В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. неупо-рядоченные системы, для которых самоподобие выполняется только в среднем.
Впервые в природе обнаружена микроскопическая фрактальная структура
Фото сделано снизу, чтобы разглядеть это во всей красе. Брокколи - хоть брокколи не так лихо геометрична, как романессу, но тоже фрактальна. Павлины - всем известны своим красочным оперением, в котором спрятаны сплошные фракталы. Ананас - необычный плод это есть, фактически, фрактал.
Хоть он часто связывается с Гавайями, плод - уроженец южной Бразилии. Облака - Посмотрите в окно. Практически в любой момент вы можете увидеть фракталы на небе.
Кристаллы - Лед, морозные узоры на окнах это тоже фракталы.
Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа Gaston Maurice Julia приложение 6. Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных. Классификация фракталов Фракталы делятся на группы. Самые большие группы это: - геометрические фракталы; - стохастические фракталы. Геометрические фракталы Фракталы этого класса самые наглядные.
Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. В двухмерном случае их получают с помощью некоторой ломаной или поверхности в трехмерном случае , называемой генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную - генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал. Примерами геометрических фракталов могут служить: 1 Кривая Коха — фрактальная кривая , описанная в 1904 году шведским математиком Хельге фон Кохом.
Три копии кривой Коха, построенные остриями наружу на сторонах правильного треугольника , образуют замкнутую кривую бесконечной длины, называемую снежинкой Коха приложение 7. Предложен французским математиком П. Инициатором является отрезок , а генератором является ломаная из восьми звеньев два равных звена продолжают друг друга приложение 9. Пифагор , доказывая свою знаменитую теорему , построил фигуру , где на сторонах прямоугольного треугольника расположены квадраты. Впервые дерево Пифагора построил А. Босман 1891 — 1961 во время Второй мировой войны , используя обычную чертёжную линейку приложение 11.
Также известен как «решётка» или «салфетка» Серпинского приложение 12. Алгебраические фракталы Это самая крупная группа фракталов. Они оправдывают своё название, так как строятся на основе алгебраических формул, иногда довольно простых. К ним можно отнести фрактал Мандельброта приложение 13 , фрактал Ньютона приложение 14 , множество Жюлиа приложение 15 и многие другие. Стохастические фракталы Третьей крупной разновидностью фракталов являются стохастические фракталы, которые образуются путем многократных повторений случайных изменений каких-либо параметров. В результате итерационного процесса получаются объекты очень похожие на природные фракталы — несимметричные деревья, изрезанные лагунами береговые линии островов и многое другое.
Двумерные стохастические фракталы используются преимущественно при моделировании рельефа местности и поверхности моря приложение 16.
Листья папоротника и капуста романеско — распространенные примеры. Примеры природных фрактальных фигур. Слева — лист папоротника. Справа — капуста романеско. Однако на микроскопическом уровне фрактальные узоры никогда ранее не наблюдались.
Тем более что так называемые "регулярные", в которых структуры повторяются почти в точности на всех масштабах, очень сложны с геометрической точки зрения. Это микробный фермент, отвечающий за клеточный метаболизм в цианобактериях Synechococcus elongatus, фотосинтезирующих бактериях, которые живут как в воде, так и на суше. Самостоятельная сборка треугольников Серпинского Исследователи объясняют, что фермент, точную форму которого им удалось обнаружить, спонтанно образует треугольники Серпинского.
Слева — лист папоротника. Справа — капуста романеско. Однако на микроскопическом уровне фрактальные узоры никогда ранее не наблюдались. Тем более что так называемые "регулярные", в которых структуры повторяются почти в точности на всех масштабах, очень сложны с геометрической точки зрения. Это микробный фермент, отвечающий за клеточный метаболизм в цианобактериях Synechococcus elongatus, фотосинтезирующих бактериях, которые живут как в воде, так и на суше. Самостоятельная сборка треугольников Серпинского Исследователи объясняют, что фермент, точную форму которого им удалось обнаружить, спонтанно образует треугольники Серпинского.
Это фрактальный объект, состоящий из основного треугольника, состоящего из более мелких треугольников Серпинского, каждый из которых сам делится на еще более мелкие варианты, и так далее. По словам ученых, по мере развития фрактальной структуры треугольные пустоты становятся все больше и больше.
Прибыльная торговля с помощью фрактальности существует?
Он создается путем итеративного применения простой математической формулы к каждой точке на комплексной плоскости. Результатом является изображение, которое состоит из бесконечного количества деталей и самоподобных структур. Фрактал Жюлиа — это еще один пример алгебраического фрактала, который создается с помощью итеративного применения формулы к каждой точке на комплексной плоскости. Он имеет разнообразные формы и структуры, которые зависят от выбранной формулы и параметров. Бассейны Ньютона также являются примерами алгебраических фракталов. Области с фрактальными границами появляются при приближенном нахождении корней нелинейного уравнения алгоритмом Ньютона на комплексной плоскости для функции действительной переменной метод Ньютона называют методом касательных, который обобщается для комплексной плоскости. Алгебраические фракталы обладают приближенной самоподобностью. Фактически, если вы увеличите маленькую область любого сложного фрактала, а затем проделаете то же самое с маленьким участком этой области, то эти два увеличения будут значительно отличаться друг от друга. Два изображения будут очень похожи в деталях, но они не будут полностью идентичными. Фракталы, при построении которых в итеративной системе случайным образом изменяются какие-либо параметры, называются стохастическими. Типичный представитель данного класса фракталов — «плазма».
