Они могут работать, как обычные кубиты, так и как кудиты, представляющие собой расширенную версию кубитов.
Квантовые вычисления для всех
На данный момент мы сосредоточены как на программном, так и на аппаратном обеспечении, и в дальнейшем мы объединим их. Предстоит проделать огромный объем работы, чтобы охарактеризовать эти устройства, а затем написать много научных работ», — добавил Кларк. LPS Qubit Collaboratory LQC является одним из исследовательских центров министерства обороны в области квантовых информационных наук QIS , учреждённых в рамках Закона о национальной квантовой инициативе 2018 г. Intel заявляет, что сотрудничество с LQC поможет демократизировать кремниевые спиновые кубиты, позволив исследователям получить практический опыт работы с их масштабируемыми массивами. По словам Кларка, Intel предоставит квантовые устройства, в то время как исследовательские организации будут нести ответственность за приобретение и настройку необходимой инфраструктуры, такой как системы криоконтроля. Представители научных учреждений, участвующие в программе, единодушны в том, что участие Intel является важной вехой в демократизации исследования спиновых кубитов и их перспектив для квантовой обработки информации и ведёт к объединению промышленности, научных кругов, национальных лабораторий и правительства. По мнению учёных, устройство представляет собой гибкую платформу, позволяющую напрямую сравнивать различные кодировки кубитов и разрабатывать новые режимы работы, что позволяет внедрять новые квантовые операции и алгоритмы в многокубитном режиме и ускорять скорость обучения в квантовых системах на основе кремния. Исследователи также высоко оценивают надёжность Tunnel Falls, а возможность работать с промышленными устройствами Intel открывает, по их мнению, перспективы для технического прогресса и обучения. Intel планомерно работает над повышением производительности Tunnel Falls и интеграции его в свой полный квантовый стек с помощью комплекта Intel Quantum SDK.
Кроме того, Intel уже разрабатывает свой квантовый чип следующего поколения на базе Tunnel Falls, ожидается, что он будет выпущен в 2024 году. В будущем Intel планирует сотрудничать с дополнительными исследовательскими институтами по всему миру для создания квантовой экосистемы. Есть неплохие кандидаты на роль кубитов, но каждый из них несёт багаж недостатков. Учёные из Нидерландов попытались создать гибридные кубиты, сочетая лучшие и нивелируя худшие их свойства, и преуспели в этом. Перспективный гибридный кубит лёгок в производстве, прост в управлении и стабилен. Правда, пока только в лаборатории и на бумаге. Учёный держит квантовый чип пинцетом, перед установкой на плату. Источник изображения: QuTech Исследователи уже не раз горели желанием сочетать сверхпроводящие и спиновые явления.
Кубиты на основе сверхпроводников, которые используют стабильные состояния электромагнитных полей или моды, хорошо изучены и используются на практике в составе квантовых компьютеров IBM, Google и других. Такие кубиты хорошо взаимодействуют на больших расстояниях и легко управляются, хотя они относительно большие и имеют предел по скорости выполнения операций. Спиновые кубиты на атомах или элементарных частицах малы и могут массово выпускаться даже на полупроводниковых заводах из 80-х годов прошлого века. Но такие кубиты ограничены по дальности взаимодействия и управления. Как взять одни свойства перспективных кубитов и отбросить другие? Эту задачу попытались решить учёные из QuTech — исследовательской организации, созданной Делфтским технологическим университетом и Нидерландской организацией прикладных научных исследований TNO. В свежей работе, опубликованной в Nature Physics, учёные рассказали о создании и успешных испытаниях гибридной спиново-сверхпровдящей платформы. Можно сказать, что учёные улучшили так называемый «спиновый кубит Андреева», который строится на основе ряда квантовых эффектов, названных именем советского физика Александра Фёдоровича Андреева.
В джозефсоновских контактах, где сверхпроводящий ток течёт без напряжения, существуют микроскопические электронные состояния — андреевские уровни, каждый из которых может рассматриваться как микроскопический источник эффекта Джозефсона. Они же являются родительскими состояниями майорановских мод. Джозефсоновские переходы или контакты способны также захватывать сверхпроводящие квазичастицы со своими спинами. Тем самым появляется связь между сверхтоками и спинами. Сверхпроводящим током можно изменять направление спина, а детектирование спина может регистрировать сверхпроводящие токи. Это говорит о том, что "спиновый кубит Андреева" может стать ключевым элементом для соединения квантовых процессоров, основанных на радикально различных технологиях кубитов: полупроводниковых спиновых кубитах и сверхпроводящих кубитах». Учёные всего мира ищут возможность продлить квантовые состояния кубитов до возможности запуска на них сложных алгоритмов. Речь идёт хотя бы о секундах, не говоря о более длительном времени.
Сверхпроводящие кубиты имеют высокую скорость операций и масштабируемость, но низкое коэрентное время и точность операций. Ионные кубиты — основаны на заряженных атомах ионах , которые поддерживаются в ловушке электрическим или магнитным полем. Ионные кубиты имеют высокое коэрентное время и точность операций, но низкую скорость операций и масштабируемость. Фотонные кубиты — основаны на световых частицах фотонах , которые могут быть кодированы поляризацией или частотой. Фотонные кубиты имеют высокое коэрентное время и скорость операций, но низкую точность операций и масштабируемость. Фотонные кубиты используются в квантовых компьютерах Xanadu и PsiQuantum. Спиновые кубиты — основаны на спине электрона или ядра атома, который может быть ориентирован вверх или вниз. Спиновые кубиты имеют среднее коэрентное время и точность операций, но высокую масштабируемость.
