Новости нервные импульсы поступают непосредственно к железам по

Отдел нервной системы. 1) вегетативный 2) соматический.

Нервные импульсы поступают непосредственно к мышцам и железам по

  • КР Нервная система 8 класс. Вариант Часть Нервные импульсы поступают непосредственно к железам по
  • Физиология мышечного сокращения
  • Разбор типовых вариантов заданий №9 ОГЭ по биологии
  • Как нервная система регулирует работу эндокринной системы?

Остались вопросы?

Спинной мозг строение рефлекторная. Коленный рефлекс физиология. Коленный рефлекс спинного мозга. Эффектор коленного рефлекса.

Коленный рефлекс ответная реакция. Строение нерва дендрит. Нервная ткань Аксон дендрит.

Начальный сегмент аксона функции. Аксон и дендрит строение и функции. Связь между нейронами.

Нейронные механизмы. Взаимосвязь между нейронами. Нейрон физиология.

Нейропластичность мозга. Нейроны мозга человека. Нейронные процессы головного мозга.

Концепция нейропластичности мозга. Схема сложной рефлекторной дуги спинномозгового рефлекса. Схема дуги соматического спинального рефлекса.

Строение рефлекторной дуги спинного мозга. Регуляция работы сердца схема. Схема регуляции сердечной деятельности.

Нервная регуляция работы сердца. Влияние нервной системы на деятельность сердца. Нейронные импульсы в мозгу.

Синапсы головного мозга. Афферентные и эфферентные нервные пути. Афферентный путь и эфферентный путь.

Проводящие пути афферентные и эфферентные. Афферентные двигательные пути. Структура и функции рефлекторной дуги.

Строение рефлекторной дуги мигательного рефлекса. Общая схема строения рефлекторной дуги. Рефлекторная дуга безусловного мигательного рефлекса.

Нервная система Нейрон. Структура двигательного нейрона. Нейроны центральной нервной системы.

Нервная регуляция. Нервная регуляция жизнедеятельности организма. Система органов нервной регуляции.

Нервная регуляция осуществляется. Механизм передачи возбуждения в возбуждающих синапсах, медиаторы.. Синапс и нейромедиаторы.

Медиаторы синапсов. Возбуждающие и тормозящие синапсы. Аксоны и дендриты спинного мозга.

Дендрит двигательного нейрона. Нейрон Аксон дендрит. Этапы синаптической передачи импульса.

Этапы синаптической передачи в химическом синапсе. Механизм синаптической передачи нервного импульса через синапс. Рефлекторный механизм деятельности нервной системы.

Рефлекторный принцип функционирования ЦНС. Рефлекс нервная система. Рефлекторный принцип деятельности нервной системы человека..

Роль нейромедиаторов в передаче нервных импульсов. Химическая передача нервного импульса. Симпатическое влияние на сердце.

Влияние симпатической нервной системы на сердце. Влияние симпатической системы на сердце. Влиянием симпатических нервов на деятельность сердца.

Состав простейшей рефлекторной дуги. Соматическая рефлекторная дуга функции. Звено рефлекторной дуги выполняет функции.

Нервная клетка Нейрон.

Назовите три органа. Слюнные железы — это железы внешней секреции, потому что 1 в их составе имеются дезинфицирующие вещества 2 они смачивают сухую пищу 3 в них содержатся гормоны 4 их секрет выводится по протокам в ротовую полость Лейкоциты, в отличие от других форменных элементов крови, способны 1 сохранять форму своего тела 2 вступать в непрочное соединение с кислородом 3 вступать в непрочное соединение с углекислым газом 4 выходить из капилляров в межклеточное пространство В каком из перечисленных сосудов кровеносной системы наблюдается наиболее высокое давление крови?

В тонком кишечнике различают перистальтические и неперистальтические движения. Перистальтические сокращения обеспечивают продвижение пищевой кашицы по кишечнику. Этот вид двигательной активности кишечника обусловлен координированным сокращением продольного и циркулярного слоев мышц. При этом происходит сокращение кольцевых мышц верхнего отрезка кишки и выдавливание пищевой кашицы в одновременно расширяющийся за счет сокращения продольных мышц нижний участок. Неперистальтические движения тонкого кишечника представлены сегментирующими сокращениями. К ним относят ритмическую сегментацию и маятникообразные движения.