Для ее построения возьмем прямоугольник и для каждого его угла определим цвет. Далее находим центральную точку прямоугольника и раскрашиваем ее в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число - тем более «рваным» будет рисунок. Стохастическим природным процессом является броуновское движение. С помощью компьютера такие процессы строить достаточно просто: надо просто задать последовательности случайных чисел и настроить соответствующий алгоритм. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря, процесса электролиза. При этом получаются объекты, очень похожие на природные — несимметричные деревья, изрезанные береговые линии и так далее. С помощью алгоритма, похожего на плазму строится карта высот. Плазма Практическая часть исследовательской работы Как программировать фракталы? Изучив фракталы в теории, мне стало интересно, как это работает на практике?
Я решил начать построение простых геометрических фракталов с помощью языка программирования Лого. Черепашья графика позволяет наглядно представить геометрические фракталы. Мне удалось сделать такие общеизвестные фракталы, как треугольник Серпинского, ковёр Серпинского, снежинка Коха, а также придумать свой собственный фрактал, работающий по аналогичному алгоритму - "Плюсы". Результаты моей работы в виде графических изображений серии картинок с усложнением после каждой итерации и алгоритмов представлены ниже.
Эти явления, кроме математиков, наблюдают естественные науки — физика и биология.
Принцип фракталов применяется в радиотехнике и для создания новых электронных коммуникаторов. Фракталы делают максимально устойчивой работу компьютерных сетей. В физике фракталы помогают моделировать процессы турбулентности, диффузии, структуры пористых материалов. В биологии они оказались незаменимыми для моделирования популяций, а также при описании внутренних органов живых организмов. В радиотехнике были созданы многодиапазонные и широкополосные фрактальные антенны, которые значительно меньше обычных.
Это облегчает работу мобильных сетей, а также применяется при создании новых сотовых телефонов. Британский математик Майкл Барнсли разработал алгоритм создания любой фрактальной формы на основе ее отображения. Это позволило сжимать изображения, тысячи их упаковывать и хранить на компактных дисках. Фрактальные технологии дали возможность децентрализовать сети интернета, что делает их работу максимально устойчивой.
Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств: Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств: 1. Обладает нетривиальной структурой на всех масштабах.
В этом отличие от регулярных фигур таких как окружность, эллипс, график гладкой функции : если рассмотреть небольшой фрагмент регулярной фигуры в очень крупном масштабе, то он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, то есть на всех шкалах можно увидеть одинаково сложную картину.
В этом случае поставщику, по сути, вместо материального продукта поступает информация об изменении на его счете - и такой обмен его вполне устраивает. Подобным же образом путем биржевых операций ежедневно приобретаются или теряются громадные суммы, которые, в конечном счете, кто-то должен компенсировать реальными продуктами или услугами. Как может происходить разрушение синхронизованного состояния? Об одной возможности мы уже упомянули. Это ослабление связей. Другая причина - неадекватное воздействие "ритмоводителя" на ансамбль. Действительно, если "ритм", диктуемый пейсмейкером, будет слишком противоречить естественному поведению компонент системы, то даже при достаточной силе связи ему не удастся навязать ансамблю свою линию поведения. Однако прежнее поведение также не сохранится.
В результате синхронизация будет разрушена. Фрактальность и устойчивость Мы уже убедились, что теорию динамического хаоса можно применить ко многим системам, в том числе к государству и обществу в целом. А какую роль играет при этом фрактальная структура хаоса? Ведь образ хаоса в фазовом пространстве - странный аттрактор - геометрически представляет собой фрактал. Несмотря на то, что каждая отдельная хаотическая траектория чрезвычайно чувствительна к малейшим возмущениям, странный аттрактор совокупность всех возможных траекторий является очень устойчивой структурой. Таким образом, динамический хаос подобен двуликому Янусу: с одной стороны, он проявляет себя как модель беспорядка, а с другой - как стабильность и упорядоченность на разных масштабах. Если задуматься, то легко увидеть, что в обществе, как и в природе, многие системы построены по принципу фракталов: из малых элементов образуются некоторые комплексы, они в свою очередь служат элементами для более крупных комплексов и т. Как, например, организованы жизнеспособные экономические и производственные структуры? Две крайние позиции: крупные транснациональные компании и "мелкий бизнес". Каждая из них в отдельности нежизнеспособна.
Большие компании, обладая огромной экономической мощью, малоподвижны и не могут быстро реагировать на изменения в окружающей экономической среде. Где же золотая середина? В средних по размеру предприятиях? Устойчивая экономическая инфраструктура обеспечивается при необходимой подкачке нужных ресурсов совокупностью разномасштабных вот он фрактал! У основания ее находится множество мелких компаний и фирм, выше по пирамиде размер предприятий постепенно увеличивается, а их число, соответственно, сокращается, и, наконец, наверху находятся самые крупные компании. Такая структура характерна, например, для экономики США. При этом мелкие предприятия наиболее мобильны: они часто рождаются и умирают, являясь основными поставщиками новых идей и технологий. Нововведения, получившие достаточное развитие, позволяют ряду предприятий вырасти до следующего уровня либо передать продать накопленные инновации более крупным компаниям. При достаточной восприимчивости среды такой механизм способен создать новые отрасли промышленности и экономики за несколько лет. Недаром в так называемой "новой экономике" основную массу даже крупных предприятий составляют компании, которые 15-20 лет назад либо вообще не существова ли, либо находились в разряде мелких.