Спиновые кубиты используются в квантовых компьютерах Intel и QuTech. Рассмотрение ключевых игроков в индустрии квантовых вычислений Индустрия квантовых вычислений является одной из самых динамичных и конкурентных в сфере высоких технологий. В этой области участвуют как традиционные ИТ-гиганты, так и стартапы, а также академические и правительственные организации. Вот некоторые из ключевых игроков в индустрии квантовых вычислений: IBM — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе сверхпроводящих кубитов. Компания имеет самый большой парк квантовых компьютеров, доступных через облачный сервис IBM Quantum Experience. Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык Qiskit и среда IBM Quantum Composer. Google — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе сверхпроводящих кубитов. Компания заявила о достижении квантового превосходства в 2019 году с помощью своего 53-кубитного компьютера Sycamore.
Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык Cirq и среда Google Quantum Playground. Intel — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе сверхпроводящих и спиновых кубитов. Компания имеет собственную лабораторию Intel Labs , где проводит исследования и разработки в области квантовых технологий. Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык Q и среда Intel Quantum Simulator. IonQ — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе ионных кубитов. Компания имеет самый мощный коммерческий квантовый компьютер на 32 кубитах, доступный через облачный сервис IonQ Cloud. Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык QUIL и среда IonQ Studio. Xanadu — один из лидеров в разработке и предоставлении доступа к универсальным квантовым компьютерам на основе фотонных кубитов.
Компания имеет самый мощный коммерческий квантовый компьютер на 24 фотонных кубитах, доступный через облачный сервис Xanadu Quantum Cloud. Компания также разрабатывает программное обеспечение и инструменты для квантового программирования, такие как язык PennyLane и среда Xanadu Quantum Playground. Перспективы развития индустрии квантовых вычислений Индустрия квантовых вычислений имеет большой потенциал для решения сложных задач в различных областях науки, технологии, бизнеса и общества. Среди возможных применений квантовых компьютеров можно выделить следующие: Моделирование химических реакций и свойств материалов — это позволит создавать новые лекарства, биотоплива, батареи, солнечные панели и космические аппараты. Оптимизация сложных систем и процессов — это позволит улучшать эффективность и качество в областях, таких как логистика, транспорт, энергетика, финансы и маркетинг. Криптография и кибербезопасность — это позволит создавать новые способы шифрования и дешифрования данных, а также взламывать существующие криптосистемы. Искусственный интеллект и машинное обучение — это позволит ускорять и улучшать алгоритмы обработки больших объемов данных, распознавания образов, генерации текста и речи, анализа эмоций и принятия решений. Однако индустрия квантовых вычислений также сталкивается с рядом проблем и вызовов, которые затрудняют ее развитие и коммерциализацию.
Среди них можно выделить следующие: Техническая сложность и высокая стоимость — построение и поддержание квантовых компьютеров требует использования сложных технологий и материалов, а также специальных условий, таких как сверхнизкие температуры, высокое вакуум и изоляция от внешних помех. Это делает квантовые компьютеры дорогими в производстве и эксплуатации. Нестабильность и ошибки — квантовые состояния кубитов очень чувствительны к любым воздействиям извне, что может приводить к потере или изменению информации. Это явление называется декогеренцией.
И тут важны два понятия: Квантовый компьютер — это вычислительное устройство, в котором используются явления квантовой механики для обработки данных. Вероятность Классическая механика основана на детерминизме: транзистор либо включен, либо нет, кран или закрыт, или открыт. В квантовой механике во главе угла вероятность. Вопрос «Свет включен? Все знают про мысленный эксперимент физика-теоретика Эрвина Шредингера. Правда, мы слишком любим котиков, поэтому лучше покажем мем с тарелками. В ходе эксперимента Шредингера возникает суперпозиция Тарелки Шредингера одновременно находятся в двух состояниях — мы не знаем, какие из них разобьются, а какие останутся целы. Зато можем предсказать это, основываясь на траектории их падения, циркуляции воздуха в помещении и скорости открытия дверцы. То есть можем математически подсчитать вероятность того, что они разобьются. Своеобразное математическое гадание. Суперпозиция Вместо битов квантовый компьютер использует кубиты — это частица, которая может находиться в позиции 1, 0, между ними, а также одновременно во всех возможных состояниях… с какой-то вероятностью. Нахождение в любой из комбинаций называется суперпозицией. Кубит может принять значение любого из квадратов в сфере, а бит — только 1 или 0 И вот тут-то загвоздка — значение этой частицы зависит от многих факторов, в том числе и измерения. Мы не знаем точно, в каком именно состоянии находится кубит, пока не решим его измерить. Запутано, правда? Благодаря кубитам со сложными задачами, на решение которых даже суперкомьютеру нужны недели, квантовый справится за считанные минуты. Какие задачи может решать квантовый компьютер Кубиты помогают быстро обрабатывать данные, поэтому их применение почти безгранично: Медицина Квантовые технологии уже применяют для ускоренной разработки, тестирования лекарств и диагностики некоторых заболеваний на ранней стадии. Например, FAR Biotech исследует биоактивные молекулы и белки и новые структурные классы, которые невозможно было бы обнаружить без мощных квантовых компьютеров. Свои исследования компания направляет на борьбу с онкозаболеваниями. В теории в будущем квантовые вычисления откроют новые горизонты в генной инженерии, помогут создавать новые лекарства и моделировать ДНК. Прогнозирование От финансового сектора до прогноза погоды — кубиты просчитывают множество переменных в разы быстрее, чем обычные компьютеры.
