Новости чем ядерная бомба отличается от водородной

В результате взрыва водородной бомбы выделяется гораздо меньше радиоактивных веществ, чем в результате взрыва атомной бомбы. Главное отличие водородной бомбы от ядерной заключается в том, что она использует два этапа реакции: сначала происходит ядерное деление, а затем ядерный синтез.

Чем отличаются атомная, ядерная и водородная бомбы

При термоядерном же образуется гамма-излучение и нейтроны, последние могут, действуя на материалы бомбы, превращать их в радиактивные изотопы, но соответствующим подбором этого можно избежать. Такая водородная бомба именуется "чистой", хотя ядерный запал некоторое заражение всё же создаёт если существует неядерный запал - то и этого заражения нет. Простое помещение дейтрида лития рядом с атомной бомбой-запалом приведёт к разбросу его без существенного выделения энергии, поэтому он окружается оболочками тяжёлого металла, не допускающими быстрого разлёта. Основная схема для современных бомб более сложна, и включает в себя металлический цилиндр, в котором находится стержень из дейтрида лития с плутониевым сердечником, окружённый слоем пластмассы. Сбоку от цилиндра находится атомная бомба-"триггер", причём дейтрид лития прикрыт металлической крышкой. Взрыв бомбы приводит к испарению пластмассы, давление которой сжимает дейтрид лития в 1000 раз, а плутониевый стержень примерно вчетверо.

Она может уничтожить противника, но при этом не пострадают дома и техника, а продуктов распада не будет. Каков принцип ее работы? Сразу после сбрасывания с бомбардировщика срабатывает детонатор на некотором расстоянии от земли. Корпус разрушается и распыляется огромнейшее облако. При смешивании с кислородом оно начинает проникать куда угодно - в дома, бункеры, убежища. Выгорание кислорода образует везде вакуум. При сбрасывании этой бомбы получается сверхзвуковая волна и образуется очень высокая температура. Отличие вакуумной бомбы американской от российской Различия состоят в том, что последняя может уничтожать противника, находящегося даже в бункере, при помощи соответствующей боеголовки. Во время взрыва в воздухе боеголовка падает и сильно ударяется об землю, зарываясь на глубину до 30 метров. После взрыва образуется облако, которое, увеличиваясь в размерах, может проникать в убежища и уже там взрываться. Американские же боеголовки начиняются обыкновенным тротилом, поэтому разрушают здания. Вакуумная бомба уничтожает определенный объект, так как обладает меньшим радиусом. Неважно, какая бомба самая мощная - любая из них наносит несопоставимый ни с чем разрушительный удар, поражающий все живое. Водородная бомба Водородная бомба - еще одно страшное ядерное оружие. Соединение урана и плутония порождает не только энергию, но и температуру, которая повышается до миллиона градусов.

От гамма-излучения спасает железобетон а также свинец и вода , так что тот же самый подвал убережет и от радиации. Если ядерный взрыв застал вас на улице, прежде всего не паникуйте - еще не все потеряно, и шансы выжить высоки. Увидев вспышку, очень быстро падайте лицом вниз, по возможности спрячьте голову под куртку, капюшон, сумку, или закройте ее руками. Тело должно быть максимально закрыто одеждой - так можно избежать ожогов. Радиация же быстро рассеивается, так что опасность получить смертельную дозу гамма-излучения есть, но ее можно избежать. Ни в коем случае не сдавайтесь! После атомного взрыва Самое опасное после взрыва - радиация. Однако ее уровень достаточно быстро падает: одни продукты ядерной реакции распадаются, другие разносятся ветром. Минобороны России Поэтому действия после взрыва зависят от того, где именно вы находитесь. Бомбоубежище или метро - делайте то, что рекомендуют представители гражданской обороны и МЧС. Во-первых, им виднее, во-вторых, у них есть еда и питьевая вода. Покинув убежище, вы можете не найти не загрязненных радиацией продуктов и воды. Подвал - решение надо принимать по обстоятельствам. Если над вами бушует пожар или вы чувствуете запах газа, то такое укрытие лучше покинуть.

Быстрые нейтроны с огромной скоростью расщепляют урановые оболочки самой бомбы. Выделяется не только тепло, но и радиоактивные осадки. Насчитывают до 200 изотопов. Производство такого ядерного оружия дешевле, чем атомного, а его действие может быть усилено во сколько угодно раз. Это самая мощная взорванная бомба, которую испытали в Советском Союзе 12 августа 1953 года. Последствия взрыва Результат взрыва водородной бомбы носит тройной характер. Самое первое, что происходит - наблюдается мощнейшая взрывная волна. Ее мощность зависит от высоты проводимого взрыва и типа местности, а также степени прозрачности воздуха. Могут образовываться большие огненные ураганы, которые не успокаиваются в течение нескольких часов. И все же вторичное и наиболее опасное последствие, которое может вызвать самая мощная термоядерная бомба - это радиоактивное излучение и заражение окружающей местности на длительное время. Радиоактивные остатки после взрыва водородной бомбы При взрыве огненный шар содержит в себе множество очень маленьких радиоактивных частиц, которые задерживаются в атмосферном слое земли и надолго там остаются. При соприкосновении с землей этот огненный шар создает раскаленную пыль, состоящую из частиц распада. Сначала оседает крупная, а затем более легкая, которая при помощи ветра разносится на сотни километров. Эти частицы можно разглядеть невооруженным глазом, например, такую пыль можно заметить на снегу. Она приводит к летальному исходу, если кто-либо окажется поблизости.