Другой пример. Во времена перестройки много писалось и говорилось о "неправильном" устройстве СССР, в котором государство имело сложную иерархическую структуру, организованную по принципу матрешки. Что было предложено взамен? Каждому народу свою туземную армию, свой язык, свою "элиту", своих племенных вождей. Звучит неплохо. С точки зрения теории устойчивости, идея однородного устройства российского государства - идея двоечника. Принцип матрешки - это, по сути, фрактальный принцип, благодаря которому хаотическая система обретает структуру и устойчивость. СССР и Российская империя были построены по принципу фрактальных систем, и это обеспечивало их стабильность как государств. На разных уровнях в общую систему были вкраплены естественные государственные, этнические, территориальные и другие образования с отлаженными механизмами внутреннего функциониро вания, со своими правами и обязанностями. Хаос порождает информацию Мы уже установили, что поведение хаотических систем не может быть предсказано на большие интервалы времени.
По мере удаления от начальных условий положение траектории становится все более и более неопределенн ым. С точки зрения теории информации это означает, что система сама порождает информацию, причем скорость этого процесса тем выше, чем больше степень хаотичности. Отсюда, согласно теории хаотической синхрониза ции, рассмотренной ранее, следует интересный вывод: чем интенсивнее система генерирует информацию, тем труднее ее синхронизировать, заставить вести себя как-то иначе. Это правило, видимо, справедливо для любых систем, производящих информацию. Например, если некий творческий коллектив генерирует достаточное количество идей и а активно работает над способами их реализации, ему труднее навязать извне какую-то линию поведения, неадекватную его собственным воззрениям. И наоборот, если при наличии тех же материальных потоков и ресурсов коллектив ведет себя пассивно в информационном смысле, не создает идей или не проводит их в жизнь - иными словами, следует принципу "... Хаотические компьютеры Чего нам не хватает в современных компьютерах? Если живой организм для существования в изменчивой среде должен обладать элементами хаотического поведения, то можно предположить, что и искусственные системы, способные адекватно взаимодей ствовать с меняющимся окружением, должны быть в той или иной степени хаотичными. Современные компьютеры таковыми не являются. Они представляют собой замкнутые системы с очень большим, но конечным числом состояний.
Возможно, в будущем на основе динамического хаоса создадут компьютеры нового типа - открытые с термодина мической точки зрения системы, способные адаптироваться к условиям внешней среды. Однако уже сегодня хаотические алгоритмы могут успешно применять ся в компьютер ных технологиях для хранения, поиска и защиты информации. При решении некоторых задач они оказываются более эффективными по сравнению с традиционными методами. Это относится, в частности, к работе с мультимедийными данными. В отличие от текстов и программ мультимедийная информация требует иного способа организации памяти. Голубая мечта пользователей - возможность поиска мелодии, видеосюжета или нужных фотографий не по их атрибутам названию директории и файла, дате создания и т. Оказывается, такой ассоциативный поиск можно осуществить с помощью технологий на основе детерминированного хаоса. Каким образом? Мы уже обсуждали генерацию информации хаотическими системами. Теперь зададимся вопросом: а нельзя ли поставить в соответствие траектории конкретные данные, записанные в виде определенной последовательностей символов?
Тогда часть траекторий системы находилась бы во взаимно однозначном соответствии с нашими информаци онными последовательностями. А поскольку каждая траектория - это решение уравнений движения системы при определенных начальных условиях, то и любую последователь ность символов можно было бы восстановить путем решения этих уравнений, задав в качестве начальных условий небольшой ее фрагмент. Таким образом появилась бы возможность ассоциативного поиска информации, то есть поиска по содержанию. Коллективом сотрудников нашего института были созданы математические модели записи, хранения и поиска информации с помощью траекторий динамических систем с хаосом. Хотя алгоритмы казались очень простыми, их потенциальная информационная емкость значительно превысила объем всей информации, имеющейся в Интернете. Развитие идеи привело к созданию технологии, позволяющей обрабатывать любые типы данных: изображения, текст, цифровую музыку, речь, сигналы и т. Пример использования технологии - программный комплекс "Незабудка", предназначен ный для работы с архивами неструктурированной информации как на персональных компьютерах, так и на информационных серверах. Вся информация в архиве записывается и хранится в виде траекторий хаотической системы. Для поиска необходимых документов пользователь составляет запрос путем набора в произволь ной форме нескольких строк текста, относящегося к содержанию требуемого документа. В ответ система выдаст искомый документ, если входной информации достаточно для его однозначного поиска, либо предложит набор вариантов.
