Именно такое вмещение единства двух Начал содержалось и в учении Пифагора о числах, когда он рассматривал цифру 12, одну из составляющих додекаэдр.
Додекаэдр - Что это такое, определение и понятие
В додекаэдр можно вписать куб так, что стороны куба будут диагоналями додекаэдра. Додекаэдр имеет три звёздчатые формы. В додекаэдр можно вписать пять кубов. Если заменить пятиугольные грани додекаэдра плоскими пятиугольными звездами так, что исчезнут все ребра додекаэдра, то получим пространство пяти пересекающихся кубов. Додекаэдр как таковой исчезнет.
Симметрия относительно плоскости, проходящей через AOB, является произведением T на симметрию центра O Три ортогональные плоскости, проходящие через O, соответственно перпендикулярные OM, AB и двум предыдущим, являются, таким образом, тремя из пятнадцати плоскостей симметрии додекаэдра. Строительство 1. Построение первых трех граней. Следовательно, существует поворот с осью AB, преобразующий E в G. Пусть F3 будет преобразованием F1 этим поворотом: это правильный пятиугольник, имеющий общее ребро AB с F1. Построение следующих трех граней.
Построение шести последних граней.
Получающаяся поверхность огромна: топологически это сфера с 81 ручкой. На ней 20 вершин, которые соответствуют 20 вершинам додекаэдра. Однако — и в этом сила этого подхода — геодезические линии на ней становятся просто прямыми — продолжающимися сквозь «склеенные» пары сторон. Правда, по пути на двойном пятиугольнике да и на додекаэдре не очень просто сказать, соответствует ли он пути на S, идущем из вершины в ту же самую вершину. Они переводят прямые в прямые, поэтому прямому пути на исходной трансляционной поверхности соответствует прямой путь на поверхности-образе.
Иногда исходная поверхность переходит в себя, как тор, полученный из квадрата, на рисунке ниже. Более того, некоторые трансляционные поверхности «достаточно симметричны», чтобы преобразований, переводящих их в себя, было бы «много». И — что самое важное для этой задачи — чтобы применение таких преобразований позволяло «упрощать» геодезические линии на них. Его снимала Диана Дэвис, один из авторов работы, где был исследован случай тетраэдра и куба. На двойном пятиугольнике любая геодезическая линия из вершины в вершину упрощается до либо ребра, либо диагонали одного из пятиугольников: Правда, не любое преобразование нашего двойного пятиугольника соответствует преобразованию, сохраняющему всю огромную поверхность S. Это большая работа — как и аккуратный учет того, какие из получающихся путей совмещаются вращением додекаэдра.
Но ее в принципе уже можно сделать, просто поручив этот конечный перебор компьютеру. Я закончу этот текст комментарием Антона Зорича: «Двадцать лет этот вопрос был совершенно вне досягаемости; десять лет назад он бы потребовал огромных усилий по написанию тогда не существовавших программ.
Может ли один из них выйти из дома и «по прямой» вернуться обратно, не заходя в дома коллег? А если может, то как описать такой путь? Конечно, сначала нужно уточнить, что означает «идти по прямой» на поверхности многогранника. Можно сказать, что любой достаточно небольшой участок пути является кратчайшим это — простейший случай геодезической линии. Либо, что по каждой грани планеты-многогранника нужно идти просто по прямой, а при переходе через ребро две соседние грани нужно вдоль этого ребра развернуться на плоскость — и тогда отрезки пути должны оказаться на одной прямой пример на рисунке ниже. Математикам уже было известно, что на других правильных многогранниках — на тетраэдре, октаэдре, кубе и икосаэдре — таких траекторий нет. На рисунке ниже изображена одна «не работающая» попытка построить такую траекторию на кубе: на изображенной развертке точкам A и C соответствует одна и та же вершина куба, но двигаясь по прямой AC на кубе мы по пути наткнемся на другую вершину, B.
Так будет всегда — при любой попытке пройти из одной вершины в неё же мы непременно пройдем и через какую-то другую вершину. Для тетраэдра это несложно доказать. Если бы на правильном тетраэдре ABCD такая траектория — например, начинающаяся и заканчивающаяся в вершине A — существовала, можно было бы «прокатить» тетраэдр вдоль нее, перекатывая его с грани на грань по плоскости и «отпечатывая» каждую очередную грань. Сама траектория на плоскости тогда стала бы прямой точно так же, как становятся прямыми «достроенные после отражения» лучи в школьной физике , а посещенные грани и соответствующие им вершины были бы частью решетки, изображенной на рисунке ниже. Но любой отрезок между одинаково помеченными вершинами там проходит через вершину с другой пометкой, просто из соображений четности. Так предположение о существовании такого пути на тетраэдре приходит к противоречию.