Условно говоря, мы подкручиваем наши монетки и говорим как им вращаться друг относительно друга, чтобы в итоге они выпали на стол в комбинацию, например, «орел-решка-орел» 010. Это и будет правильный ответ алгоритма. Тогда в 1 случае из 10 квантовый компьютер будет вполне легально нам врать, выдавая неправильный ответ. Тогда мы просто запускаем алгоритм много-много раз как настоящие боги инженерии! Побеждают, как обычно, китайцы. Белые же европейцы в это время воюют за запрет термина «превосходство» потому что оно оскорбительно и нетолерантно. Лет через пять меня точно отменят за этот пост. На практике же момент «квантового превосходства» не означает ничего, кроме того, что можно будет открыть шампанское и выпить за технологический прогресс. Сейчас объясню. Все эксперименты по квантовому превосходству по прежнему проводятся на специально подобранных задачках, которые квантовый компьютер должен щёлкать на раз, а классический пыхтеть тысячелетиями. Читеры вставляют палки в колёса, короче, и всё равно не могут догнать. Разве что иногда. Именно поэтому квантовое превосходство интересно журналистам и историкам, но точно не инженерам. Я как инженер жду не формального победителя первого забега, а того, кто покажет мне первый стабильный квантовый компьютер. Сейчас с этим всё плохо. С текущим количеством шумов они попросту бесполезны для практических задач. Компьютер, который считает быстро, но постоянно врёт — разве это годится? Превосходство у них, блин. Случайно подняться на гору легко — куда сложнее подниматься на неё каждый день. Можно использовать эту фразу как кредо по жизни. The Алгоритм Время программировать программы! На уроках информатики в 8 классе сегодня каждому школьнику рассказывают, что любой компьютер на самом деле состоит из кучки простейших операций над одним или двумя битами, называемых логическими вентилями или логическими гейтами, если вы дитя улиц и учились по английскому учебнику, как я. Хитро соединив проводами пару-тройку вентилей можно получить сумматор или простейшую память — всё это базовые элементы любого процессора. Потом они соберут из этих операций жирные высокоуровневые языки программирования. Начнется бум кремния, крах доткомов, курсы «профессия Data Scientist за неделю» и вот уже даже бездомные пишут на React за еду. Короче, в квантовых компьютерах всё то же самое! Только уровень развития тут пока плавает где-то до изобретения ассемблера. Представляете сколько всего еще впереди? Я обещал вам квантовый Hello, World — держите. Как и любой Hello World, он абсолютно бесполезен. Он лишь подбрасывает две монетки, связывает одну с другой и говорит орлами они упали или решками. Разберём всё подробно по шагам. Итак, нам нужна схема из 2 кубитов и 2 обычных битов. Импортируем все нужные тулзы и начинаем рисовать. Дальше накидываем гейты. Потому что можем. Я хочу перевести первый кубит в суперпозицию гейтом H, то есть «подбросить» эту монетку. Физически обоснованный! Но мы не хотим читать 0 или 1, мы хотим программировать на вероятностях. Потому вторым гейтом я наложу условие CNOT. Если наш кубит выпадает в 1 — он автоматически перевернёт и соседний кубит. То есть сделает из 0 в 1. Если нет — ничего не изменится. Оба наших кубита остаются по нулям. Нам надо лишь как-то её запустить. На игровой квантовый компьютер мы пока не заработали, потому будем тестово гонять в симуляторе прямо на макбуке. Но жить вроде можно. Дальше дело за малым — прочитать результат и сделать с ним что-то полезное в реальном мире. Вариантов 01 и 10 у нас быть не может, иначе всю эту квантовую лавочку можно просто закрывать. Для визуализации еще можно вывести получившиеся сферы Блоха для обоих кубитов. Если сделать это много раз, будет видно как стрелочки вдвоем прыгают вверх-вниз. Нет, стойте, не конец. Я же обещал выполнить это на реальном квантовом компьютере. С симуляторами ощущения не те.
Что такое квантовый компьютер? Разбор
Впечатляет, конечно. Особенно, когда вы показывали, что вычисления в обычном режиме, на современных суперкомпьютерах занимали бы чуть ли не столетия, а на квантовых результат достигается за часы или дни, — это, конечно, впечатляет», — оценил разработку Владимир Путин. Проект разработки квантового компьютера был запущен в 2019 году, над ним работали учёные из Российского квантового центра и физического института им. Лебедева РАН при координации Росатома.
Представлен на CES 2019, для работы достаточно просто включить в розетку. Рассмотрим принцип их работы повнимательнее.
Всегда держите в голове обложку того номера Time и тот факт, что квантовая механика вообще относится к одному из самых сложных разделов физики. Как он работает? Используется двоичная система счисления, где бит — единица информации. Чтобы узнать точно, мы должны остановить монетку, то есть сделать наблюдение. Еще можно вспомнить популярного кота Шредингера: мы никогда не знаем, жив кот или нет, пока не заглянем в коробку.
Выходит, что кот находится в суперпозиции, как и кубиты. Что такое кубит?
Задачу квантового расчёта того, как двигаются молекулы, — а именно это требуется для химических реакций — относят к классу экспоненциально сложных. На практике это означает, что такие задачи не могут быть решены ни сейчас, ни в каком-либо обозримом будущем при поступательном развитии технологий вычислений. Поэтому для расчёта химических реакций применяются приближённые методы. Сначала они были относительно простыми и не очень точными, но со временем их точность повышалась, а сложность росла. Их изучением и развитием занимается вычислительная квантовая химия. Сейчас каждый год собираются огромные конференции, на которых тысячи учёных делятся последними достижениями в этой области.