При необходимости можно получить и факсимильную копию найденного документа. Наличие ошибок в запросе не оказывает существенного влияния на качество поиска. Связь с помощью хаоса В большинстве современных систем связи в качестве носителя информации используются гармонические колебания. Информационный сигнал в передатчике модулирует эти колебания по амплитуде, частоте или фазе, а в приемнике информация выделяется с помощью обратной операции - демодуляции. Наложение информации на носитель осуществляется либо за счет модуляции уже сформированных гармонических колебаний, либо путем управления параметрами генератора в процессе его работы. Аналогичным образом можно производить модуляцию хаотического сигнала. Однако возможности здесь значительно шире. Гармонические сигналы имеют всего три управляемые характеристики амплитуда, фаза и частота. В случае хаотических колебаний даже небольшие вариации в значении параметра одного из элементов источника хаоса приводят к изменениям характера колебаний, которые могут быть надежно зафиксированы приборами. Это означает, что у источников хаоса с изменяемыми параметрами элементов потенциально имеется большой набор схем ввода информационного сигнала в хаотический носитель схем модуляции.
9 Удивительных фракталов, найденных в природе
Изучение фракталов вызвало новый виток в изучении разных сфер жизни: в компьютерной графике, в передаче данных, в радиотехнике, в производстве, в работе мозга, в движениях человека, в росте живых существ и многом другом. Представьте, насколько упрощается построение графических моделей, зная, что они самоподобны и вычисляются по одной простой формуле. Насколько становиться проще кодирование и передача информации, когда есть понимание, что их можно «сжать» по определённой фрактальный закономерности. И насколько понятней становится эволюция живых существ, когда мы можем найти фракталную модель их развития. Фракталы в тейдинге. Тема фракталов сложна и интересна, но как же она соотносится с торговлей на бирже? Думаю, что идея также проста: попытка описать и упорядочить казалось бы хаотичное и нелинейное движение цены, и найти в нем определенные закономерности. Тема фракталов достаточно молода, но одно знаем точно, что ее глубина и охват — это «черная дыра» с огромным количеством идей и возможный векторов применения. Первое, что мы можем выделить — это подобие графиков движения цены, вне зависимости от инструмента, таймфрема временного масштаба.
Разумеется, что найти абсолютно похожие участки крайне сложно, но ключевое свойство фрактала — это самоподобие, а не идентичность.
Фракталы находят все большее и большее применение в науке и технике. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Можно до бесконечности приводить примеры фрактальных объектов в природе, — это и облака, и хлопья снега, и горы, и вспышка молнии, и наконец, цветная капуста.
Фрактал как природный объект — это вечное непрерывное движение, новое становление и развитие.
Измерить её! Так ли это просто? Вовсе нет, ведь береговая линия длинна, и измерить её простой рулеткой не получится.
Поэтому берётся мера измерения — например, в 100 км. Получили сумму всех сторон — 2800 км. Но если мы возьмём меру поменьше, например, 50 км, то измерения будут учитывать больше нервностей и мелких особенностей береговой линии — и соответственно, длина увеличится до 3200 км. Разница измерения в 400 километров!
А это нельзя посчитать за погрешность. И чем меньше мы будем брать меру, тем больше получится длина береговой линии. Фракталы беспокоят не только математиков и художников, но и географов vjcx. Сосуды, сохраняя свою форму, утончаются и разветвляются.
Они гонят кровь по всему нашему телу, «доставляя» кислород и другие необходимые для биологического процесса элементы до клеток. Фракталы даже у нас внутри: кровеносная система — тоже самоподобное множество gb5kirov. Там фракталы «помягче»: теперь структура самоподобия заключается в том, что из мелких облачков состоят большие белые «кучи». Кстати, для предсказания погоды используют фракталы.
Чтобы рассчитать площадь тени от большой «сахарной ваты в небе», которая получится в результате слияния двух средних, нужно учитывать, что облако — не какая-то конкретная геометрическая фигура, а множество. Более того, облака даже не трёхмерны — их размерность равна 2,3. Мы уже говорили о снежинке Коха, но и природные снежинки каждая из которых, как мы знаем, уникальна имеют структуру самоподобия. Парадокс, но снежинки, что так романтично могут попасть вам на ресницы, — это самые что ни на есть математические объекты.
Снежинки настолько же прекрасны, насколько симметричны. Фракталы в природе — это настоящее чудо! Как выглядит «домик» улитки мы знаем с детства, но тогда мы вряд ли знали, что это фрактал. Для подобного бесконечного множества существует даже определённое название — круговой фрактал.
Это завиток, который бесконечно стремится к какой-то точке.
Фрактальные технологии дали возможность децентрализовать сети интернета, что делает их работу максимально устойчивой. Фрактальные формы в природе Где встречаются фракталы в природе? Фракталы как узоры и формы, повторяющие себя в разных масштабах, находим в живой и неживой природе. Это — деревья, реки, горы, растения, системы живых организмов и структуры Вселенной. В живой природе каждому известны проявления фракталов: Кроны деревьев разветвляются на все более мелкие и тонкие ветви. Похожи на них сети жилок листьев.
Аналогичное разветвление наблюдается в строении кровеносной, нервной, дыхательной системы человека и многих животных. Фрактальные формы ярко проявляются в строении ананасов, цветной капусты романеско, а также в спиралевидных бутонах цветов. Повторяются в себе множество раз формы кораллов, морских звезд, ракушек, улиток. Еще больше фракталов создано неживой природой: Снежинки и морозные узоры на стекле построены кристаллическими структурами, повторяемыми много раз.
ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ
фракталам. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Природа создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. Фрактальные модели в природе и технике Текст научной статьи по специальности «Математика».
Что такое фрактал, как он проявляется в природе и что еще о нем нужно знать
ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ | Наука и жизнь | Понятие ФРАКТАЛЫ (fractus -состоящий из фрагментов) введено в научный обиход Бенуа Мандельбротом. |
Физики нашли фракталы в лазерах | На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. |
Впервые в природе обнаружена микроскопическая фрактальная структура | Парк онлайн весной 2021. Фракталы в природе. Автор Мануйленко Никита. |
Фрактал. 5 вопросов | В природе фрактальные особенности проявляются в таких вещах, как снежинки, молнии или дельты рек. |
Фракталы в природе и в дизайне: сакральная геометрия повсюду
чудо природы, с которым я предлагаю вам познакомиться. Фракталы — это математические модели, которые появляются снова и снова, повторяясь в разных размерах. На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер.
Созерцание великого фрактального подобия
Здесь можно заметить, что два равных звена продолжают друг друга. Рисунок 7. Кривая Минковского. Описано в 1883 году Г.
Рисунок 8. Множество Кантора. Оставшееся точечное множество обозначим через C1, оно состоит из двух отрезков; удалим теперь из каждого отрезка его среднюю треть и оставшееся множество обозначим через C2.
Повторив эту процедуру опять, удаляя средние трети у всех четырёх отрезков, получаем C3. Обозначим через C пересечение всех Ci. Множество C называется Канторовым множеством.
Сверху - классическое дерево Пифагора, снизу - обнаженное обдуваемое ветром дерево Пифагора. Рисунок 9. Дерево Пифагора.
Также известен как квадрат Серпинского. Квадрат Q0 делится прямыми, параллельными его сторонам, на 9 равных квадратов. Из квадрата Q0 удаляется центральный квадрат.
Рисунок 10. Ковер Серпинского. Получается множество, состоящее из 8 оставшихся квадратов «первого ранга».
Поступая точно также с каждым из квадратов первого ранга, получим множество Q1, состоящее из 64 квадратов второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность пересечение членов которой есть ковёр Серпинского. Куб K0 с ребром 1 делится плоскостями, параллельными его граням, на 27 равных кубов.
Из куба K0 удаляются центральный куб и все прилежащие к нему по двумерным граням кубы этого подразделения. Получается множество K1, состоящее из 20 оставшихся замкнутых кубов «первого ранга». Поступая точно так же с каждым из кубов первого ранга, получим множество K2, состоящее из 400 кубов второго ранга.
Продолжая этот процесс бесконечно, получим бесконечную последовательность, пересечение членов которой есть губка Менгера. Рисунок 11. Губка Менгера.
Свое название они получили за то, что их строят, на основе алгебраических формул иногда весьма простых. Первые исследования в этом направлении относятся к началу XX века и связаны с именами французских математиков Гастона Жюлиа и Пьера Фату. В 1918 году вышел почти двухсотстраничный труд Жюлиа, посвященный итерациям комплексных рациональных функций, в котором описаны множества Жюлиа — целое семейство фракталов, близко связанных с множеством Мандельброта.
Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной иллюстрации, так что оценить красоту открытых объектов было невозможно. Несмотря на то что это работа прославила Жюлиа среди математиков того времени, о ней довольно быстро забыли. В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее.
Основной упор в своем изложении Мандельброт сделал не на тяжеловесные формулы и математические конструкции, а на геометрическую интуицию читателей. Благодаря иллюстрациям, полученным при помощи компьютера, и историческим байкам, которыми автор умело, разбавил научную составляющую монографии, книга стала бестселлером, а фракталы стали известны широкой публике. Их успех среди не математиков во многом обусловлен тем, что с помощью весьма простых конструкций и формул, которые способен понять и старшеклассник, получаются удивительные по сложности и красоте изображения.
Не приходится опасаться того, что «фрактальный анализ» и «фрактальные уравнения» останутся невостребованными. Не думаю, чтобы в наше время кто-нибудь повторил ошибку знаменитого астронома и физика Дж. Джинса, утверждавшего, что есть творения математиков, которые никогда не пригодятся за пределами математики. В качестве очевидного примера он приводил теорию групп, на которую ныне завязана, как утверждают специалисты, добрая половина физики! Напротив, история науки многократно подтверждала правоту замечательного математика Ш. Эрмита: «Я убежден, что самым абстрактным спекуляциям Анализа соответствуют реальные соотношения, существующие вне нас, которые когда-нибудь достигнут нашего сознания». Чуть-чуть фрактальной математики «Главная задача математики наших дней состоит в достижении гармонии между континуальным и дискретным, включении их в единое математическое целое» Ф.