додекаэдр - Сток картинки
Что такое додекаэдра: объяснение, свойства и примеры | Построение структуры начинается с центрального додекаэдра, путем добавления к нему внешних додекаэдров к каждой из двенадцати граней. |
«Римский додекаэдр» - древний мистический артефакт и его назначение | Правильный додекаэдр имеет грани в виде правильных пятиугольников (см. пентагон-додекаэдр). |
Загадочный додекаэдр возрастом 1600 лет найден в Бельгии | Другие примеры многогранников Также иногда рассматриваются такие многогранники как октаэдр, додекаэдр. |
Додекаэдр.
двенадцать и hedra - грань), один из пяти типов правильных многогранников. Д. имеет 12 граней (пятиугольных), 30 рёбер, 20 вершин (в каждой вершине сходятся 3 ребра). Смотреть что такое «Додекаэдр» в других словарях: ДОДЕКАЭДР — (греч., от dodeka двенадцать, и hedra основание). Построение структуры начинается с центрального додекаэдра, путем добавления к нему внешних додекаэдров к каждой из двенадцати граней. Некоторые додекаэдры появлялись на рынке древностей и, следовательно, не имеют археологического контекста.
Додекаэдр - это...
Додекаэдр может быть помещен в сферу (вписан), так, что каждая из его вершин будет касаться внутренней стенки сферы. Важно проследить за тем, чтобы ширина рамок додекаэдра не была меньше, чем ширина припусков для склеивания. Додекаэдр — 1 из 5ти вероятных правильных многогранников. Общие понятия о фигуре Додекаэдр – это слово взято из языка древних греков.
Загадочный додекаэдр возрастом 1600 лет найден в Бельгии
Интересно отметить, насколько эта схема созвучна современной физической концепции о 4 агрегатных состояниях вещества — плазма, газ, жидкость и твердое тело. Что же касается пятого правильного многогранника, додекаэдра, то его Платон упоминает как-то вскользь, отметив лишь, что эта форма использовалась «для образца» при создании вселенной, имеющей совершенную форму сферы. Исследователи древнегреческой философии предполагают, что здесь Платон, вероятно, размышлял в духе более ранней традиции, уходящей к Пифагору. В пифагорейской школе известна идея, согласно которой додекаэдр образовывал «балки», на которых был возведен свод небес. Также уместно отметить, что в более раннем диалоге «Федон» Платоном вложено в уста Сократа такое 12-гранное додекаэдрическое описание небесной, более совершенной земли, существующей над землей людей: «Рассказывают, что та Земля, если взглянуть на нее сверху, похожа на мяч, сшитый из двенадцати кусков кожи».
Под очевидным влиянием идей Платона, в последующие века философы и ученые стали предполагать, что небеса сделаны из пятого элемента «эфира» или «квинтэссенции». Эту традицию можно увидеть в иллюстрациях к работе Иогана Кеплера Mysterium Cosmographicum, изданной в 1596 году, где космос изображен в форме додекаэдра. Космос по Кеплеру Наступившая после Кеплера эпоха великих научных открытий постепенно принесла совершенно новые знания об окружающем мире, включая и молекулярное устройство материи. Что же касается наивных платоновых идей об особой роли правильных многогранников в мироустройстве, то в конце XIX века отношение к ним стало примерно такое же, как к древней мифологии — местами забавно, однако для физической науки совершенно бесполезно.
А состоящий из пятиугольников 12-гранный додекаэдр при этом опять остался несколько в стороне — но, как и прежде, с некоторым смутным намеком на отношение к форме мироздания. Сначала это произошло на рубеже XIX-XX веков, когда великий математик Анри Пуанкаре занялся исследованием возможных форм для вселенной, представляемой в виде замкнутого 3-мерного пространства.