И хотя компьютеры могут уже очень многое — вплоть до предсказания эффективности действия инновационного лекарства — последнее слово, как и 100 лет назад, остаётся за экспериментами. Все вычисления будут делать квантовые симуляторы, и будут делать их точнее и быстрее, чем мы». Чего же так боятся квантовые химики? Идея квантовых симуляторов восходит к статье знаменитого физика Ричарда Фейнмана, опубликованной в 1982 году. В ней нобелевский лауреат высказал относительно простую мысль. Если у нас будут квантовые компьютеры, то есть компьютеры, которые совершают вычисления по квантовым законам, то было бы вполне естественно в первую очередь использовать их для вычислений, связанных с квантовыми системами, — в частности, для вычислений в квантовой химии. И действительно, как показали дальнейшие исследования, это возможно. И более того, такие вычисления смогут в полной мере задействовать уникальные возможности квантовых компьютеров, то есть они будут выполняться значительно быстрее, чем на компьютерах обычных.
Это позволит решать задачи точного расчёта химических реакций за разумное время и заменить дорогостоящие прямые эксперименты на более дешёвые вычисления. Более того, одна из проблем квантовых компьютеров — разрушающее действие окружающей среды, не позволяющее подолгу сохранять квантовую суперпозицию, — в квантовых симуляторах может быть использовано для пользы дела. Ведь реальные квантовые системы тоже находятся в окружении других тел, которые точно так же разрушают квантовые эффекты в них. Это воздействие можно имитировать с помощью действия окружения на кубиты квантового симулятора. Применение квантовых симуляторов Сейчас уже созданы первые, самые простые квантовые симуляторы.
Каждую цепочку нужно запускать от 1 тыс. Кроме того, мы бы хотели провести научные исследования, чтобы масштабировать квантовые компьютеры. Для этого нужен третий компьютер, а лучше и четвертый. Мы сейчас работаем с трехмерными ловушками. А для того, чтобы делать компьютеры с числом кубитов больше 50, нужно обязательно работать с планарными, то есть плоскими ловушками на чипах. Это отдельное направление. У нас уже изготовлены первые ловушки в сотрудничестве с Московским институтом электронной техники. Это пока не полноценный компьютер, нам нужно тестировать ловушки, смотреть, как захватываются ионы, делать новые модели. Фактически это еще одна система. Вот уже четыре системы, которые нужно иметь, чтобы проводить полноценные исследования в области квантовых вычислений. Вопрос, хватит ли времени. Когда мы только начинали, я ожидал, что к этому времени у нас будет четыре-пять установок. Но мы ждем поставок. Часть уже в России, чего-то не хватает. Тем не менее, надеюсь, к середине следующего года мы запустим вторую установку, может, даже третью. А дальше жизнь покажет. Мировая практика — Что сейчас происходит в области разработок квантовых компьютеров? У систем с более объемным регистром точность кубитных операций недостаточно высокая. Это частная компания, работающая на государственные деньги. Комбинация, когда в частную компанию загружаются государственные деньги, в мире показала себя очень хорошо, она делает самую крутую науку. И я надеюсь, что у нас такие схемы тоже со временем будут внедрены. Но важно, чтобы в ней появилась коммерческая составляющая.
Квантовый компьютер как способ движения в завтра
Кроме того, кубиты могут быть квантово запутаны друг с другом, что позволяет проводить параллельные вычисления и работать с большими объёмами информации. Квантовые вентили управляют состояниями кубитов, позволяя квантовым компьютерам выполнять такие операции, как суперпозиция, запутывание и измерение. Поэтому для квантовых компьютеров придумали единицу информации кубит (от английского quantum bit). И делают кубиты на сверхпроводниках, которым нужны экстремально низкие температуры. Фазовый кубит был впервые реализован в лаборатории Делфтского университета и с тех пор активно изучается.
В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный
Но в 2021-2022 годах стали доступны новые технические возможности, позволяющие обойти характерные для оптической архитектуры фундаментальные ограничения. Существуют несколько способов кодирования кубита в состоянии фотона. Наиболее простые — поляризационный кубит и двухрельсовая кодировка. Поляризационный кубит подразумевает сопоставление состояний 1 и 0 ортогональным поляризациям, например, вертикальной и горизонтальной. Двухрельсовая кодировка предлагает кодировать один кубит в паре оптических мод, сопоставленных состояниям 0 и 1, в одной из которых находится фотон. В обоих случаях из-за слабого взаимодействия фотонов реализация двухкубитного гейта требует использования нелинейной среды.
Причём величина нелинейности должна на много порядков превосходить достижимые значения. Ввиду технической невозможности прямой реализации был найден альтернативный подход, названный протоколом KLM Knill, Laflamme, Milburn [21]. Он позволяет реализовывать двухкубитный запутывающий гейт с использованием только линейных элементов, однако получаемая схема имеет ограниченную вероятность успешного срабатывания. Такой подход уже является приемлемым для экспериментальных задач, и позволяет реализовывать квантовые вариационные алгоритмы с малым числом кубитов. Однако конечная вероятность успешного срабатывания гейта ведёт к экспоненциально малой вероятности срабатывания всей схемы при её масштабировании, что недопустимо.
Преодоление этого ограничения потребовало выработки ещё одного альтернативного подхода. Из характеристик квантового состояния светового пучка могут быть выделены отдельные параметры, связанные соотношением неопределённостей Гейзенберга. Связь данных параметров позволяет кодировать в них состояние кубита. В некотором смысле это подобно тому, как оно кодируется в поляризации. Получаемый кубит называется кубитом на сжатых состояниях, поскольку для кодирования информации одна из квадратур сжимается сильнее стандартного квантового предела.