Та же задача, видимо, стоит и перед физикой. И построение исчисления, включившего дискретные целые действительные значения фрактального оператора как частный случай, открывает реальные перспективы серьезного продвижения в решении указанной фундаментальной математической — физической — общенаучной — философской проблемы. Как потом оказалось, выражение это с точностью до тождественных преобразований совпало с оператором, найденным за 96 лет до этого Тарди; а через четыре года после меня эквивалентное повторение результата Тарди было опубликовано А. Светлановым [ 11 ]. Опуская для простоты некоторую «дополнительную функцию», аналог произвольной аддитивной постоянной неопределенного интеграла, имеем: 1 Или максимально компактно: 1а где Г — гамма-функция Эйлера. Вывод оператора занимал у меня полторы страницы и опирался на пару довольно рискованных шагов. Но результат оказался верен.
Как всегда при принципиальном шаге к новой картине мира, на пути встают исторически необходимые! В данном случае возражение их радикально. Начиная с аккуратного сомнения, скептик в данном случае весьма проницательный теоретик заключает: «Фракталы не являются реально существующими объектами» [ 14 ],с. Реальные системы не являются фракталами в точном смысле этого термина, они могут быть только фракталоподобными». Отсюда и делается приведенный выше, вроде бы убийственный для фракталов вывод. Однако, «в конечном счете ничто так не помогает победе истины, как сопротивление ей» У. Ведь вывод нашего критика напоминает, что по сути ни один объект теоретической науки, ни одна математическая модель природного объекта, процесса и т.
Но в том трагедии нет. Ведь в действительности теоретические «точные науки» называются так. Исторический опыт науки показывает, что внутренне непротиворечивые модели все более адекватно представляют свойства наблюдаемых объектов, что в целом растет предсказательная сила науки. Так и с фракталами. Да, «реальные системы не являются фракталами в точном [математическом] смысле этого термина, они могут быть только фракталоподобными». Аналогично реальная материя не является «строго континуальной», а лишь «континуально-подобной» в определенных пределах, на нескольких маршах бесконечной лестницы масштабов, или «дискретно-подобной» на других ее участках. Для приближенного описания ряда свойств и закономерностей существующих систем достаточно того, что они в каких-то конечных интервалах масштабов удовлетворительно представляются идеальной моделью фрактальной системы.
В этом и состоит соотношение любых теоретических моделей с реальностью. В этом — единственно возможном и обычном во всей науке! Фрактальная Вселенная и А. Вот как об этом пишет, например, Е. Фейнберг в очерке «Контуры биографии»: «Здесь [на военном заводе в Ульяновске] началась его творческая работа [- выполнены] четыре работы по теоретической физике. Из очерка А. Яглома «Товарищ школьных лет»: «Д.
Сахаров, отец Андрея, по приезде сына в Москву передал какую-то его научную рукопись Тамму через математика А. Лопшица, давнего знакомого Игоря Евгеньевича». А в письме сотрудников отдела теоретической физики им. На оборонном заводе 1942 — начало 1945 г. Случилось так, что я имею информацию об одной из этих работ, непосредственно от И. В начале зимы 1959—1960 г. В заключение беседы, уже провожая меня, И.
На этом мы и распрощались. Пока остается неизвестным, какой именно путь молодой Андрей Сахаров нашел для построения того, что мы в эпоху фракталов вправе назвать фрактальным исчислением. Но то, что Сахаров не только интересовался этим вопросом почти забытым тогда в математике и ставшим актуальным в физике лишь через 30 лет , но и решил его — судя по словам И. Тамма, непреложный факт. Мы можем констатировать, что по меньшей мере одна из остающихся неизвестными его первых работ была посвящена не «теоретической физике небольшого масштаба», а очень нетривиальной математике. Сахаровым еще полвека назад, подобно тому, как молодые Галуа и Абель создавали теорию групп, в конечном счете, для Реальной Природы, а Н. Лобачевский на нее же примерял свою «воображаемую геометрию»...
Заключение По существу, только начинающаяся всерьез «история фракталов» в современной науке, в нашей картине мира, помимо множества частных результатов и выводов, уже дает основание для ряда обобщающих заключений, на этом новом примере подтверждающих генеральные закономерности и тенденции развития науки — познания Вселенной. Мы еще раз, на истории с фракталами, убеждаемся в парадоксальном характере научных революций и вообще крупных прозрений в науке, с удивлением и восторгом открываем то, что всегда видели вокруг себя, но не замечали. Фракталы-деревья растут вокруг нас. Но, вопреки пословице, до недавних дней за лесом мы не видели отдельного, всегда так или иначе фрактального дерева... Фрактальные белые облака от века плыли у нас над головами по фрактально голубому небу... На фрактальном морском бережку мудрый Аристотель, прихлебывая фрактальную простоквашу, обдумывал важные, но совсем другие проблемы, не замечая этой; а его легкомысленный соплеменник, молодой древний грек, перебрав неразведенного фрактального вина из плодов фрактального виноградного куста, заплетающимися ногами выписывал фрактальную траекторию на площади у Парфенона... А уж совсем в нашу эпоху сонмы ученых, разбредясь по фрактальным маршрутам своих лабораторий, до мозолей на фрактальных извилинах изучали кто почву земли-матушки, кто фликкер-шум в радиоприемнике, кто переменные звезды и квазары; а кто углубился «в себя», в систему своих кровеносных сосудов или даже ресничек на стенках кишечника, и т.