Он двойственен квазирегулярному кубооктаэдру архимедову твердому телу и встречается в природе в виде кристалла. Ромбический додекаэдр собирается вместе, заполняя пространство. Ромбический додекаэдр можно рассматривать как вырожденный пиритоэдр , в котором 6 особых ребер уменьшены до нулевой длины, превращая пятиугольники в ромбические грани. Ромбический додекаэдр имеет несколько звёздчатых звёзд , первая из которых также является параллелоэдром, заполняющим пространство. Другой важный ромбический додекаэдр, Билински додекаэдр имеет двенадцать граней, соответствующих граням ромбического триаконтаэдра , то есть диагонали находятся в соотношении золотого сечения.
Таким образом, очень может быть, что вся Вселенная пронизана энергетическими полями разных порядков. Так вот икосаэдро-додекаэдрическая структура Земли… в ней додекаэдр «играет роль Матери», а икосаэдр — «роль Отца»… «Наличие шаров на вершинах обеспечивает значительный радиус действия и высокую интенсивность излучения. Юла имеет прозрачные: дно, крышку и заполнена жидкостью, в которой находится большое количество частиц типа чаинок.
Юлу закручивают, а затем тормозят… Об этом эффекте ученые предпочитают умалчивать… Но если присмотреться к снимку галактики М 51 NGG 5194 из ежегодника «Наука и человечество» за 1980 г. Изломов на виток спирали приходится пять если первый и последний считать за один. Характерные изломы рукавов видны также на снимках других спиральных галактик: Например, галактики NGG 1232, снимок которой украшает обложку книги А. Гуревича и А. Чернина «Происхождение галактик и звезд». Но, если проявление «эффекта юлы» на поверхности Земли с трудом поддается приборному и визуальному наблюдению, то в случае с галактикой, благодаря тому, что мы можем видеть ее всю сразу, во всей ее красе, этот эффект проявляется весьма наглядно. Это утверждение относится и к пирамиде Кукулькана. Каждый год на протяжении всего ее тысячелетнего существования в одно и то же время — в 13:31 по международному гринвичскому времени GMT — солнечные лучи попадают точно на балюстраду на вершине пирамиды.
Поэтому и в гранях додекаэдра отверстия были разного диаметра, чтобы сделать его максимально универсальным для свечей многих размеров. По мере горения свечи, для удлинения её срока пользования, додекаэдр много раз за вечер переворачивали, ставя попеременно на свечу гранями с отверстиями разного диаметра, для равномерности плавления воска, Ближе к фитилю металл додекаэдра был горячее и воск под ним плавился быстрее, стекая в «кратер» к центру, а дальше от фитиля металл был холоднее и воск под ним плавился медленнее. Это позволяло увеличить время горения свечи, способствовало её полному равномерному плавлению и не позволяло воску стекать наружу по краям как происходит с тонкими свечами. Кроме того, додекаэдр защищал пламя свечи от ветра, так как каждый раз разжигать потухший огонь, в те времена было не просто. Помимо всего, свет через круглые отверстия в гранях служил «декоративному» освещению помещения. Свечи и додекаэдр был всегда на видном месте, поэтому богатые люди, чтобы показать своё состоятельное положение иногда его украшали серебром. Например, в окрестностях Женевы в Швейцарии был найден маленький литой свинцовый додекаэдр с гранями 15 миллиметров, покрытый снаружи пластинками из серебра с латинскими зодиакальными знаками. То, что он был маленький по размеру, серебряный и украшенный знаками, говорит, что его владелец был богатый человек и позволял себе пользоваться тонкими быстро сгорающими, дорогими свечами. Люди не меняются со временем и в наше время стараются приукрасить свой быт, используя дорогие бытовые вещи — тоже делали и раньше. Додекаэдр, находясь на свече, от пламени фитиля становился горячим. Поэтому, чтобы его можно было брать голыми руками и много раз переворачивать — на вершинах додекаэдра не всегда, но часто были сделаны шарики, которые нагреваются меньше. Это своего рода полезное дополнение к световому прибору. Додекаэдр был не очень легким, вес его был достаточным, чтобы нагреваясь, плавить воск толстой свечи. Меняя диаметр отверстий, поставленных на свечу, можно было регулировать яркость её пламени и освещенность помещения. Например, если поставить додекаэдр на свечу маленьким отверстием, то пламя свечи будет маленьким. Свеча будет медленнее гореть и меньше давать света, так как расплавленный воск будет больше напирать и топить фитиль, не давая ему разгореться. Меньший диаметр отверстия ставился на свечу, а на противоположной грани для выхода пламени было отверстие чуть большего диаметра — это позволяло додекаэдру не так сильно разогреваться. Если поставить наоборот, то додекаэдр будет больше греться и плавить свечу. Если на свечу ставилась грань с большим отверстием, то она будет гореть быстрее, так как пламя фитиля будет больше и выше. Размером отверстия регулировали высоту пламени, скорость горения и освещенность. В общем и целом этот не хитрый предмет имел много полезных свойств. В старейшем городе Тонгерен в Бельгии, известном ещё в I веке до нашей эры, так были взволнованы тайной «римского додекаэдра», что сделали ему памятник. В музее города Тонгерен есть найденный там в 1937 году за стенами древнего города , додекаэдр: материал бронза, высота без шариков — 66 мм.