Ритмические сокращения делят пищевую кашицу на отдельные сегменты, что способствует ее лучшему растиранию и перемешиванию с пищеварительными соками. Маятникообразные движения обусловлены сокращением круговых и продольных мышц кишечника. Маятникообразные движения способствуют тщательному перемешиванию химуса с пищеварительными соками. В регуляции моторной активности тонкого кишечника участвуют нервные и гуморальные механизмы, объединенные в единую регуляторную систему, за счет деятельности которой усиливается или ослабляется моторная функция тонкого кишечника. Нервный механизм. Моторная функция кишечника регулируется интрамуральной и экстрамуральной нервной системой. К интрамуральной нервной системе относят мышечно-кишечное ауэрбаховское , глубокое межмышечное и подслизистое мейсснеровское сплетения. Они обеспечивают возникновение местных рефлекторных реакций, которые возникают при раздражении слизистой оболочки кишечника его содержимым. Экстрамуральная нервная система кишечника представлена блуждающими и чревными нервами.

Блуждающие нервы при их возбуждении стимулируют моторную функцию кишечника, чревные тормозят ее. Моторная функция тонкого кишечника стимулируется рефлекторно при возбуждении рецепторов различных отделов желудочно-кишечного тракта. Рефлекторно стимулирует моторную функцию тонкого кишечника акт еды. Гуморальная регуляция моторной функции тонкого кишечника. Стимулирующее влияние на моторную функцию кишечника оказывают биологически активные вещества серотонин, гистамин, брадикинин и др. Тормозят двигательную активность кишечника гормоны мозгового слоя надпочечников — адреналин и норадреналин. Вследствие этого такие эмоциональные состояния организма, как страх, испуг, гнев, злость, ярость и т. Существенное значение в регуляции моторной функции кишечника имеют физико-химические свойства пищи. Грубая пища, содержащая большое количество клетчатки, овощи стимулируют двигательную активность кишечника.

Составные части пищеварительных соков — хлористоводородная кислота, желчные кислоты — также усиливают моторную функцию кишечника. При отсутствии пищеварения илеоцекальный сфинктер закрыт. В результате пищевая кашица небольшими порциями поступает в слепую кишку. Основной функцией проксимальной части толстых кишок является всасывание воды. Роль дистального отдела толстого кишечника состоит в формировании каловых масс и удалении их из организма. Всасывание питательных веществ в толстом кишечнике незначительно. Существенная роль в процессе пищеварения принадлежит микрофлоре — кишечной палочке и бактериям молочнокислого брожения. Бактерии в процессе своей жизнедеятельности выполняют полезные для организма функции. Бактерии молочнокислого брожения образуют молочную кислоту, которая обладает антисептическим свойством.

Бактерии синтезируют витамины группы В, витамин К, пантотеновую и амидникотиновую кислоты, лактофлавин. Микроорганизмы подавляют размножение патогенных микробов. Отрицательная роль микроорганизмов кишечника состоит в том, что они образуют эндотоксины, вызывают брожение и гнилостные процессы с образованием ядовитых веществ индол, скатол, фенол и в определенных случаях могут стать причиной заболеваний. Моторная функция толстого кишечника. Моторная функция толстого кишечника обеспечивает накапливание каловых масс и периодическое их удаление из организма. Кроме того, моторная активность кишечника способствует всасыванию воды. В толстом кишечнике наблюдаются перистальтические, антиперистальтические и маятникообразные движения. Все они осуществляются медленно. Обеспечивают перемешивание, разминание содержимого, способствуют его сгущению и всасыванию воды.