Открытие фрактальности Мира еще раз подтвердило «поразительную эффективность математики в естественных науках» Е. Очевидно, приведенные выше сетования на то, что физическая концепция фракталов якобы «не имеет адекватного аппарата в традиционной математике» Дж. Лэн и др. Математика и на этот раз оказывается, так сказать, «превентивной физикой»! Да, в физической Природе не существуют ни идеальный газ, ни континуальная материя, ни фрактальные объекты с «действительно бесконечной» лестницей иерархических этажей.
Из природы он в передовые 3D иллюстрации, компьютерную графику, децентрализованные сети. К примеру, компания Netsukuku использует принцип фрактального сжатия информации для IP-адресов. Каждый новый узел состыковывается с общей сети без использования центрального сервера. Удобно же! Ты удивишься, но молния, ионосфера, северное сияние и пламя — тоже фракталы Легче всего такие фигуры описать художникам Фракталы используются также в цифровой области. Теперь не нужно отдельно рисовать детали графических объектов. Фракталы и их алгоритмы задают первоначальные параметры, а остальную работу делает компьютерная система. Айтишники безустанно креативят с двух- и трехмерными геометрическими фигурами для создания объемных текстур. Есть что-то магическое в любой фрактальной форме Одни их замечают, другие проходят мимо В настоящее время математические фракталы активно используются в нанотехнологиях, у трейдеров, экономистов. Они помогают анализировать курс фондовых бирж, торгового рынка. Область нефтехимии применяет фигуры фракталы для создания пористых материалов, а биологии — для развития популяций, генной инженерии. Люди зашли еще дальше, «скрестив» фрактальную геометрию с текстуальной, структурной и семантической природой. Смотри, как каждый фрагмент точно дублируется в уменьшающемся масштабе! Фракталы в природе: ботаника что-то скрывает Фракталы и их геометрию всегда оберегала природа со своей богатой флорой и фауной. Удивительные и совершенные формы, фигуры создает природа до сих пор. Растения со свойствами подобия можно заметить в кронах деревьев, листьях папоротника, цветной капусте. А еще листья располагаются по спирали, создавая совершенный фрактал у алоэ Polyphylla, устремленных ввысь стебельков крассулы или «Храм будды». Подобные флоральные мотивы просто не могла обойти стороной восточная мода, стиль бохо и этно в коллекциях одежды на 2022 год. Природа богата на фрактальные «сокровища» Завораживающе на человека действуют усыпанный рубиновыми капельками росолист Lusitanicum, подсолнечник, георгин, листья амазонской кувшинки. Простые фракталы в природе замечай в краснокочанной капусте, когда готовишь вегетарианские салаты, ищешь суккуленты для свадебного букета. Простые фракталы природы — это и элементы рельефа, и поверхность водоемов. Не забудь про «геометрическую» природу морей и океанов: кораллы, морские звезды и ежи. Индустрия моды увлеклась темой фракталов Но мы помним, у кого «козыря» в кармане.
Принцип фракталов применяется в радиотехнике и для создания новых электронных коммуникаторов. Фракталы делают максимально устойчивой работу компьютерных сетей. В физике фракталы помогают моделировать процессы турбулентности, диффузии, структуры пористых материалов. В биологии они оказались незаменимыми для моделирования популяций, а также при описании внутренних органов живых организмов. В радиотехнике были созданы многодиапазонные и широкополосные фрактальные антенны, которые значительно меньше обычных. Это облегчает работу мобильных сетей, а также применяется при создании новых сотовых телефонов. Британский математик Майкл Барнсли разработал алгоритм создания любой фрактальной формы на основе ее отображения. Это позволило сжимать изображения, тысячи их упаковывать и хранить на компактных дисках. Фрактальные технологии дали возможность децентрализовать сети интернета, что делает их работу максимально устойчивой. Фрактальные формы в природе Где встречаются фракталы в природе?
Фракталы в природе. Мир вокруг нас. Ч.2
Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой. Фракталы также встречаются в природе. Природа создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Фракталы как узоры и формы, повторяющие себя в разных масштабах, находим в живой и неживой природе. Международная команда исследователей под руководством ученых из Германии обнаружила молекулярный фрактал в цитрат-синтазе цианобактерии, ферменте микроорганизма, который спонтанно собирается в фигуру, известную в математике как «треугольник Серпинского».
Математика в природе: самые красивые закономерности в окружающем мире
В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо фрактальной живописи фракталы используются в теории информации для сжатия графических данных здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла. Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими. В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. А экономисты используют фракталы для описания кривых колебания курсов валют это свойство было открыто Мандельбротом более 30 лет назад.
В 1999 году моя группа использовала методы компьютерного анализа рисунков, чтобы показать, что картины Поллока столь же фрактальны, как и рисунки в естественных пейзажах. С тех пор более 10 различных групп выполнили различные формы фрактального анализа на его картинах. Способность Поллока выражать эстетику природы фрактала помогает объяснить непреходящую популярность его работы. Воздействие эстетики природы на удивление сильно. В 1980-х годах архитекторы обнаружили, что пациенты быстрее выздоравливали после операции, когда им давали больничные комнаты с окнами, выходящими на природу. Другие исследования, проведенные с тех пор, показали, что только просмотр изображений природных сцен может изменить то, как вегетативная нервная система человека реагирует на стресс. Являются ли фракталы секретом некоторых успокаивающих природных сцен? Сотрудничая с психологами и нейробиологами, мы измерили реакцию людей на фракталы, найденные в природе используя фотографии природных сцен , искусство картины Поллока и математику компьютерные изображения , и обнаружили универсальный эффект, который мы назвали «беглость фрактала».