Тайна римского додекаэдра
Правильный додекаэдр — статья из Интернет-энциклопедии для Правильный додекаэдр — статья из Интернет-энциклопедии для Додекаэдр некогда считался пифагорейцами священной фигурой, олицетворявшей Вселенную или эфир (пятый элемент мироздания, помимо традиционных огня, воздуха, воды и земли). Пра́вильный додека́эдр — один из пяти возможных правильных многогранников. Додекаэдр составлен из двенадцати правильных пятиугольников, являющихся его гранями. "что такое додекаэдр?", можно дать следующее определение: "Додекаэдр это геометрическое тело из двенадцати граней, каждая их которых - правильный пятиугольник". это (греч. двадцатигранник), согласно Платону, геометрическая фигура, на основе которой построена Вселенная.
Что такое додекаэдра объяснение свойства и примеры
Например, обнаруженный в Бельгии бронзовый додекаэдр был изготовлен более 1600 лет назад. Именно Кримерс и его коллеги из Галло-римского музея изучили и идентифицировали найденный археологом-любителем предмет. Он состоит только из одного угла, но реконструкция помогла установить, что фрагмент является частью додекаэдра. Также удалось подсчитать, что первоначальный размер целого предмета составлял пять сантиметров в поперечнике. Датировать сам металл, как говорят эксперты, невозможно.
Поэтому подобные додекаэдры датируют по слоям земли, в которых они были найдены.
В посвятительных храмах учили, что Вселенная Духа и Материи есть лишь конкретное Изображение Идеальной Абстракции; она была создана по образцу Первой Божественной Мысли. Наша Вселенная существовала в потенциальном состоянии от Вечности. Душа, оживотворяющая эту чисто духовную Вселенную, есть Центральное Солнце, само по себе Высочайшее Божество.
Они объединены на основе Огненного Права. Они стали для нас символом Огненного Двуединства Солнечных Иерархий. Именно такое вмещение единства двух Начал содержалось и в учении Пифагора о числах, когда он рассматривал цифру 12, одну из составляющих додекаэдр. Число это называлось «нечётно-чётным, в равной степени сохраняющим мужеподобность и женственность».
Воплощением этого числа в Древней Греции была богиня Анесидора [Афинское андрогинное божество], которую почитали афиняне. Её статуя была совершенно женоподобна, но ей добавляли бороду как символическое выражение мужественности [ 8]. Символ андрогина есть выражение единства в духе. Поиски такого слияния будут ключевой вибрацией Шестой Расы: «Принцип огня даёт направление всем новым Космическим течениям.
Потому, как ключ к Шестой Расе, проявлено будет утверждение слияния. Токи, заложенные в основании жизни, предназначают течение новое. Так Мы утверждаем это великое направление… Так Мы строим великую чудесную ступень мировой жизни» [ 9]. Число 12 как одно из составляющих додекаэдр — особенное.
В «Тайной Доктрине» упоминается о том, что «12 великих преображений Духа в Материю есть 12 000 Божественных лет… Начиная с метафизической и сверхчеловеческой… они оканчиваются в физической и чисто человеческой природах Космоса и человека» [ 10]. Халдеи же сокрыли это знание под особым почитанием 12 часов. На таинство числа 12 издавна указывает множество явлений из разных областей жизни: часы дня и ночи, подвиги Геракла, музы Аполлона, принципы рассудка по Канту , категории философии Гегель , храм Соломона делился на 12 частей; В Апокалипсисе Иоанна г. Иерусалим, сходящий с неба, имеет 12 ворот; в кумранской общине было 12 старейшин; 12 имамов — духовных и политических преемников — было у пророка Мухаммеда; 12 рыцарей Круглого стола, 12 пэров Франции [6 светских и 6 духовных], традиционно в суде участвуют 12 присяжных; 12 тысяч лет назад полярная ось Земли указывала на звезду Вегу.