Атомная, водородная и нейтронная бомбы

Нейтронная бомба Первый взрыв нейтронного оружия под индексом W-63 произошел в 1963 году в одной из шахт на полигоне в Неваде. В 1976 году на том же полигоне были выполнены испытания обновленного нейтронного заряда. Результаты испытаний настолько превзошли все ожидания военных, что решение о серийном производстве данного боеприпаса приняли за пару дней на самом высоком уровне. Конструкция и принцип действия нейтронной бомбы Нейтронная бомба — это вид тактического ядерного оружия мощностью от 1 до 10 кт, где поражающим фактором является поток нейтронного излучения. К первому типу относятся маломощные заряды весом до 50 кг, которые используются в качестве боеприпасов к безоткатному или артиллерийскому орудию. В центральной части бомбы располагается полый шар из делящегося вещества. Внутри его полости находится «бустинг», усиливающий деление.

Разрабатывали подобные боеприпасы и в Великобритании. Там создали бетонобойную бомбу "Толлбой" — "Верзила". Тротиловый эквивалент — 2300 килограммов. Применялась бомба для разрушения промышленных и военных объектов нацистской Германии, которые было невозможно поразить снарядами обычного типа. Бетонобойные боеприпасы называют еще сейсмическими. Собственно, для того, чтобы, если их сбросить с достаточной высоты, с большой высоты, они могли не разрушаться, а какое-то время двигаться в толще земли и заглубиться, чтобы осуществить подрыв и использовать там принцип там сейсмической волны", — сообщил военный эксперт Сергей Денисенцев. Фугасные бомбы оставались самыми мощными неядерными боеприпасами, стоящими на вооружении многих армий мира, пока не были разработаны термобарические или объемно-детонирующие бомбы. Термобарические боеприпасы и как их применяют Видео, которое показывают в программе, предположительно, снято под украинским Николаевом. Очевидец запечатлел взрыв объемно-детонирующей авиабомбы ОДАБ-500. Внутри боеприпаса — жидкое горючее, которое сразу после удара о землю превращается в облако воспламеняющейся газовоздушной смеси. А потом его поджигают вторым зарядом. Температура внутри горения образуется дичайшая", — рассказал эксперт Кобринский. К термобарическим относятся и снаряды для тяжелой огнеметной системы "Солнцепек". Недаром украинские боевики боятся ее в прямом смысле как огня. Объемный взрыв огромной мощности буквально испепеляет все вокруг. Но наряду с достоинствами у термобарических боеприпасов есть серьезные недостатки. Эти бомбы и снаряды нельзя применять при сильном ветре, который просто рассеет аэрозольное облако, или в дождь. Но в хорошую погоду при соответствующих, так сказать, условиях — это вторая бомба после термоядерных боеголовок", — сообщил историк Кобринский. Американская "мать всех бомб": что о ней известно От создания фугасных авиабомб после появления объемно-детонирующих не стали отказываться. Один из самых мощных фугасов в мире с тротиловым эквивалентом 10 тонн. Этот боеприпас был разработан во время вьетнамской войны.

Однако американцы недолго носили желтую майку лидера. Уже 29 августа 1949 года на полигоне под г. Семипалатинском был впервые испытан атомный заряд советского образца, созданный в ударные сроки русскими атомщиками под руководством академика Курчатова. Реклама И пока расстроенные «ястребы» из Пентагона пересматривали свои амбициозные планы по уничтожению «оплота мировой революции», Кремль нанес упреждающий удар — в 1953 году 12 августа были проведены испытания новой разновидности ядерного оружия. Там же, в районе г. Данное событие вызвало настоящую истерику и панику не только на Капитолийском холме, но и во всех 50 штатах «оплота мировой демократии». Какое отличие атомной бомбы от водородной ввергло в ужас мировую супердержаву? Ответим сразу. Водородная бомба по своей боевой мощи намного превосходит атомную. При этом она обходится значительно дешевле, чем эквивалентный атомный образец. Рассмотрим эти различия более подробно. Принцип действия атомной бомбы основан на использовании энергии, возникающей в результате нарастающей цепной реакции, вызванной делением расщеплением тяжелых ядер плутония или урана-235 с последующим образованием более легких ядер. Сам процесс называют однофазным, и протекает он следующим образом: После детонации заряда вещество, находящееся внутри бомбы изотопы урана или плутония , переходит в стадию распада и начинает захват нейтронов. Процесс распада нарастает, как снежная лавина.