Толстому кишечнику присущ особый вид сокращения, который получил название масс-сокращение. Возникает масс-перистальтика редко, до 3—4 раз в сутки. Сокращения захватывают большую часть толстой кишки и обеспечивают быстрое опорожнение значительных ее участков. Регуляция моторной функции толстого кишечника. Толстый кишечник имеет интрамуральную и экстрамуральную иннервацию. Последняя представлена симпатическими нервами, которые выходят из верхнего и нижнего брыжеечных сплетений, и парасимпатическими, входящими в состав блуждающих и тазового нервов. Рефлекторные воздействия на двигательную активность толстого кишечника осуществляются во время еды, в результате возбуждения хемо- и механорецепторов желудка, двенадцатиперстной кишки и тонкого кишечника. Моторная функция толстого кишечника определяется и характером принимаемой пищи. Чем больше в пище клетчатки, тем выраженнее моторная активность толстого кишечника.

Формированию кала способствуют комочки слизи кишечного сока, которые склеивают непереваренные частицы пищи Дефекация — сложнорефлекторный акт опорожнения дистального отдела толстой кишки через задний проход. Дефекация наступает при растягивании прямой кишки каловыми массами. Осуществлению дефекации способствуют сокращения мышц диафрагмы и передней брюшной стенки, мышцы, поднимающей задний проход. Все это ведет к уменьшению объема брюшной полости и повышению внутрибрюшного давления. Центр рефлекса дефекации находится в пояснично-крестцовом отделе спинного мозга. Он обеспечивает непроизвольный акт дефекации. На этот центр оказывают влияние продолговатый мозг, гипоталамус, кора большого мозга. Нервные импульсы, поступающие от этих отделов центральной нервной системы к центру рефлекса дефекации, могут ускорить или замедлить акт дефекации. Всасывание — универсальный физиологический процесс, который связан с переходом разного рода веществ через слой каких-либо клеток во внутреннюю среду организма.

Где располагаются чувствительные Нейроны. Тело чувствительного нейрона Аксон чувствительного нейрона. Где находится первый чувствительный Нейрон. Рефлекторная функция спинного мозга схема. Функции рефлекторной дуги спинного мозга. Рефлекторная функция спинного мозга рефлекс. Рефлекторная дуга гемодинамического рефлекса. Связь между нейронами.

Нейронные механизмы. Схема рефлекторной дуги. Рефлекторная дуга структура двигательной нервной клетки. Строение рефлекторной дуги спинного мозга. Схема Рецептор чувствительный Нейрон. Рецептор чувствительный Нейрон ЦНС схема. Схема спинного мозга чувствительный Нейрон. Тип нейрона 1 двигательный 2 вставочный.

Чувствительный Нейрон ЦНС вставочный. Схема передачи двигательных импульсов между нейронами. Нейромедиаторы стресса. Нейротрансмиттеры и нейромедиаторы. Нейромедиаторы нервная клетка. Строение нерва дендрит. Дендрит тело нейрона Аксон синапс. Нервная ткань Аксон дендрит.

Начальный сегмент аксона функции. Рефлекс отдергивания руки от горячего предмета рефлекторная дуга. Схема рефлекторной дуги отдергивания руки от горячего предмета. Схема рефлекторной дуги отдергивания руки. Схема рефлекторной дуги двигательного рефлекса. Периферический двигательный Нейрон расположен. Анатомия центрального двигательного нейрона. Функции центрального и периферического двигательных нейронов.

Нейроны головного мозга строение. Звенья рефлекторной дуги 5 звеньев. Рефлекс звенья рефлекторной дуги. Рефлекторная дуга 5 звеньев рефлекторной дуги. Таблица звенья рефлекторной дуги функции звенья. Нейронные головного мозга. Нейронные связи в мозге. Нейропластичность мозга.

Вставочный Нейрон строение. Вставочные Нейроны передают нервные импульсы. Вставочный Нейрон схема. Чувствительный Нейрон Импульс вставочный Нейрон. Передача нервного импульса. Передача импульса в нервной системе. Движение нервного импульса по нейрону. Рефлекторные механизмы регуляции дыхания.

Рефлекторная саморегуляция вдоха и выдоха. Рефлекторная регуляция механизм регуляции. Рефлексы регуляции дыхания. Строение рефлекторной дуги мигательного рефлекса. Схема рефлекторной дуги мигательного рефлекса. Дуга мигательного рефлекса физиология. Нервные импульсы от рецепторов. Синапс место контакта между двумя нейронами.