Оказывается, что кубиты на сжатых состояниях можно телепортировать с использованием базовых оптических элементов. А корректируя протокол телепортации, можно менять телепортируемое состояние [22]. В обычных условиях такое изменение является нежелательным, но при работе со сжатыми состояниями скорректированную телепортацию можно использовать для реализации гейта. Телепортируя многокубитные состояния, можно реализовать многокубитные гейты детерменированным образом. Необходимо только владеть технологией приготовления запутанных состояний высокой размерности, необходимых для осуществления телепортации.
Но опять же, для сжатых состояний генерация запутанности возможна при помощи базовых оптических элементов. Экспериментально была продемонстрирована генерация запутанных кластерных состояний на данной архитектуре объёмом до 1000000 кубитов. Строго говоря, сжатые состояния не являются кубитами. Кубит является лишь подмножеством пространства сжатых состояний. И телепортационные гейты не обеспечивают возможности произвольной трансформации сжатого состояния.
Однако если специально выделить из сжатого состояния кубит, то и это ограничение удаётся преодолеть. Более того, оставшиеся степени свободы сжатого состояния можно использовать для дублирования состояний кубита, и таким образом реализовывать коррекцию ошибки. Он обеспечивает устойчивую коррекцию ошибок, если степень сжатия состояния, то есть отношение дисперсии квадратур, достигает 15-17дБ, а в теории — 10дБ [24]. Экспериментальные же результаты сегодня демонстрируют техническую возможность достижения сжатия состояния до 15 дБ, чего может быть достаточно для экспериментальной демонстрации коррекции ошибки. Таким образом для оптической архитектуры удалось преодолеть фундаментальные ограничения реализации запутывающего гейта, технически показана возможность создания регистра до 1000000 кубитов, архитектура включает естественный механизм коррекции ошибки, а продемонстрированный уровень шумов находится на границе устойчивой коррекции.
Безусловно, все эти результаты были продемонстрированы в независимых экспериментах, опубликованные значения являются пиковыми и разработка единого вычислителя, использующего все представленные технологии, представляет собой сложнейшую инженерную задачу. Но необходимо констатировать, что имеющиеся результаты позволяют перевести оптическую архитектуру из ранга потенциально перспективного кандидата для реализации масштабируемого квантового вычислителя на дальних временных горизонтах в ранг актуального игрока. Это демонстрирует канадская компания Xanadu, 1 июня 2022 года представившая в публичном доступе вычислитель на сжатых состояниях с регистром из 216 оптических мод [26]. Заключение С учётом всего вышеизложенного, можно вернуться к представлению об интеграции квантовых вычислений в индустрию информационных технологий. Отрасль в целом демонстрирует ожидаемый планомерный рост, сопряженный с последовательным решением инженерных задач.
Это отражается в появлении квантовых вычислителей с большими чем раньше объёмами квантовых вычислительных регистров. Доминирующей архитектурой остаются кубиты на основе сверхпроводников. Однако малое время жизни кубитов данного типа, связанное с их большой чувствительностью к шумам и необходимостью криогенного охлаждения, ставит под вопрос величину нереализованного потенциала масштабируемости данной технологии. Можно ожидать, что в ближайшие 3-5 лет технология будет оставаться основной, но в дальнейшем может уступить более устойчивой архитектуре. Примером более устойчивой архитектуры могут послужить кубиты на основе холодных атомов.
В ближайшее время можно ожидать публикации с демонстрацией рекордной степени точности двухкубитного гейта, построенного на основе подхода с наносекундным временным масштабом. Совершенствование и масштабирование данной технологии может привести к появлению программируемого атомного вычислителя с рекордным количеством кубитов. Наиболее перспективными на дальнем временном горизонте остаются вычислители на основе оптических схем. Исследования последних лет в значительной мере конкретизировали понимание того, как должен быть устроен оптический вычислитель большого масштаба с коррекцией ошибок. То есть устройство, полностью выводящее отрасль квантовых вычислений из эпохи NISQ.
Можно со значительной степенью уверенности утверждать, что это будет система с кубитами на основе сжатых состояний с непрерывными переменными. Главными ограничениями для такого вычислителя остаётся неизбежное возникновение ошибки телепортационного гейта из-за невозможности сжать квадратуру квантового состояния до нуля, а также потери излучения в волокне. Существенными шагами в направлении к созданию масштабируемого оптического вычислителя станет экспериментальная демонстрация устойчивой коррекции ошибки и исполнение вычислителя такого типа в виде интегрально-оптической схемы. Облачные квантово-вычислительные сервисы могут начать внедряться в программные продукты для решения задач оптимизации при помощи вариационных алгоритмов уже в обозримом будущем, на горизонте 5-7 лет. Наиболее вероятно, что аппаратным обеспечением данных сервисов будут оставаться вычислители на основе сверхпроводящих схем или холодных атомов.
Значительное развитие может получить инфраструктура квантовой оптической связи, призванная, в первую очередь, решать задачи обеспечения информационной безопасности. Можно ожидать, что со временем данные сети будут усложняться, переходя на обмен состояниями более высокой размерности и обеспечивая реализацию коррекции ошибок за счёт простых интегрально-оптических устройств. В отдалённой перспективе, на горизонте 15 и более лет, это может привести к созданию разветвлённой квантово-коммуникационной сети, объединяющей, в том числе, оптические квантовые компьютеры, что позволит использовать квантово-вычислительные ресурсы более широко и эффективно. КРК квантовый компьютер квантовые вычисления Список литературы F. Arute, K.
Arya, John M. Martinis et al.