Атомная бомба - это бомба, в которой происходит реакция ядерного деления. Атом тяжелого изотопа, к примеру, плутония-239, делится на более легкие химические элементы с выделением колоссальной энергии. Существует критическая масса плутония-239. Грубо говоря, кусок плутония массой больше этого значения не может существовать - он сразу дает цепную реакцию, то есть взрыв. В атомной бомбе установлены несколько кусков плутония, масса каждого из которых немного меньше критической. Эти куски подогнаны по форме так, что если их соединить, получится единое целое. Они выстреливаются друг в друга и образуют большой кусок массой намного больше критической.

Что включает в себя ядерное оружие

  • Современное термоядерное оружие
  • В чем отличия между атомной и водородной бомбой, какой взрыв мощнее
  • Какая бомба мощнее: ядерная или водородная
  • Принцип работы водородной бомбы
  • Что опаснее водородная или ядерная бомба. Разница между атомной и водородной бомбой

Термоядерный заряд. Отличие водородной бомбы от атомной: список различий, история создания

Разница в том, что современные термоядерные боеприпасы — это не многомегатонные монстры, вроде «Царь-бомбы», а системы мощностью в сотни килотонн, как РДС-6с. В атомной бомбе делящееся ядерное топливо быстро, под действием энергии подрыва обычных взрывчатых веществ объединяется в небольшом сферическом объеме, где создается его так называемая критическая масса, и начинается реакция деления. Ядерная бомба большой разрушительной силы, действие которой основано на использовании энергии, выделяющейся при реакции синтеза лёгких ядер (см. Термоядерные реакции). В отличие от атомной бомбы, при взрыве которой энергия выделяется в результате деления атомного ядра, в водородной бомбе происходит термоядерная реакция, подобная той. Атомная сильно слабее термоядерной бомбы, а также отличается самим процессом того, как происходит взрыв. Ключевое отличие «грязной бомбы» от атомной в том, что она не создает новой радиоактивности (например, из почвы в эпицентре взрыва).

Ядерный взрыв — есть ли защита от атомной бомбы?

А серия мощных взрывов над Новой Землей в конце декабря 1962 года вообще стала последним для нашей страны эпизодом ядерных испытаний в открытых средах: с 1964 года в СССР проводились только подземные испытания. Так что Никита Хрущев ничуть не лукавил, когда заявил в Берлине, что в Советском Союзе в интересах всего социалистического содружества создано, испытано и поставлено на боевое дежурство, передано в войска оружие невиданной силы - "и пусть только господа-империалисты сунутся". Первые американские "штучки": урановый "Малыш", жертвой которого 06. Фото: Соцсети Многие эксперты солидарны в том, что нарочито громкое, демонстративное заявление советского лидера в Берлине имело целью подтолкнуть американцев к переговорам и заключению обязывающих соглашений. А чтобы так ставить вопрос - о переговорах между Москвой и Вашингтоном на равных, - надо было как минимум обеспечить фактический паритет СССР и США в ядерных вооружениях.

Советский Союз вступил в эту гонку на исходе тяжелейшей для себя войны и первые пятнадцать лет был в роли догоняющего. Даже после того, как в СССР провели первое испытание своей атомной бомбы 29 августа 1949 года , говорить о преодолении атомной монополии США можно было лишь условно. Согласно рассекреченным документам Атомного проекта СССР в начале 1950 года наша страна располагала только единичными экземплярами ядерных устройств. А в арсенале США уже в 1950 году насчитывалось свыше четырехсот ядерных бомб, причем производили их серийно.

Американцы объявили о таком испытании почти на год раньше. Но они, по выражению их же специалистов, взорвали "дом с тритием" - громоздкий лабораторный образец. А в СССР провели испытание компактного, практически готового к применению боевого устройства: бомбу РДС-6с испытали, сбросив с самолета.

Но вскоре стало понятно, что она не может иметь больших размеров. Поэтому было решено попробовать сделать термоядерную боеголовку. Тут снова же преуспела Америка. Советы решили не проигрывать в гонке и испытали компактную, но мощную ракету, которую можно перевозить даже на обычном самолете Ту-16. Тогда все поняли, чем отличается ядерная бомба от водородной.

Для примера, первая американская термоядерная боеголовка была такой высокой, как трехэтажный дом. Ее нельзя было доставить небольшим транспортом. Но потом по разработкам СССР размеры были уменьшены. Если проанализировать , можно сделать вывод, что эти ужасные разрушения были не такими уж и большими. В тротиловом эквиваленте сила удара была всего несколько десятком килотонн. Поэтому здания были уничтожены только в двух городах, а в остальной части страны услышали звук ядерной бомбы. Если это была бы водородная ракета, всю Японию бы разрушили полностью всего одной боеголовкой. Ядерная бомба со слишком сильным зарядом может взорваться непроизвольно.

Начнется цепная реакция и произойдет взрыв. Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. Ведь термоядерную боеголовку можно сделать какой угодно мощности, не боясь самопроизвольного подрыва. Это заинтересовало Хрущева, который приказал сделать самую мощную водородную боеголовку в мире и таким образом приблизиться к выигрышу гонки. Ему показалось оптимальным 100 мегатонн. Советские ученые поднатужились и у них получилось вложиться в 50 мегатонн. Испытания начались на острове Новая Земля, где был военный полигон. До сих пор Царь-бомбу называют крупнейшим зарядом, взорванным на планете.

Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах. А вот от водородной ракеты он поднялся на 5 километров в диаметре. Гриб из пыли, радиации и сажи вырос на 67 километров. По подсчетам ученых, его шапка в диаметре составляла сотню километров. Только представьте себе, что бы было, если бы взрыв произошел в городской черте. Современные опасности использования водородной бомбы Отличие атомной бомбы от термоядерной мы уже рассмотрели. А теперь представьте, какими бы были последствия взрыва, если бы ядерная бомба, сброшенная на Хиросиму и Нагасаки, была водородной с тематическим эквивалентом. От Японии не осталось бы и следа.

По заключениям испытаний, ученые сделали вывод о последствиях термоядерной бомбы. Некоторые думают, что водородная боеголовка является более чистой, то есть фактически не радиоактивной. Это связано с тем, что люди слышат название «водо» и недооценивают ее плачевное влияние на окружающую среду. Как мы уже разобрались, водородная боеголовка основана на огромном количестве радиоактивных веществ. Ракету без уранового заряда сделать можно, но пока на практике этого не применялось. Сам процесс будет очень сложным и затратным. Поэтому реакция синтеза разбавляется ураном и получается огромная мощность взрыва. Они нанесут вред здоровью даже тем, кто находится в десятках тысяч километров от эпицентра.

При подрыве создается огромный огненный шар. Все, что попадает в радиус его действия, уничтожается. Выжженная земля может быть необитаемой десятилетиями. На обширной территории совершенно точно ничего не вырастет. И зная силу заряда, по определенной формуле можно рассчитать теоретически зараженную площадь. Также стоит упомянуть о таком эффекте, как ядерная зима. Это понятие даже страшнее разрушенных городов и сотен тысяч человеческих жизней. Будет уничтожено не только место сброса, но и фактически весь мир.

Сначала статус обитаемой потеряет только одна территория. Но в атмосферу произойдет выброс радиоактивного вещества, которое снизит яркость солнца. Это все смешается с пылью, дымом, сажей и создаст пелену. Она разнесется по всей планете. Урожаи на полях будут уничтожены на несколько десятилетий вперед. Такой эффект спровоцирует голод на Земле. Население сразу сократится в несколько раз. И выглядит ядерная зима более чем реально.

Ведь в истории человечества, а конкретнее, в 1816 году, был известен подобный случай после мощнейшего извержения вулкана. На планете тогда был год без лета. Скептики, которые не верят в подобное стечение обстоятельств, могут переубедить себя расчетами ученых: Когда на Земле произойдет похолодание на градус, этого не заметит никто. А вот на количестве осадков это отразится. Осенью произойдет похолодание на 4 градуса. Ввиду отсутствия дождей, возможны неурожаи.

Никита Хрущёв впоследствии публично пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, «чтобы не побить все стёкла в Москве». Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового тампера на урановый. Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила; тем не менее, создание и испытание сверхбомбы имели большое политическое значение, продемонстрировав, что СССР решил задачу достижения практически любого уровня мегатоннажа ядерного арсенала. Принцип действия водородной бомбы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии — благодаря этому звёзды и выделяют огромное количество энергии постоянно.

Другие изотопы предлагались, но реальных изделий не создано были, например, предложения сделать бомбу на калифорнии, ввиду крайне малой критической массы были бы возможны даже атомные пули. Термоядерная водородная используют энергию синтеза. При этом для инициирования синтеза требуется высокая температура, даваемая атомной бомбой отсюда - термоядерная, а водородная она оттого, что употребляются изотопы водорода - дейтерий и тритий; в первом американском испытании использовались именно они, однако система оказалась непрактична, и принятые на вооружении используют дейтрид лития, а тритий образуется при нейтронном облучении лития. Принципиальная возможность получить нужную температуру не посредством ядерного взрыва существует, и, по некоторым утверждениям, это было реализовано по программе "мирных ядерных взрывов" для нефтедобычи, рытья каналов и т. Дело в том, что изотопы при ядерном взрыве радиоактивны, и создают загрязнение, особенно опасное при попадании вовнутрь организма с водой, едой, воздухом... При термоядерном же образуется гамма-излучение и нейтроны, последние могут, действуя на материалы бомбы, превращать их в радиактивные изотопы, но соответствующим подбором этого можно избежать.

В чем отличия водородной бомбы от атомной

Чем отличаются атомная, ядерная и водородная бомбы Водородная бомба — вид ядерного оружия, энергия взрыва которого высвобождается в ходе термоядерной реакции синтеза ядер тяжёлых элементов из более лёгких.
В чем разница между атомной, водородной и нейтронной бомбой? Каковы принципы действия водородной и атомной бомб и есть ли разница в последствиях?