Нельзя не вспомнить 12 апостолов Иисуса Христа, отразивших в себе символизм 12 знаков Зодиака, огненного кольца Высших Миров. Рерих писала: «Если бы люди могли осознать, что История человечества записана в звёздных рунах! В Древней Индии учили, что каждая звезда является самостоятельной планетой, которая, подобно нашей Земле, имеет собственную душу, причём каждый атом материи насыщен эманацией Мировой Души. Она [звезда, планета] дышит и живёт, она чувствует, страдает и радуется жизни по-своему.
В предисловии к «Книге Золотых Правил» Е. Блаватская говорит об одном из способов составления алфавита: «…Двенадцать знаков Зодиака, повторенных пять раз элементами и семью цветами радуги, образуют полный алфавит, состоящий из 60 букв и 12 знаков». То есть где-то существует алфавит-додекаэдр! Календарь Калачакры, имея в своём основании 60-летний цикл, 12-летние периоды и 5 стихий, в развёртке приобретает свойства и вид додекаэдра.
Додекаэдр Калачакры отражает эволюцию микрокосма в макрокосме, становление совершенного человека, прохождение духа через «колесо времени» в его неуклонном стремлении вырваться из его тисков, обретя равновесие Архата. По преданию, которое передаётся от Учителя к ученику, Учитель из Шамбалы доставил календарь Калачакры в Тибет в Х веке. Принимая всё это во внимание, мы начинаем глубже понимать Мощь Её Знака, вникая в смысл Священного Числа 12. Влиянием 12 знаков Зодиака на человека занимается наука астрология.
Думается, в наше время практически каждый имеет какие-то знания об их свойствах, хотя бы о своём знаке рождения. А как воздействуют пять стихий или элементов, проявляющихся в каждом знаке, и что это такое? Прежде всего они являются силами Матери Мира, а «Сила, по утверждению Мудрецов Востока, — это переход одного состояния субстанции или энергии в другое, переход, результаты которого будут видны на планах действия, отличных от того, на котором произведена и реализована инициирующая энергия» [ 12]. Значит, энергия пяти элементов помогает нам изменяться, совершенствоваться.
Пять элементов в единстве образуют пентагон, или пятигранник, одну из составляющих додекаэдр Матери Мира. Платон, последователь Пифагора, считал додекаэдр самым правильным из многогранников, так как грани его — правильные пятиугольники — сотканы из золотых пропорций. По Пифагору, именно в пятиугольных формах [пятиконечная звезда, или пентакль, и пентагон] заложены золотые логарифмические пропорции или священная золотая спираль — основа сокровенных глубинных соответствий эволюции жизни в Космосе, символ движения, развития и развёртывания Вселенной. Известно, что пятиричность проявлена во всей живой природе Земли морские звёзды, цветы, пять пальцев руки, пять оконечностей тела и т.
Золотая пропорция заложена в постройках давних времён: гробница фараона Менеса ок. С древних времён пентаграмма являлась знаком-оберегом, символом богини Иштар и загробного мира, власти на царских печатях , интеллектуального всемогущества у гностиков и т. С древних же времён известны цветные изображения пентаграммы, датируемые 3500 годом до н. Пятиконечные звёзды символизировали траекторию планеты Венера.
В астрономии пентаграмма Венеры — это вид траектории, которую проходит Венера при наблюдении её с Земли. Во время своего 8-летнего цикла Венера 13 раз подходит близко к Земле, делает петлю и снова отходит, каждый раз уходя на три интервала, или 144 градуса, вперёд, как бы вырисовывая в пространстве один лепесток пятилепесткового цветка. За 8 лет она создаёт полный правильный пентакль с кольцами петлями на концах, причём каждый последующий «пятилепестковый цветок» смещён относительно предыдущего на несколько градусов, поэтому эту сложную пентаграмму Венеры называют «розой Венеры» рис. Роза Венеры Пифагор называл Венеру Sol alter лат.