Передача импульса между нервными клетками. Нейроны передача импульсов. Передача импульса между нейронами. Рефлекторная дуга внутри ЦНС. Рефлекторная дуга и ее компоненты. Рефлекторная дуга путь рефлекса. Рефлекторная дуга начинается с рецепторов. Ответную реакцию организма на раздражение осуществляемую.

Ответная реакция организма осуществляемая ЦНС. Ответные реакции на раздражитель. Ответная реакция на раздражение. Продолговатый мозг центры регуляции. Регуляция нервной системы. Нервные центры продолговатого мозга. Продолговатый мозг нервная система.

Физиология мышечного сокращения

2280 ответов - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по. 1. Нервные импульсы поступают непосредственно к железам по. длинный отросток нервных клеток, по которым и выполняется эта работа.

нейроглия (глия)

  • Какая нервная система регулирует работу эндокринной системы
  • Разбор типовых вариантов заданий №9 ОГЭ по биологии
  • Роль гипоталамуса
  • Моторная функция желудка.
  • Похожие презентации
  • Регуляция желудочной секреции.

Нервная система. Общие сведения

Рефлекторная дуга – это путь, по которому проходит нервный импульс во время осуществления рефлекса. Рецептор преобразует раздражение в нервный импульс, который достигает тела нервной клетки. По какому нейрону нервные импульсы поступают из ЦНС к рабочему органу? Б) Передача нервных импульсов от внутренних органов в мозг.

КР Нервная система 8 класс. Вариант Часть Нервные импульсы поступают непосредственно к железам по

21 октября, 16:35. Нервные импульсы поступают непосредственно к железам по. Функция нервной системы. направляет импульсы к скелетным мышцам. Дендриты проводят нервный импульс к телу нервной клетки; их, как правило, несколько.

ГДЗ по биологии 8 класс Драгомилов | Страница 47

Сок, полученный на мясо, имеет более щелочную реакцию, чем сок, выделяющийся на хлеб и молоко. При употреблении пищи, богатой жирами, в поджелудочном соке содержание липазы в 2—5 раз больше, чем в соке, который выделился на мясо. Преобладание в пищевом рационе углеводов приводит к увеличению количества амилазы в поджелудочном соке. При мясной диете в поджелудочном соке обнаруживается значительное количество протеолитических ферментов. Состав, свойства желчи и ее значение в пищеварении. Желчь — продукт секреции печеночных клеток, представляет собой жидкость золотисто-желтого цвета, имеющую щелочную реакцию рН 7,3—8,0 и относительную плотность 1,008—1,015. Основными компонентами сухого остатка являются желчные кислоты, пигменты и холестерин. Кроме того, в желчи содержатся муцин, жирные кислоты, неорганические соли, ферменты и витамины.

У здорового человека в сутки выделяется 0,5—1,2 л желчи. Секреция желчи осуществляется непрерывно, а поступление ее в двенадцатиперстную кишку происходит во время пищеварения. Вне пищеварения желчь поступает в желчный пузырь. Желчь относят к пищеварительным сокам. Желчь повышает активность ферментов панкреатического сока, прежде всего липазы. Желчные кислоты эмульгируют нейтральные жиры. Желчь необходима для всасывания жирных кислот, а следовательно, жирорастворимых витаминов А, В, Е и К.

Желчь усиливает сокоотделение поджелудочной железы, повышает тонус и стимулирует перистальтику кишечника двенадцатиперстная и толстая кишка. Желчь участвует в пристеночном пищеварении. Она оказывает бактериостатическое действие на кишечную флору, предупреждая развитие гнилостных процессов. Методы изучения желчеобразовательной и желчевыделительной функции печени. В желчевыделительной деятельности печени следует различать желчеобразование, то есть продукцию желчи печеночными клетками, и желчеотделение — выход, эвакуацию желчи в кишечник. Для изучения секреции желчи у человека применяют рентгенологический метод и дуоденальное зондирование. При рентгенологическом исследовании вводят вещества, не пропускающие рентгеновские лучи и удаляющиеся из организма с желчью.