Какая бомба мощнее: ядерная или водородная

Ядро Урана С химической точки зрения «функция» нейтронов сводится к тому, чтобы «разбавить» единообразие ядер одного «сорта» ядрами с несколько различающейся массой, поскольку на химические свойства повлияет лишь заряд ядра через число электронов, за счёт которых атом может образовывать химсвязи с другими атомами. С точки же зрения физики нейтроны как и протоны участвуют в сохранении атомных ядер за счёт специальных и очень мощных ядерных сил — в противном бы случае ядро атома мгновенно разлетелось бы из-за кулоновского отталкивания одноимённо заряженных протонов. Именно нейтроны позволяют существовать изотопам: ядрам с одинаковыми зарядами то есть идентичными химсвойствами , но при этом отличным по массе. Тонкость же в том, что процесс этот энергетически выгоден то есть протекает с выделением энергии лишь до определённого предела, после чего на создание всё более тяжёлых ядер требуется потратить больше энергии чем выделяется при их синтезе, а сами они становится весьма неустойчивыми. В природе этот процесс нуклеосинтез идёт в звёздах, где чудовищные давления и температуры «утрамбовывают» ядра так плотно, что некоторая их часть сливается, образуя более тяжёлые и выделяя энергию, за счёт которой звезда светит.

Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития.

Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом. Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн — его называют триггером, или зарядом-инициатором водородной бомбы.

Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий.

Это создает достаточно энергии для сближения двух ядер настолько, чтобы они могли соединиться.

Эта вторая стадия называется синтезом. Форма играет роль По словам экспертов, последняя бомба, испытанная Северной Кореей, значительно отличалась от предыдущих и представляла собой разделенное на камеры устройство. Это позволяет предположить, что речь идет о двухступенчатой водородной бомбе.

Разная мощность Мощность термоядерной бомбы может в сотни тысяч раз превышать мощность атомной бомбы. Взрывная сила последней часто рассчитывается в килотоннах.

Начнём с первой. Реальность: политически мотивированная фальсификация. Автором концепции ядерной зимы является Карл Саган , последователями которого оказались два австрийских физика и группа советского физика Александрова. По итогам их трудов появилась следующая картина ядерного апокалипсиса. Обмен ядерными ударами приведёт к массовым лесным пожарам и пожарам в городах. При этом зачастую будет наблюдаться "огненный шторм", в реальности наблюдавшийся при крупных городских пожарах - например, лондонском 1666-го года, Чикагском 1871-го, московском 1812-го. Во время Второй мировой его жертвами стали подвергшиеся бомбардировкам Сталинград , Гамбург, Дрезден, Токио, Хиросима и ещё ряд менее крупных городов. Суть явления такова.

Над зоной крупного пожара значительно нагревается воздух, и начинает подниматься вверх. На его место приходят новые массы воздуха, вполне насыщенные поддерживающим горение кислородом. Возникает эффект "кузнечных мехов" или "дымовой трубы". В итоге пожар продолжается до тех пор, пока не выгорает всё, что может гореть - а при развивающихся в "кузнечном горне" огненного шторма температурах гореть может многое. По итогам лесных и городских пожаров в стратосферу отправятся миллионы тонн сажи, которая экранирует солнечное излучение - при взрыве 100 мегатонн солнечный поток у поверхности Земли сократится в 20 раз, 10000 мегатонн - в 40. На несколько месяцев наступит ядерная ночь, фотосинтез прекратится. Глобальные температуры в "десятитысячном" варианте упадут минимум на 15 градусов, в среднем - на 25, в некоторых районах - на 30-50. После первых десяти дней температура начнёт медленно повышаться, но в целом продолжительность ядерной зимы составит не менее 1-1,5 года. Голод и эпидемии растянут время коллапса до 2-2,5 лет. Впечатляющая картина, не правда ли?

Проблема в том, что это фейк. Так, в случае лесных пожаров модель исходит из того, что взрыв мегатонной боеголовки немедленно вызовет пожар на площади 1000 квадратных километров. Между тем, в действительности на расстоянии в 10 км от эпицентра площадь 314 квадратных километров уже будут наблюдаться только отдельные очаги. Реальное дымообразование при лесных пожарах в 50-60 раз меньше заявленного в модели. Наконец, основная масса сажи при лесных пожарах не достигает стратосферы, и довольно быстро вымывается из нижних атмосферных слоёв. Равным образом, огненный шторм в городах требует для своего возникновения весьма специфических условий - равнинной местности и огромной массы легко возгораемых построек японские города 1945-го года - это дерево и промасленная бумага; Лондон 1666-го - это в основном дерево и оштукатуренное дерево, и то же самое относится к старым немецким городам. Там, где не соблюдалось хотя бы одно из этих условий, огненный шторм не возникал - так, Нагасаки, застроенный в типично японском духе, но расположенный в холмистой местности, так и не стал его жертвой. В современных городах с их железобетонной и кирпичной застройкой огненный шторм не может возникнуть по чисто техническим причинам.

Фугасные бомбы: справка о них и их появлении

  • «Сердце» взрыва
  • Принцип работы водородной бомбы » ЯУстал - Источник Хорошего Настроения
  • Что такое атомная бомба?
  • Самая мощная бомба в мире сильнее ядерной

Чем отличается атомная бомба от ядерной?

