, цена которого достаточно высока, чтобы обеспечить полет на Луну и возвращение его на Землю, — заявил он. Запасы гелия-3 на Луне исследователи оценили в около 1,3 млн тонн. Просмотр в реальном времени Новости космоса и астрономии Россия будет добывать гелий-3 на Луне. Извлекать гелий-3 из недр Луны российский ученый предлагает с помощью своеобразных "лунных бульдозеров", которые после нагрева грунта будут сгребать изотоп с поверхности.

Американский стартап Interlune планирует добывать гелий-3 на Луне

Компания планирует в 2026 году доставить на поверхность Луны демонстрационный аппарат, который возьмет образцы реголита, после чего попробует извлечь из них гелий-3. Стоит отметить, что ещё в 2006 году в ракетно-космической корпорации "Энергия" говорили, что главной целью России на Луне будет разработка гелия-3. Для добычи гелия-3 нужно будет переработать прямо на спутнике миллионы тонн лунного грунта (даже при условии, что на Луне изотопа сильно больше, чем на Земле, его содержание все равно не больше 0,01 г на тонну).

Changesite, Helium-3 и будущие разработки

  • Что еще почитать
  • Что за новый источник энергии нашли в арктических скалах?
  • Что такое гелий-3 и где его искать
  • Changesite, Helium-3 и будущие разработки
  • Американцы займутся добычей гелия-3 на Луне — Мир новостей
  • ПРОЕКТ "ЛУНА - ГЕЛИЙ-3"

» Сокровище Луны – гелий-3

Американский стартап Interlune намерен запустить добычу гелия-3 на Луне к 2030 году Гелий-3 является побочным продуктом реакций, протекающих на Солнце.
Гелий-3 — Википедия Российские геохимики провели исследование и обнаружили на Луне богатые месторождения изотопов гелия.
Луна на очереди: в Китае хотят добывать гелий-3 с поверхности спутника Земли Этот гелий-3 только на Луне, на Земле его нет. Поэтому они в перспективе планируют создание станций или налаживание его добычи с доставкой на Землю.
Новые сверхдержавы родятся на Луне Причем на Луне гелий-3 находится лишь в поверхностном слое и имеет солнечное происхождение, а Луна играет роль ловушки для солнечного ветра.

Американский стартап Interlune планирует добывать гелий-3 на Луне

Компания планирует в 2026 году доставить на поверхность Луны демонстрационный аппарат, который возьмет образцы реголита, после чего попробует извлечь из них гелий-3. На Луне же количество гелия-3, попавшего на наш спутник из солнечного ветра, по оценкам, сотни миллионов тонн. Европейские ученые объявили о планах начать добычу гелия-3 на Луне уже в 2025 году. Interlune планирует продемонстрировать добычу гелия-3 на Луне в 2026 году, а первый экскаватор должен заработать в 2028 году. пишет Times, со ссылкой на китайского ученого. Для этого американцам необходимо вернуться на Луну и построить там станцию для добычи гелия-3. Идея Шмитта не нова, однако он считает, что разработал первый реальный план добычи гелия-3 в качестве ядерного топлива.

Колонизация Луны и добыча там гелия-3? Пока это фантастика из далекого будущего

Ошерову , Р. Ричардсону и Д. Ли была присуждена Нобелевская премия по физике. В 2003 году Нобелевской премией по физике отмечены А. Абрикосов , В. Гинзбург и Э.

Ученые также доказали, что на Луне в большом количестве есть железо, платина, титан, а также множество редкоземельных металлов. Глава китайской программы исследования Луны Оуян Цзыюань заявил, что «три полета космических челноков в год могут доставлять достаточно топлива для всех людей по всему миру».

Добыча гелия-3 потребовала бы астрономические суммы для организации на Луне горнодобывающей и перерабатывающей промышленности.

Случай с гелием-3 - тот самый случай. Этот способ, который позволит решить энергетическую проблему на достаточно длительное время, в случае, если найдутся возможности изыскать средства для его реализации, сможет стать шансом на прогресс российских наукоемких отраслей: как космонавтики что является предметом для отдельного разговора , так и термоядерной техники.

В настоящий момент есть два магистральных направления в термоядерном синтезе: токамаки и лазерный синтез. Первый из этих вариантов сейчас реализуется в проекте международного экспериментального термоядерного реактора ИТЭР. Принцип действия токамака таков: в плазменном сгустке создавается электрический ток, и при этом, как у всякого тока, у него появляется собственное магнитное поле - сгусток плазмы как бы сам становится магнитом.