С помощью этого метода можно установить появление первых порций желчи в протоках, желчном пузыре, момент выхода пузырной и печеночной желчи в кишку. При дуоденальном зондировании получают фракции печеночной и пузырной желчи. Регуляция желчеобразовательной и желчевыделительной функций печени. Блуждающие и правый диафрагмальный нервы при их возбуждении усиливают выработку желчи печеночными клетками, симпатические нервы ее тормозят. На образование желчи оказывают влияние и рефлекторные воздействия, идущие со стороны интерорецепторов желудка, тонкого и толстого кишечника и других внутренних органов. Отделение желчи усиливается во время еды в результате рефлекторного влияния на все секреторные процессы, осуществляемые в желудочно-кишечном тракте. Желчегонным эффектом обладают молоко, мясо, хлеб.

У жиров это действие выражено в большей степени, чем у белков и углеводов. Наибольшее количество желчи выделяется при смешанном питании. Механизмы опорожнения желчного пузыря. Под влиянием блуждающих нервов сокращается мускулатура желчного пузыря и одновременно с этим расслабляется сфинктер печеночно-поджелудочной ампулы сфинктер Одди , что приводит к поступлению желчи в двенадцатиперстную кишку. Под влиянием симпатических нервов наблюдается расслабление мускулатуры желчного пузыря, повышение тонуса сфинктера и его закрытие. Опорожнение желчного пузыря осуществляется на основе условных и безусловных рефлексов. Условнорефлекторное опорожнение желчного пузыря происходит при виде и запахе пищи, разговоре о знакомой и вкусной пище при наличии аппетита.

Безусловнорефлекторное опорожнение желчного пузыря связано с поступлением пищи в ротовую полость, желудок, кишечник. Сфинктер Одди остается открытым в течение всего процесса пищеварения, поэтому желчь продолжает свободно поступать в двенадцатиперстную кишку. Как только последняя порция пищи покидает двенадцатиперстную кишку, сфинктер Одди закрывается. Кишечное пищеварение завершает этап механической и химической обработки пищи. В тонкий кишечник поступает секрет дуоденальных желез, поджелудочной железы и печени. Здесь пищеварительные соки продолжают свое переваривающее действие, так как в тонком кишечнике имеется также щелочная среда. К влиянию этих пищеварительных секретов присоединяется мощное действие кишечного сока.

В кишечнике различают полостное и пристеночное, или мембранное, пищеварение. Полостное пищеварение обеспечивает начальный гидролиз пищевых веществ до промежуточных продуктов. Мембранное пищеварение обеспечивает гидролиз промежуточной и заключительной его стадий, а также переход к всасыванию. Состав, свойства кишечного сока и его значение в пищеварении. У взрослого человека за сутки отделяется 2—3 л кишечного сока слабощелочной реакции. Представителями пептидаз являются лейцина-минопептидаза и аминопептидаза, расщепляющие продукты переваривания белка, образующиеся в желудке и двенадцатиперстной кишке. В кишечном соке содержатся кислая и щелочная фосфатазы, участвующие в переваривании фосфолипидов, липаза, которая действует на нейтральные жиры.

В кишечном соке содержатся карбогидразы амилаза, мальтаза, сахараза, лактаза , расщепляющие полисахариды и дисахариды до стадии моносахаров. Специфическим ферментом кишечного сока является энтерокиназа, которая катализирует превращение трипсиногена в трипсин. Регуляция деятельности желез кишечника. За счет нервных воздействий регулируется образование ферментов. В условиях денервации тонкого кишечника наблюдается «разлад» в работе секреторной клетки: сока выделяется много, но он беден ферментами. Кора большого мозга принимает участие в регуляции секреторной активности тонкого кишечника. Стимулирует секрецию кишечных желез гормон энтерокринин.

Этот гормон образуется и выделяется при соприкосновении содержимого кишечника со слизистой оболочкой. Энтерокринин стимулирует отделение главным образом жидкой части сока. Моторная функция тонкого кишечника и ее регуляция.

Adipisci alias assumenda consequatur cupiditate, ex id minima quam rem sint vitae?