Термоядерное оружие может быть в тысячи раз мощнее атомных бомб — его мощность измеряется мегатоннами в тротиловом эквиваленте. В 1952 году США были первой страной, успешно испытавшей водородную бомбу мощностью 10 Мт. И хотя последствия взрыва термоядерной бомбы более разрушительны, создать их намного сложнее. Взрыв компактной водородной бомбы приведет к масштабному заражению радиацией. Малогабаритное термоядерное оружие называют нейтронной бомбой или усиленными радиационными боеголовками. Это оружие можно эффективно использовать против танковых и пехотных формирований на традиционном поле боя, не затрагивая ближайшие населенные пункты в радиусе нескольких километров. Главная опасность этого вида вооружений заключается в выбросе большого количества радиоактивных осадков. Почему даже небольшая ядерная война приведет к массовому голоду на планете? Ответ здесь!

Этот тип вооружений также называют радиологическим оружием. По мнению большинства аналитиков использование «грязной бомбы» носит скорее психологический, чем физический характер и может спровоцировать массовую панику. Эксперты отмечают , что большая часть радиоактивного материала от взрыва грязной бомбы будет рассеяна на несколько городских кварталов или несколько квадратных километров. А вы знаете как работают АЭС? И что будет, если их отключить? Ответ здесь, не пропустите! Несмотря на то, что создать грязную бомбу несложно — главное добыть радиоактивный материал труднее всего добыть плутоний и уран, а также утилизированное ядерное топливо , это оружие ни разу не применялось.

О том, что бывшие союзники по Антигитлеровской коалиции прорабатывают подобные планы, Москва узнала от членов знаменитой «Кембриджской пятерки» в победном 1945-м, так что следовало спешить. Сумев создать собственную атомную бомбу, советские ученые немедленно перешли к работам по ее совершенствованию и усилению, а затем взялись и за разработку более мощного вида оружия — термоядерного. Насколько спешно велись эти работы, можно судить по такому примечательному факту. Первая советская термоядерная бомба — РДС-6с, пригодная для доставки к цели на стратегическом бомбардировщике, — испытана 12 августа 1953 года. А одиннадцать дней спустя на том же Семипалатинском полигоне в испытательных целях сбросили с бомбардировщика Ту-16 первую отечественную серийную атомную бомбу РДС-4. Догнать «Иви Майка» Чем термоядерная бомба отличается от атомной? В первую очередь тем, что в атомной бомбе взрывной эффект достигается за счет ускоренной цепной реакции деления, а в термоядерной — напротив, за счет сверхбыстрой взрывной реакции термоядерного синтеза. С точки зрения теории термоядерное устройство можно сделать сколь угодно мощным даже в рамках относительно небольшого «изделия» что позднее и доказал Советский Союз, испытав свою Царь-бомбу. А водородным это оружие называют потому, что в качестве горючего для термоядерного синтеза используется изотоп водорода — дейтерий. Над созданием термоядерного оружия и СССР, и США начали работать практически одновременно, не прекращая работ по созданию серийных атомных бомб. За счет имевшегося преимущества в опыте американцам удалось разработать свое первое термоядерное устройство — «Иви Майк» — на год раньше, чем это сделали советские ученые. Правда, эта конструкция совершенно не была похожа на пригодный к практическому использованию ядерный боеприпас. Впрочем, США и не рассматривали первое термоядерное устройство как боевое — оно создавалось исключительно в испытательных целях. Его взрыв 1 ноября 1952 года доказал работоспособность избранной американскими учеными «двухступенчатой» схемы, при которой сначала срабатывала обычная атомная бомба, взрыв которой сжимал термоядерное топливо и поджигал его. В «холодной войне» начался новый этап. Информация о работах американцев над термоядерной бомбой и ее испытании поступала в Советский Союз очень оперативно: над ее добычей работал специальный отдел научно-технической разведки в структуре внешней разведки НКВД.