Анонсирован выпуск первого в мире квантового компьютера с более чем 1000 кубитов Опубликовано gumarov в 3 ноября, 2023 - 22:49 С днём килокубита! Сегодня поговорим о недавнем анонсе килокубитного квантового компьютера и разберёмся, ознаменовал ли он начало новой эры квантовых вычислителей. Конкретно, компания заявляет о вычислителе с 1225 атомными ловушками, из которых 1180 хранят кубиты. Подобного рывка в развитии квантовых вычислений следовало ожидать. Однако, в развитии своих аппаратных разработок IBM сконцентрирована на одном архитектурном направлении — кубитах на основе сверхпроводников. Данная архитектура, безусловно, относится к наиболее развитым, но из-за малого времени жизни кубита с таким устройством задача масштабирования квантовых компьютеров со сверхпроводящей архитектурой сталкивается с большим количеством технических сложностей. Другой перспективной архитектурой является использование в качестве кубита электронных подуровней атома в магнито-оптической ловушке.
Кубиты данной архитектуры обладают большим временем жизни и меньше подвержены сторонним воздействиям, что потенциально упрощает масштабирование. Именно данную архитектуру используют специалисты Atom Computing в новом вычислителе. Обратной стороной атомной архитектуры является сложность взаимодействия кубитов.
Для полноценного осознания величины совершенного прорыва необходимо дождаться исчерпывающих данных о точности работы нового компьютера в реальных квантовых алгоритмах. В любом случае, 1000 кубитов — существенный шаг вперёд для индустрии. На уровне идеи 1000-кубитный регистр даёт невероятные возможности, начиная от моделирования квантовой химии, заканчивая эффективным финансовым прогнозированием и атакой 256-битных симметричных шифров.
В связи с этим очень полезно ознакомиться с очерком «Что нам делать с 1000 кубитов? Также это позволяет лучше осознать, насколько стремительно развивается индустрия квантовых вычислений. И хотя безусловно, число кубитов является главным сдерживающим фактором развития квантовых алгоритмов, получив достаточное число кубитов, мы, как и прежде, возвращаемся к вопросу точности — сколько устойчивых к ошибкам логических кубитов мы можем получить? И на этом этапе каждый инженер должен открыто и чётко характеризовать разработку, которую ему удалось создать. Этот вопрос ведёт нас к большим результатам, но требует большой работы и исследований. Пожалуйста, оцените статью: Ваша оценка: None Средняя: 4.
Чтобы достичь нужного уровня, — делают логические кубиты, то есть из большого количества физических кубитов делают один логический кубит, программируют на него протоколы коррекции ошибок, алгоритм и получается, что это один кубит с высоким показателем точности. Поэтому, если вернуться к физическим кубитам, на которых и должен делаться квантовый компьютер, — индустрия находится на раннем этапе, примерно на уровне десяти логических кубитов. В ближайшие годы ожидаем, что будет достижим уровень в сто логических кубитов. Это уже позволит делать интересные вещи — оптимизация маршрутов, клинические тесты, синтетическое создание клинических данных, проксимация квантовых симуляций, оптимизация финансовых портфелей.
Для сравнения: чтобы взломать алгоритмы RSA, нужна примерно тысяча логических кубитов. Тут нужно сделать небольшое отступление и сказать, что сегодня в квантовых вычислениях есть ещё один подряд сложностей — пока не придумана квантовая память. Поэтому в ближайшие 10 лет квантовые вычисления будут работать в связке с классическими компьютерами. Стратегическая долгосрочная задача — создание универсального квантового компьютера. Для этого нужно более 10 000 логических кубитов, надёжное управление многокубитными гейтами, квантовая память.
Сейчас мы не можем смоделировать даже средние по сложности молекулярные соединения. Поэтому учёные делают синтетические молекулы и постоянно экспериментируют. Моделирование сильно ограничено размерами молекулярных систем и параметрами точности. Из-за этого создание нового лекарства занимает лет десять. А квантовый компьютер, который способен смоделировать квантовую механическую систему, радикально ускорит процесс.
Или фолдинг белка сейчас пытаются сделать рентгеновскими лучами, хитрыми магнитными резонансами. А если будет квантовый компьютер, он сможет смоделировать эту систему, и мы упростим себе жизнь в создании лекарств. Ещё ускорится разработка новых материалов для космических полётов, двигателей, сверхпроводящих систем. Сделать лучше не получается, потому что мы пока плохо моделируем. За одно интервью невозможно даже перечислить все те применения квантовых компьютеров, которые можно придумать.
Даже если он просто сможет ускорить считанное количество процессов важных операций типа преобразования Фурье — это уже будет серьёзным прогрессом. А это только один шаг к созданию универсального квантового компьютера. Поэтому такой хайп. Их уже применяют для оптимизации финансовых портфелей, маршрутов, оптимизации ИИ-алгоритмов. Что может остановить прогресс?
Допустим, если время жизни системы 0,001 секунда, то можно не успеть вычислить что-то важное. Надо думать, как удерживать качество вычислений и масштабировать их. Возьмем компанию IonQ — в неё проинвестировали уважаемые инвестиционные фонды со всего мира, она даже стала публичной.
Квантовые вычисления для всех
Кубиты, даже находящиеся в специально созданных условиях (вакуум, охлаждение до сверхнизких температур), разрушаются за доли секунды. В 2013 году мы произвели первичные измерения полученных в Германии кубитов (кубит – элемент сверхпроводниковой микросхемы, сделанный из сверхпроводника – тонких пленок алюминия). Именно необычное свойство кубита, его способность одновременно становиться и нулём, и единицей, даёт квантовому компьютеру потрясающую вычислительную мощность. Чтобы сделать кубиты, отдельные электроны помещают в линейный массив из шести «квантовых точек», отстоящих друг от друга на 90 нанометров. Но время идет, новости о квантовых компьютерах с завидной периодичностью выходят в свет, а мир все никак не перевернется. Кубит (q-бит, кьюбит, кубит; от quantum bit) — наименьшая единица информации в квантовом компьютере (аналог бита в обычном компьютере), использующаяся для квантовых вычислений.