Animi dolores earum enim fugit magni nihil odit provident quaerat. Aliquid aspernatur eos esse magnam maiores necessitatibus, nulla? Эта информация доступна зарегистрированным пользователям Высшая нервная деятельность человека Высшая нервная деятельность- это деятельность высших отделов центральной нервной системы, которая обеспечивает наиболее совершенное приспособление животных и человека к окружающей среде. Термин «высшая нервная деятельность» впервые введён в науку И.

Основная роль в осуществлении высшей нервной деятельности у высших животных и человека принадлежит коре больших полушарий. К высшей нервной деятельности относят познание, речь, память и абстрактное мышление, сознание и др. Мышление интеллект - процесс обобщённого отражения действительности с её связями, отношениями и закономерностями. С помощью мышления познается содержание и смысл воспринимаемого.

Мышление представляет собой самую сложную форму психической деятельности человека, вершину её эволюционного развития. Мышление построено на двух функциях высших нервных центров: на анализе и синтезе информации и ответных действий организма.

Во все пробирки он добавил инсулин. Как спустя 10 минут изменится содержание углеводов А в первом растворе, Б во втором растворе, В в третьем растворе?

Для каждой величины определите соответствующий характер её изменения: 1 увеличилась 2 уменьшилась 3 не изменилась. Ответ 333 4. Исследователь проанализировал состав плазмы крови у человека до еды и через полчаса после еды. Как изменилось А содержание инсулина, Б содержание глюкозы, В содержание гликогена?

На этой странице сайта размещен вопрос Нервные импульсы поступают непосредственно к железам по1 аксонам двигательных нейронов2 аксонам вставочных нейронов3 серому веществу спинного мозга4 белому веществу спинного мозга? Уровень сложности вопроса соответствует знаниям учеников 5 - 9 классов. Здесь же находятся ответы по заданному поиску, которые вы найдете с помощью автоматической системы. Одновременно с ответом на ваш вопрос показаны другие, похожие варианты по заданной теме. На этой странице можно обсудить все варианты ответов с другими пользователями сайта и получить от них наиболее полную подсказку. Последние ответы Iamintelligent 28 апр. Октябрина2 28 апр.

Тест «Нервная система»

Задание №9 ОГЭ по Биологии • СПАДИЛО Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов.
Нервные импульсы поступают непосредственно Эффектор — это нервное окончание эфферентного нейрона, передающее нервный импульс к рабочему органу (мышца, железа).
Задание №9 ОГЭ по Биологии • СПАДИЛО среды путем модификационного приема и проведения импульсов, поступающим по различным каналам.

Регуляция желудочной секреции.

Продолжим наблюдение. Есть ли рецепторы мигательного рефлекса в области наружного угла глаза? Прикоснитесь к нему и дайте ответ. Попробуйте несколько раз прикоснуться к внутреннему углу глаза.

Функции и свойства поперечно-полосатых мышц. Поперечно-полосатые мышцы являются активной частью опорно-двигательного аппарата. В результате сократительной деятельности этих мышц происходит перемещение тела в пространстве, перемещение частей тела относительно друг друга, поддержание позы.

Кроме того, при мышечной работе вырабатывается тепло. Каждое мышечное волокно обладает следующими свойствами: возбудимостью, то есть способностью отвечать на действие раздражителя генерацией ПД, проводимостью - способностью проводить возбуждение вдоль всего волокна в обе стороны от точки раздражения, и сократимостью, то есть способностью сокращаться или изменять свое напряжение при возбуждении. Возбудимость и проводимость являются функциями поверхностной клеточной мембраны - сарколеммы, а сократимость - функцией миофибрилл, расположенных в саркоплазме. Методы исследования. В естественных условиях возбуждение и сокращение мышц вызывается нервными импульсами. Для того же, чтобы возбудить мышцу в эксперименте или при клиническом исследовании, ее подвергают искусственному раздражению электрическим током.