Сравнительно небольшого числа супербомб достаточно, чтобы полностью покрыть крупную страну слоем смертельно опасной для всего живого радиоактивной пыли. Таким образом, создание сверхбомбы ознаменовало начало эпохи, когда стало возможным сделать непригодными для обитания целые континенты. Даже спустя длительное время после прекращения прямого воздействия радиоактивных осадков будет сохраняться опасность, обусловленная высокой радиотоксичностью таких изотопов, как стронций-90. С продуктами питания, выращенными на загрязненных этим изотопом почвах, радиоактивность будет поступать в организм человека. Общее описание [ ] Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия , так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6. Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6. Дейтерид лития-6 - твёрдое вещество, которое позволяет хранить дейтерий обычное состояние которого в нормальных условиях - газ при обычных условиях, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития. В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Термоядерная бомба, действующая по принципу Теллера - Улама, состоит из двух ступеней: триггера и контейнера с термоядерным горючим. Устройство, испытанное США в 1952 году, фактически не являлось бомбой, а представляло собой лабораторный образец, «3-этажный дом, наполненный жидким дейтерием», выполненный в виде специальной конструкции. Советские же учёные разработали именно бомбу - законченное устройство, пригодное к практическому военному применению. Самая крупная когда-либо взорванная водородная бомба - советская 58-мегатонная «царь-бомба », взорванная 30 октября 1961 года на полигоне архипелага Новая Земля. Никита Хрущёв впоследствии публично пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, «чтобы не побить все стёкла в Москве». Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового на урановый. Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила ; тем не менее, создание и испытание сверхбомбы имели большое политическое значение, продемонстрировав, что СССР решил задачу достижения практически любого уровня мегатоннажа ядерного арсенала. США [ ] Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом, была предложена Энрико Ферми его коллеге Эдварду Теллеру осенью 1941 года , в самом начале Манхэттенского проекта. Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь. Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам. Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма-излучение, порождённые первичным взрывом, могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию обжатие и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма. Взрыв «Джордж» В 1951 году была проведена серия испытаний под общим наименованием Операция «Парник» англ. Operation Greenhouse , в ходе которой отрабатывались вопросы миниатюризации ядерных зарядов при увеличении их мощности. Одним из испытаний в этой серии стал взрыв под кодовым наименованием «Джордж» англ. George , в котором было взорвано экспериментальное устройство, представлявшее собой ядерный заряд в виде тора с небольшим количеством жидкого водорода, помещённым в центре. Основная часть мощности взрыва была получена именно за счёт водородного синтеза, что подтвердило на практике общую концепцию двухступенчатых устройств. К 1960 году на вооружение были приняты боеголовки мегатонного класса W47, развёрнутые на подводных лодках, оснащённых баллистическими ракетами Поларис. Боеголовки имели массу 320 кг и диаметр 50 см. Более поздние испытания показали низкую надёжность боеголовок, установленных на ракеты Поларис, и необходимость их доработок. А 16 января 1963 года, в самый разгар холодной войны, Никита Хрущёв заявил миру о том, что Советский союз обладает в своём арсенале новым оружием массового поражения. За полтора года до этого в СССР был произведён самый мощный взрыв водородной бомбы в мире — на Новой Земле был взорван заряд мощностью свыше 50 мегатонн. Во многом именно это заявление советского лидера заставило мир осознать угрозу дальнейшей эскалации гонки ядерных вооружений: уже 5 августа 1963 г. История создания Теоретическая возможность получения энергии путём термоядерного синтеза была известна ещё до Второй мировой войны, но именно война и последующая гонка вооружений поставили вопрос о создании технического устройства для практического создания этой реакции. Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества — но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны что в 450 раз больше мощности бомбы, сброшенной на Нагасаки , а в 1953 году в СССР было испытано устройство мощностью 400 килотонн. Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования. К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива — дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба. В 1957 году испытания водородной бомбы провели в Великобритании. В октябре 1961 года в СССР на Новой Земле была взорвана термоядерная бомба мощностью 58 мегатонн — самая мощная бомба из когда-либо испытанных человечеством, вошедшая в историю под названием «Царь-бомба». Дальнейшее развитие было направлено на уменьшение размеров конструкции водородных бомб, чтобы обеспечить их доставку к цели баллистическими ракетами. Уже в 60-е годы массу устройств удалось уменьшить до нескольких сотен килограммов, а к 70-м годам баллистические ракеты могли нести свыше 10 боеголовок одновременно — это ракеты с разделяющимися головными частями, каждая из частей может поражать свою собственную цель. На сегодняшний день термоядерным арсеналом обладают США, Россия и Великобритания, испытания термоядерных зарядов были проведены также в Китае в 1967 году и во Франции в 1968 году. Принцип действия водородной бомбы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии — благодаря этому звёзды и выделяют огромное количество энергии постоянно. Учёные скопировали эту реакцию с использованием изотопов водорода — дейтерия и трития, что и дало название «водородная бомба». Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития. Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом. Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн — его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий. Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву. Если сделать несколько слоёв урана-238 и дейтерида лития-6, то каждый из них добавит свою мощность ко взрыву бомбы — т. Благодаря этому водородную бомбу можно сделать почти любой мощности, причём она будет гораздо дешевле обычной ядерной бомбы такой же мощности. Наша статья посвящена истории создания и общим принципам синтеза такого устройства, как иногда называемой водородной. Вместо выделения энергии взрыва при расщеплении ядер тяжелых элементов, вроде урана, она генерирует даже большее ее количество путем слияния ядер легких элементов например, изотопов водорода в один тяжелый например, гелий. Почему предпочтительнее слияние ядер? При термоядерной реакции, заключающейся в слиянии ядер участвующих в ней химических элементов, генерируется значительно больше энергии на единицу массы физического устройства, чем в чистой атомной бомбе, реализующей ядерную реакцию деления. В атомной бомбе делящееся ядерное топливо быстро, под действием энергии подрыва обычных взрывчатых веществ объединяется в небольшом сферическом объеме, где создается его так называемая критическая масса, и начинается реакция деления. При этом многие нейтроны, освобождающиеся из делящихся ядер, будут вызывать деление других ядер в массе топлива, которые также выделяют дополнительные нейтроны, что приводит к цепной реакции. Слияние или синтез ядер охватывает всю массу заряда бомбы и длится, пока нейтроны могут находить еще не вступившее в реакцию термоядерное горючее.

Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам. Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма-излучение, порождённые первичным взрывом, могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию обжатие и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма. Взрыв «Джордж» В 1951 году была проведена серия испытаний под общим наименованием Операция «Парник» англ. Operation Greenhouse , в ходе которой отрабатывались вопросы миниатюризации ядерных зарядов при увеличении их мощности. Одним из испытаний в этой серии стал взрыв под кодовым наименованием « Джордж » англ. George , в котором было взорвано экспериментальное устройство, представлявшее собой ядерный заряд в виде тора с небольшим количеством жидкого водорода, помещённым в центре. Основная часть мощности взрыва была получена именно за счёт водородного синтеза, что подтвердило на практике общую концепцию двухступенчатых устройств. Ivy Mike было проведено полномасштабное испытание двухступенчатого устройства с конфигурацией Теллера-Улама. Мощность взрыва составила 10,4 мегатонны, что в 450 раз превысило мощность бомбы, сброшенной в 1945 году на японский город Нагасаки. Устройство общей массой 62 тонны включало в себя криогенную ёмкость со смесью жидких дейтерия и трития и обычный ядерный заряд, расположенный сверху. По центру криогенной ёмкости проходил плутониевый стержень, являвшийся «свечой зажигания» для термоядерной реакции. Оба компонента заряда были помещены в общую оболочку из урана массой 4,5 тонны, заполненную полиэтиленовой пеной, игравшей роль проводника для рентгеновского и гамма-излучения от первичного заряда к вторичному. Монтаж боеголовок Смесь жидких изотопов водорода не имела практического применения для термоядерных боеприпасов, и последующий прогресс в развитии термоядерного оружия связан с использованием твёрдого топлива — дейтерида лития-6. В 1954 эта концепция была проверена на атолле Бикини в ходе испытаний « Bravo » из серии Операция «Замок» при взрыве устройства под кодовым названием «Креветка» от англ «Shrimp». Реальность оказалась гораздо более драматичной: при расчётной мощности в 6 мегатонн реальная составила 15, и это испытание стало самым мощным взрывом из когда-либо произведённых Соединёнными Штатами [11].

Последние вопросы

  • «В чем отличие атомной, ядерной и водородной бомб друг от друга?» — Яндекс Кью
  • Что опаснее водородная или ядерная бомба. Разница между атомной и водородной бомбой
  • Последние вопросы
  • Чем отличается водородная бомба от ядерной
  • Сборник ответов на ваши вопросы
  • Принцип работы водородной бомбы

Принцип работы водородной бомбы

Ядерная бомба большой разрушительной силы, действие которой основано на использовании энергии, выделяющейся при реакции синтеза лёгких ядер (см. Термоядерные реакции). Ядерная бомба — история появления ядерного оружия. Термоядерное оружие нового поколения может резко снизить порог применимости ядерных вооружений и нарушить сложившийся стратегический баланс. Ядерной (атомной) бомбой принято называть такое устройство взрывного типа, где основная доля высвобождаемой энергии при взрыве выделяется за счёт ядерной реакции деления, а водородной (термоядерной) — такое. В водородной бомбе применяется не чистый водород, а дейтерид лития-6, содержащий в себе изотоп водорода дейтерий и изотоп лития, служащий для выделения еще одного изотопа водорода – трития. термоядерные (термоядерные бомбы, водородные бомбы) — более современное оружие, в котором принцип действия «атомной бомбы» усиливается термоядерным синтезом.

Евгений Пожидаев: Ядерные мифы и атомная реальность

Водородная бомба и атомная бомба – это два типа ядерного оружия, но их механизмы действия очень сильно отличаются друг от друга. Чем водородная бомба отличается от атомной. Термоядерный синтез — процесс, который происходит во время детонации водородной бомбы — самый мощный тип доступной человечеству энергии. В атомной бомбе делящееся ядерное топливо быстро, под действием энергии подрыва обычных взрывчатых веществ объединяется в небольшом сферическом объеме, где создается его так называемая критическая масса, и начинается реакция деления.

В чем отличие атомной, ядерной и водородной бомб друг от друга?

одно из самых опасных: оно отличается от обычного гораздо большей - во много тысяч раз - мощностью и действием одновременно нескольких поражающих факторов. Водородные бомбы, также известные как термоядерные бомбы, намного мощнее атомных бомб и основаны на другом типе ядерной реакции, называемой синтезом. Царь-бомба была исключительно демонстрацией неограниченной мощности ядерного оружия массового поражения. Разница в том, что современные термоядерные боеприпасы — это не многомегатонные монстры, вроде «Царь-бомбы», а системы мощностью в сотни килотонн, как РДС-6с.

Похожие новости:

Оцените статью
Добавить комментарий