И тогда с помощью внешнего магнитного поля определенной конфигурации подвешивали плазменное облако в центре камеры, не позволяя ему соприкасаться со стенками. В газе всегда есть свободные ионы и электроны, которые начинают двигаться в камере по кругу. Этот ток нагревает газ, количество ионизированных атомов растет, одновременно увеличивается сила тока и повышается температура плазмы.

А значит, количество водородных ядер, слившихся в ядро гелия и выделивших энергию, становится все больше. Однако эксперименты, начатые почти пятьдесят лет назад в московском Институте атомной энергии, показали, что плазма, подвешенная в магнитном поле, оказалась неустойчивой — сгусток плазмы очень быстро «распадался» и вываливался на стенки камеры. Оказалось, что к неустойчивости приводит комбинация целого ряда сложных физических процессов.

Кроме того, оказалось, что время устойчивого удержания плазмы возрастает с увеличением размеров установки. А несколько лет назад специалисты пришли к выводу, что оставшиеся нерешенные проблемы нужно исследовать на установке, максимально приближенной к реальному энергетическому термоядерному реактору. Это понимание и привело к работам по созданию ИТэРа.

От всех других установок и методов этот вариант проведения управляемой термоядерной реакции отличается прежде всего тем, что он в основном уже вышел из сферы сомнений и поисков. Благодаря накопленной за пятьдесят лет исследований обширной базе физических и инженерно-технических данных он вплотную подошел к стадии экспериментального реактора. Это, видимо, и вдохновило международное сообщество на создание ИТЭРа — ученые решили, что даже богатой стране нет никакого смысла делать термоядерный реактор в одиночку - результатом будут знания и опыт, которые все равно станут общим достоянием и в национальную экономику сразу ничего не внесут.

В то же время, объединив усилия, можно резко ускорить продвижение к своему работающему термояду и снизить собственные затраты. А его концептуальное проектирование по инициативе нашей страны началось на четыре года раньше. Другое направление на пути к управляемой термоядерной реакции — это лазерный термоядерный синтез ЛТС.

Он заключается в том, что мишень из "сырья" для термоядерной реакции облучается со всех сторон лазерными лучами, и таким образом там создаются условия, достаточные для осуществления термоядерной реакции. Сложность в том, как это осуществить технически. Моя диссертационная работа состоит в проведении компьютерного моделирования явления оптического резонанса в сферичеких мишенях при лазерном облучении.

Расчеты показывают, что при определенных условиях в оптической мишени происходит концентрация энергии, при которой могут возникнуть условия, необходимые для термоядерной реакции. То государство, которое освоит технологии термоядерного синтеза эту технологию раньше других, получит огромные преимущества перед другими. Для того, чтобы Россия не осталась на задворках цивилизации и приняла участие в разработке этих проектов, нужна политическая воля руководства государства, примерно как это было с советскими ядерным и космическим проектами в середине ХХ века.

На Земле этот изотоп практически отсутствует, в недрах планеты его не более нескольких сотен килограммов. По словам Галимова, гелий-3 "является идеальным экологически чистым топливом для термоядерного синтеза". Гелий-3 на Луну в течение миллиардов лет приносит солнечный ветер, пояснил Галимов.

При реакции термоядерного синтеза, когда в реакцию вступает 0,67 тонны дейтерия и 1 тонна гелия-3 выделяется энергия, которая эквивалентна энергии сгорания 15 млн. При этом стоит отметить тот факт, что в настоящее время еще необходимо изучить техническую возможность осуществления подобных реакций. Да и добыча этого вещества на Луне не будет легкой. Хотя гелий-3 расположен в поверхностном слое, концентрация его в нем очень низкая.

Термоядерный синтез, ITER, гелий-3 и Луна

Этот гелий-3 только на Луне, на Земле его нет. Поэтому они в перспективе планируют создание станций или налаживание его добычи с доставкой на Землю. Гелий-3 очень важен, поскольку он является многообещающим кандидатом на роль топлива для ядерного синтеза. На Луне концентрация гораздо выше, минимальная оценка запасов превышает 500 тысяч тонн. Компания планирует в 2026 году доставить на поверхность Луны демонстрационный аппарат, который возьмет образцы реголита, после чего попробует извлечь из них гелий-3. На Луне же количество гелия-3, попавшего на наш спутник из солнечного ветра, по оценкам, сотни миллионов тонн.

Похожие новости:

Оцените статью
Добавить комментарий