Непосредственное раздражение самой мышцы называется прямым, а раздражение нерва - непрямым раздражением. Ввиду того, что возбудимость мышечной ткани меньше, чем нервной, приложение электродов непосредственно к мышце еще не обеспечивает прямого раздражения - ток, распространяясь по мышечной ткани, действует в первую очередь на находящиеся в ней окончания двигательных нервов. Чистое прямое раздражение получается лишь при внутриклеточном раздражении или после отравления нервных окончаний кураре. Регистрация мышечного сокращения производится с помощью механических приспособлений - миографов, или специальными датчиками. При изучении мышц используются и электронная микроскопия, регистрация биопотенциалов при внутриклеточном отведении и другие тонкие методики, позволяющие исследовать свойства мышц как в эксперименте, так и в клинике. Механизмы мышечного сокращения.

Структура миофибрилл и ее изменения при сокращении. Миофибриллы представляют собой сократительный аппарат мышечного волокна. В поперечно-полосатых мышечных волокнах миофибриллы разделены на правильно чередующиеся участки диски , обладающие разными оптическими свойствами. Одни из этих участков анизотропны, то есть обладают двойным лучепреломлением. В обычном свете они выглядят темными, а в поляризованном - прозрачными в продольном и непрозрачными в поперечном направлении. Другие участки изотропны, и выглядят прозрачными при обыкновенном свете.

Анизотропные участки обозначаются буквой А, изотропные - I. В середине диска А проходит светлая полоска Н, а посередине диска I проходит темная полоска Z, представляющая собой тонкую поперечную мембрану, сквозь поры которой проходят миофибриллы. Благодаря наличию такой опорной структуры параллельно расположенные однозначные диски отдельных миофибрилл внутри одного волокна во время сокращения не смещаются по отношению друг к другу. Установлено, что каждая из миофибрилл имеет диаметр около 1 мк и состоит в среднем из 2500 протофибрилл, представляющих собой удлиненные полимеризованные молекулы белком миозина и актина. Миозиновые нити протофибриллы вдвое толще актиновых. Их диаметр составляет примерно 100 ангстрем.

В состоянии покоя мышечного волокна нити расположены в миофибрилле таким образом, что тонкие длинные актиновые нити входят своими концами в промежутки между толстыми и более короткими миозиновыми нитями. В таком участке каждая толстая нить окружена 6 тонкими. Благодаря этому диски I состоят только из актиновых нитей, а диски А еще и из нитей миозина. Светлая полоска Н представляет собой зону, свободную в период покоя от актиновых нитей. Мембрана Z, проходя через середину диска I, скрепляет между собой нити актина. Важным компонентом ультрамикроскопической структуры миофибрилл являются также многочисленные поперечные мостики на миозине.

В свою очередь на нитях актина имеются так называемые активные центры , в покое прикрытые, как чехлом, специальными белками - тропонином и тропомиозином. В основе сокращения лежит процесс скольжения нитей актина относительно миозиновых нитей. Такое скольжение вызывается работой т. При сокращении мышечного волокна нити актина и миозина не укорачиваются, а начинают скользить друг по другу: актиновые нити вдвигаются между миозиновыми, в результате чего длина дисков I укорачивается, а диски А сохраняют свой размер, сближаясь друг с другом. Полоска Н почти исчезает, так как концы актина соприкасаются и даже заходят друг за друга. Роль ПД в возникновении мышечного сокращения процесс электромеханического сопряжения.

В скелетной мышце в естественных условиях инициатором мышечного сокращения является потенциал действия, распространяющийся при возбуждении вдоль поверхностной мембраны мышечного волокна. Если кончик микроэлектрода приложить к поверхности мышечного волокна в области мембраны Z, то при нанесении очень слабого электрического стимула, вызывающего деполяризацию, диски I по обе стороны от места раздражения начнут укорачиваться. Раздражение других участков мембраны такого эффекта не вызывает. Из этого следует, что деполяризация поверхностной мембраны в области диска I при распространении ПД является пусковым механизмом сократительного процесса. В механизме мышечного сокращения особую роль играет та часть ретикулюма, которая локализована в области мембраны Z. Электронно-микроскопически здесь обнаруживается т.

ПД, распространяющийся вдоль поверхностной мембраны, проводится вглубь волокна по поперечным трубочкам триад. Начало мышечного сокращения приурочено к первой трети восходящего колена ПД, когда его величина достигает примерно 50 мв. Такой механизм назван "кальциевым насосом". Для осуществления его работы используется энергия, получаемая при расщеплении АТФ. Роль АТФ в механизме мышечного сокращения. Миозин обладает свойствами фермента АТФ-азы.