Кульбит кубита. Новейший сверхкомпьютер может победить рак или погубить мир
Самое недолговечное в мире устройство стало «жить» в два раза дольше | Как уже было сказано, если измерить кубит, в результате будет получено конкретное значение. |
Что такое квантовый компьютер? Разбор | | — Мы модернизировали систему считывания: раньше могли считывать восемь ионов одновременно, теперь 10, что соответствует 20 кубитам. |
Мир квантов: как люди могут воспользоваться их открытием — 05.10.2023 — Статьи на РЕН ТВ | Эта машина способна проводить очень сложные и длительные вычисления за счет встроенной в кубиты системы коррекции ошибок. |
Как работает квантовый компьютер: простыми словами о будущем
Квантовая интегральная микросхема (КИМС) содержит пять кубитов, один из которых в данном эксперименте не использовался. В то время как кубиты имеют четыре значения, в нейронных сетях их несравненно больше, а образуемые ими структуры намного разнообразнее, чем entanglement. Как уже было сказано, если измерить кубит, в результате будет получено конкретное значение. Квантовая интегральная микросхема (КИМС) содержит пять кубитов, один из которых в данном эксперименте не использовался. Обычные компьютеры работают на битах, квантовые — на кубитах, то есть используют принципы элементарных частиц, которые позволяют экспоненциально наращивать вычислительную мощность. Чаще всего в заголовки новостей попадает так называемый «сверхпроводящий» кубит.
Как устроен и зачем нужен квантовый компьютер
В то время никто еще не задумывался всерьез о реализации этой идеи на практике. Даже в теории она казалась весьма непростой. Квантовая механика, в отличие от классической, которую все мы изучали в школе, описывает явления не на уровне тел, а на уровне атомов, электронов, фотонов и прочих элементарных частиц. И квантовые эффекты, которые предполагалось использовать, создавая первый квантовый компьютер, проявляются в микроскопических масштабах.
Переместиться на микроуровень в поисках новых возможностей ученых заставили физические основы, на которых базируется традиционная вычислительная техника. Схема ее работы основана на транзисторах, в каждом современном компьютере их миллионы или даже миллиарды. Каждый из них может в определенный момент времени находиться в «открытом» или «закрытом» состоянии — как электрический переключатель.
Эти два состояния и представляют собой те самые нули и единицы, с помощью которых человек общается с компьютером и наоборот. По мере развития технологий производители размещают на процессорах компьютеров все большее и большее количество транзисторов. Это увеличивает скорость работы и вычислительные возможности техники.
Но всему есть физический предел, и мы вплотную к нему приблизились. Если раньше вычислительная мощность производимых процессоров удваивалась примерно каждые два года, то сегодня этот темп падает на глазах. В то же время потребности человечества в вычислениях постоянно растут, опережая развитие электроники.
Но вернемся к Ричарду Фейнману и его теории. Основное отличие квантового компьютера от обычного заключается в представлении информации в его процессоре. Единица информации в обычном компьютере — бит, представляющий собой ноль или единицу.
Третьего не дано. Единица хранения информации для квантового компьютера — квантовый бит, или, сокращенно, кубит. Это квантовый объект — вещь, которую гораздо проще описать, чем представить.
Что такое кубиты для квантовых компьютеров Итак, если бит — это одна из двух условных точек 1 или 0 , то кубит можно представить себе в виде сферы с полюсами в этих же точках — 1 и 0. Кубит также может принимать значение 1 или 0. Но кроме них он может находиться в состоянии суперпозиции, то есть иметь любое из возможных значений, лежащих на поверхности сферы.
И все это — одновременно. Но что именно расположено на поверхности сферы? Может быть, кубит имеет переменное плавающее значение?
В некотором смысле это так, но трудность в том, что невозможно узнать это значение для конкретного момента времени, как это делается для обычных переменных. Если выразиться максимально простым языком, кубит похож на магический шар.
Опять-таки, измерение кубита можно делать по-разному, точного значения у этого термина нет. Если мы теперь немного изменим внешнее магнитное поле, то одно из этих состояний станет более выгодным. В квантовом случае индуктивность определяется током, протекающим через джозефсоновский переход, поэтому ведет себя как так называемая параметрическая индуктивность. Это изменение мы и регистрируем. Для этого на частоте порядка 10 гигагерц мы посылаем к кубиту электромагнитный сигнал. При прохождении через образец у этого сигнала сдвигается фаза. Этот сдвиг вызывает изменение состояния кубита, которое влияет на индуктивность некоторой измерительной цепи, находящейся рядом с кубитом. Усиленный сигнал при этом по кабелю поступает в прибор, который позволяет уже при комнатной температуре мерить фазу сигнала.
В центре желтая дверь видна чистая комната. Ее монтаж пока еще не закончен. Цель эксперимента, который мы поставили, была пока самой простой из тех, которые только возможны. Мы не манипулировали квантовым состоянием, мы фактически установили, что у объекта существуют два уровня, соответствующих состояниям ноль и один. Мы также измерили частоту перехода между этими уровнями под действием микроволновых фотонов, которая зависела от внешнего магнитного поля, то есть померили спектр нашего квантового устройства. Вообще, когда мы измеряем кубит при помощи изменяющейся индуктивности, мы фактически меряем вероятность пребывания кубита в возбужденном состоянии состояния с энергией выше минимальной. Поскольку кубит связан со всей окружающей средой, он живет там не бесконечно. Сколько живет ваш кубит? Это не так много по современным достижениям. Но еще несколько лет назад характерные времена были наносекунды, то есть за 13 лет произошел прогресс примерно в миллион раз.