По эзотерической доктрине эта Планета является Главою нашей Земли и её духовным прообразом… Носителем Света нашей Земли как в философском, так и в мистическом смысле [ 13]. Рерих называет эту звезду «светлой обителью Матери Мира», и в течение жизни нашей планеты Матерь Мира постоянно создаёт в пространстве вокруг Земли светло сияющий высоковибрационный духовный покров для планеты [ 14]. В своих записях Е. Рерих приводит слова Владыки о «воздействии пространственных лучей Венеры в борьбе с излучениями Земли».
Она отмечает, что почувствовала это воздействие «от солнечного сплетения вниз до кундалини и затем от кундалини обратно» 05. Воистину существует пятилепестковый священный Огненный Плат, сотканный Матерью Мира. Ткань космическая состоит из всех проявлений психической энергии и украшена Материей Люцидой» Б. Энергия разобщающая и энергия соединяющая одна и та же, но психодинамика связывает их материально» Б.
Пифагорейцы, как и китайцы, учили, что мир состоит из пяти взаимосвязанных элементов, или стихий. Ученик Е.
Загадкой является и возраст таких артефактов. Например, обнаруженный в Бельгии бронзовый додекаэдр был изготовлен более 1600 лет назад. Именно Кримерс и его коллеги из Галло-римского музея изучили и идентифицировали найденный археологом-любителем предмет. Он состоит только из одного угла, но реконструкция помогла установить, что фрагмент является частью додекаэдра.
Также удалось подсчитать, что первоначальный размер целого предмета составлял пять сантиметров в поперечнике. Датировать сам металл, как говорят эксперты, невозможно.
Найти верхушку фигуры. Это место пересечения вертикальной линии и границы окружности. Назвать точку буквой «С». От центра круга отступить вниз 2,5 см. Провести горизонтальную черту 3 см длиной. Вертикальная черта внутри круга должна разделить новую линию пополам.
То есть, с каждой стороны должно остаться по 1,5 см. Концы новой горизонтальной линии назвать точками «Е» и «Д». Соединить точку «Е» с точкой «А». Соединить отметку «А» с вершиной фигуры «С». От точки «С» провести линию до точки «В». Соединить точку «В» с отметкой «Д». В конце нужно проверить, равны ли стороны пятиугольника. Если эти показатели в порядке, то заготовку можно вырезать ножницами.
Построение развертки, чертежи Додекаэдр развертка для склеивания строится в центре листа можно собрать из 2 чертежей. Как сделать 1 часть развертки, с помощью шаблона из картона: Расположить на бумаге шаблон вершиной вверх. Обвести заготовку по контуру. Развернуть картонный шаблон боком. Соединить правую сторону фигуры с левой стороной уже начерченной формы. Обвести картонный шаблон по контуру. Переместить шаблон к верхней левой стороне центральной фигуры. Снова переместить шаблон, расположив его боковой стороной к правой верхней стороне центральной фигуры.
Совместить боковую сторону шаблона с правой стороной центрального пятиугольника. Обвести шаблон по контуру. Дорисовать последнюю грань по аналогии. Добавить припуски для склеивания. На верхних частях развертки эти припуски должны располагаться с левой стороны, а на нижних частях развертки — с правой стороны. Края всех припусков на швы должны быть скошенными. Па аналогии нужно сделать ещё 1 развёртку на 2 листе бумаги. Развертка для склеивания Вырезать обе фигуры по контуру.
Работа с готовой формой, склеивание Как собрать додекаэдр: Чтобы бумага легко складывалась, нужно продавить все линии сгиба, вокруг центральной фигуры. Для этой цели можно использовать ребро линейки или обратную сторону ножниц. Подогнуть все припуски на склеивания внутрь. В собранном виде каждая развертка должна напоминать полусферу с гранями. Клей нужно наносить на припуски для склеивания, а затем аккуратно соединять их с гранями фигуры. Линии сгиба на «ушках» для склеивания должна совпасть с краем грани. Собрать 2 развёртки по отдельности. Склеить половинки додекаэдра.
Дождаться высыхания клея. Можно украсить готовый додекаэдр цветной бумагой или наклеить на грани фотографии, либо листы календаря. Фигура в природе Правильный многогранник считается шаблоном, привлекает безупречным совершенством формы и абсолютной симметричностью сторон. Природной моделью геометрической фигуры является кристалл пирита FeS — колчедан сернистый. Форму объемного додекаэдра имеют в природе различные объекты.