При расщеплении АТФ освобождается около 10 000 кал. Под влиянием АТФ изменяются и механические свойства миозиновых нитей - резко увеличивается их растяжимость. Полагают, что расщепление АТФ является источником энергии, необходимой для скольжения нитей. Кроме того, энергия АТФ используется для работы кальциевого насоса в ретикулюме. В соответствии с этим ферменты, расщепляющие АТФ, локализуются в этих мембранах, а не только в миозине. Ресинтез АТФ, непрерывно расщепляющейся в процессе работы мышц, осуществляется двумя основными путями.

КФ содержится в мышце в значительно больших количествах, чем АТФ, и обеспечивает ее ресинтез в течение тысячных долей секунды. Однако при длительной работе мышцы запасы КФ истощаются, поэтому важен второй путь - медленный ресинтез АТФ, связанный с гликолизом и окислительными процессами. Окисление молочной и пировиноградной кислот, образующихся в мышце во время ее сокращения, сопровождается фосфорилированием АДФ и креатина, то есть ресинтезом КФ и АТФ. Нарушение ресинтеза АТФ ядами, подавляющими гликолиз и окислительные процессы, ведет к полному исчезновению АТФ и КФ, вследствие чего кальциевый насос перестает работать. Теплообразование при сократительном процессе. По своему происхождению и времени развития теплообразование это делится на две фазы.

Первая во много раз короче второй и носит название начального теплообразования. Она начинается с момента возбуждения мышцы и продолжается в течение всего сокращения, включая и фазу расслабления. Вторая фаза теплообразования происходит в течение нескольких минут после расслабления, и носит название запаздывающего , или восстановительного теплообразования. В свою очередь начальное теплообразование может быть разделено на несколько частей - тепло активации, тепло укорочения, тепло расслабления. Тепло, образующееся в мышцах, поддерживает температуру тканей на уровне, обеспечивающем активное протекание физических и химических процессов в организме. Виды сокращений.

В зависимости от условий, в которых происходит сокраще- ние, различают два его типа - изотоническое и изометрическое. Изотоническим называется такое сокращение мышцы, при котором ее волокна укорачиваются, но напряжение остается прежним. Примером является укорочение без нагрузки. Изометрическим называется такое сокращение, при котором мышца укорачиваться не может когда ее концы неподвижно закреплены.

Строение нейрона Нейрон — основная структурная и функциональная единица нервной системы. Структурно-функциональной единицей нервной системы является нервная клетка — нейрон. Его основными свойствами являются возбудимость и проводимость. Нейрон состоит из тела и отростков. Короткие, сильно ветвящиеся отростки — дендриты, по ним нервные импульсы поступают к телу нервной клетки. Дендритов может быть один или несколько. Каждая нервная клетка имеет один длинный отросток — аксон, по которому импульсы направляются от тела клетки. Длина аксона может достигать нескольких десятков сантиметров.

На этой странице можно обсудить все варианты ответов с другими пользователями сайта и получить от них наиболее полную подсказку. Последние ответы Iamintelligent 28 апр. Октябрина2 28 апр. Nutaustinskaya1 28 апр. Это просто... Viki0110 28 апр. Angelapavlik 28 апр.

Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов 2) аксо…

Нервные импульсы поступают непосредственно к мышцам и железам по В нейроне нервные импульсы по дендритам проходят к соме клетки.
Как устроена периферическая нервная система человека? | Биология с Марией Семочкиной | Дзен По какому нейрону нервные импульсы поступают из ЦНС к рабочему органу?

Задание №9 ОГЭ по Биологии

Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов 2) аксонам вставочных нейронов 3) серому веществу спинного мозга 4) белому веществу спинного мозга. Created by 12kote. biologiya-ru. Б) Передача нервных импульсов от внутренних органов в мозг. Какая железа относится к железам внутренней секреции? Нервные импульсы передаются в мозг по нейронам.

Похожие новости:

Оцените статью
Добавить комментарий