Кубиты, которые мы здесь мерили, соответствуют среднему уровню на настоящий момент. Фактически мы просто научились мерить эти кубиты, и теперь мы планируем начать их производить здесь, в России. У нас будет инструмент для того, чтобы можно было делать с ними измерения. Мерить время когерентности, производить квантовые манипуляции, то есть делать квантовые преобразования, которые соответствуют логическим операциям. И как скоро можно ждать первых функционирующих операций? Дело в том, что такие логические гейты, то есть схемы, реализующие простейшие логические алгоритмы на сверхпроводящих схемах, уже продемонстрированы как минимум в трех крупных университетах: это Йель, Университет Санта-Барбары в Калифорнии и группа моего бывшего аспиранта, ныне профессора Андреаса Вальрафа Andreas Wallraff в Цюрихе. Я не говорю еще о том, что, например, компания D-wave уже создала 100-битный квантовый компьютер на принципе квантовой релаксации это когда система релаксирует состояние с минимальной энергией. Подобные компьютеры позволяют вычислять состояния определенного класса систем и решать задачи, скажем, нахождения объекта среди многих других одинаковых объектов.
Принципы работы квантового компьютера Работа квантовых компьютеров основана на двух принципах квантовой механики: спутанность и принцип суперпозиции. Классические компьютеры работают в двоичной системе 1 или 0 бит , комбинации и последовательности 1 и 0 несут определенные данный.
Процессор может передавать либо 1 либо 0. Принцип суперпозиции позволяет элементам процессора находится одновременно в 2 состояниях и 1 и 0. Как монетка подброшенная вверх, пока не упала одновременно может быть и орлом и решкой. Бит который может находится в состоянии 1 и 0 одновременно называется кубитом. Чем больше кубитов тем больше одновременных вычислений можно проводить. Сейчас ведутся разработки по созданию компьютера на основе фотонов света с характеристиками в 1 000 000 кубит. Все эти свойства квантового компьютера позволяют одновременно анализировать миллионы различных вариантов и комбинаций. В примере со столами квантовый компьютер за секунды найдет оптимальный вариант рассадки. На примере эволюции жизни на земле. Квантовый компьютер способен за короткое время найти жизнеспособные комбинации сложных органических молекул, как природа, которой на решение этих задач потребовалось миллиарды лет.
Теперь поиск таких комбинаций стал доступен искусственным путем через квантовые вычисления, с появлением более мощных квантовых компьютеров мы сможем смоделировать возможное существование и взаимодействие всех веществ и элементов. Источник: IBM Quantum Области применения квантовых вычислений Как и обычных компьютеров, сфера применения КК крайне широка, от части мы еще не знаем весь потенциал квантовых вычислений, которые затронут практически все сферы деятельности человека. Аэрокосмическая отрасль. КК необходим для сложных расчетов траекторий полетов, нагрузок с огромным количеством переменных. Будут найдены не только способы расшифровки всех возможных кодирований, но и новые способы квантового шифрования, что приведет к новым возможностям в кибербезопасности. Искусственный интеллект. С появление КК, искусственный интеллект шагнет далеко вперед. Теперь он сможет анализировать миллионы вариантов развития событий. Транспортная компания, осуществляющая доставку в десятки и сотни городов, сможет узнать оптимальный маршрут, чтобы сэкономить на расходах на топливо. Станет возможно путем сложных расчетов сбалансировать риски инвестиционных портфелей и предсказывать возможную волатильность.
Снижение выбросов углерода в атмосферу с помощью открытия новых материалов. Нефтедобывающие компании моделируют месторождения и способы эффективной добычи. Способность квантовых компьютеров точно моделировать молекулярные реакции, вплоть до субатомного уровня, имеет огромное значение для всего, от открытия лекарств до создания нового поколения легких и долговечных аккумуляторных батарей.
Расчет можно выполнить и на обычном компьютере, но чем больше молекула, тем сложнее задача для расчета ее потенциальной энергии. Например, для формальдегида такую задачу на обычном компьютере решить невозможно. Мы же точно квантово-механически рассчитываем все волновые функции, то есть положения всех электронов, и вычисляем кривую.
Такой компьютер в России сейчас один. По-видимому, алгоритмы квантовой химии будут одними из первых, на которых будет показано полезное квантовое превосходство, то есть квантовый компьютер будет работать быстрее классического. Но я не очень глубоко погружен в тему алгоритмов. С помощью облачной платформы на нем был запущен алгоритм расчета простой молекулы Следующий уровень — Вы сказали, что сегодня ваша оптическая система находится в глубокой модернизации. Во всех компаниях в мире существует довольно большой зазор между началом управления регистром и запуском реальной программы. Это связано и с настройками, и с созданием такой программы.
Именно достоверность лимитирует сложность алгоритма. Точнее сказать пока не могу: не проверяли. Модернизировав адресацию и считывание, мы повысили число кубитов, с которыми можно работать. Мы занимаемся и улучшением достоверности. На сегодня она лимитирована двумя факторами. Это значит, что у нас есть только одна частота, и на ней вся мощность.
Чем меньше шумов в лазере, тем выше достоверность. Задача нетривиальная, в мире не так много людей умеют это делать. Это одни из самых точных и чистых спектральных лазеров в мире. Он изготовлен, идет измерение характеристик и калибровка. После того как мы поставим новый, немного изменим систему привязки к нему лазера. Хотим использовать схему injection locking.
Смысл такой: берем свет, прошедший через резонатор, и заводим его в лазерный диод, и этот лазерный диод начинает генерировать точно такое же излучение, какое прошло через резонатор.