Благодаря воздействию природных фрактальных пейзажей, зрительные системы людей легко адаптировались к эффективной обработке фракталов. Мы обнаружили, что эта адаптация происходит на многих этапах зрительной системы, от того, как движутся наши глаза, до того, какие области мозга активируются. Эта беглость помещает нас в зону комфорта, и поэтому нам нравится смотреть на фракталы. Важно отметить, что мы использовали ЭЭГ для записи электрической активности мозга и методов проводимости кожи, чтобы показать, что этот эстетический опыт сопровождается снижением напряжения на 60 процентов - удивительно большой эффект для немедикаментозного лечения. Это физиологическое изменение даже ускоряет восстановление после операции. Художники интуитивно понимают привлекательность фракталов Поэтому неудивительно, что художники-визуалисты на протяжении веков и во многих культурах встраивали фрактальные узоры в свои работы. Фракталы можно найти, например, в римских, египетских, ацтекских, инкских и майяских работах. Мои любимые примеры фрактального искусства из более поздних времен включают Турбулентность да Винчи 1500 , Великую волну Хокусая 1830 , серию кругов М.
Эшера 1950-е и, конечно же, разлитые картины Поллока.
Геометрические — строятся на основе исходной фигуры, которая определённым образом делится и преобразуется на каждой итерации. Алгебраические — строятся на основе алгебраических формул. Стохастические — образуются в том случае, если в итерационной системе случайным образом изменяется один или несколько параметров. Далее мы подробно разберём каждый класс. Геометрические фракталы Эти фигуры основаны на прямых линиях, квадратах, кругах, многоугольниках и многогранниках.
Рассмотрим несколько примеров от самого простого к сложному. Множество Кантора В 1883 году Георг Кантор — немецкий математик, автор теории множеств — придумал множество, которое повторяло само себя снова и снова. Кантор взял произвольный отрезок и разделил его на две части, потом каждую — ещё на две и так далее: Изображение: Лев Сергеев для Skillbox Media Каждый этап деления прямых на две части называется итерацией. Итерация — это повторение одного и того же действия, или, по аналогии с программированием, одно прохождение тела цикла. На первой итерации у нас был один отрезок, на второй мы получили два, на третьей — четыре и так далее. Если повторять это несложное действие бесконечное количество раз и увеличить масштаб изображения, то мы увидим ту же самую картину, что и в самом начале.
Это и есть визуальное воплощение самоподобия: Изображение: Лев Сергеев для Skillbox Media Снежинка Коха aka кривая Коха Изображение: Лев Сергеев для Skillbox Media Шведский математик Хельге Фон Кох в 1904 году описал кривую, воспользовавшись треугольником и методом самоподобия, в результате чего получилась фрактальная снежинка. Ниже показаны четыре итерации построения такой фигуры. Слева изображены исходные кривые, а справа — получившаяся из этих кривых снежинка. Нетрудно заметить, что в снежинки идеально вписывается как равносторонний треугольник, так и сама кривая: Изображение: Лев Сергеев для Skillbox Media На какой бы итерации мы ни увеличили масштаб изображения, мы всегда сможем увидеть знакомый паттерн, как и с множеством Кантора. Посчитать периметр такой снежинки невозможно, потому что она может разрастаться всё дальше и дальше… Это ещё одно свойство фракталов — бесконечность. Ковёр, треугольник и кривая Серпинского Изображение: Лев Сергеев для Skillbox Media Польский математик Вацлав Серпинский брал за основу фрактала не только кривую, но и квадрат с треугольником.
Для начала рассмотрим, как «размножается» кривая Серпинского. При каждой итерации количество её копий увеличивается в четыре раза, а рисунок становится сложнее: Изображение: Лев Сергеев для Skillbox Media Треугольник же на каждом шаге дробится на три равные части: Изображение: Лев Сергеев для Skillbox Media Квадрат, или ковёр, Серпинского получается так же, как и треугольник, но исходная фигура делится на восемь квадратов. Ковёр Серпинского в трёхмерном пространстве превратится в кубический многогранник. По такому же принципу можно смоделировать и трёхмерный треугольник Серпинского.
С точки зрения химии, спираль может быть образована реакционно-диффузионным процессом с привлечением как активации, так и ингибирования.
Филлотаксис контролируется протеинами, которые управляют концентрацией растительного гормона ауксина, который активирует рост среднего стебля наряду с другими механизмами контроля относительного угла расположения бутона к стеблю. С точки зрения биологии листья расположены настолько далеко друг от друга, насколько позволяет естественный отбор, так как он максимизирует доступ к ресурсам, особенно к солнечному свету, для фотосинтеза. Фракталы — бесконечное почти повторение Фракталы — еще одна интересная математическая форма, которую каждый видели в природе. Сам Фрактал — это самоподобная повторяющаяся форма, что означает, что одна и та же основная форма появляется снова и снова. Другими словами, если вы увеличите или уменьшите масштаб, везде будет видна одна и та же.
Эти самоподобные циклические математические конструкции, обладающие фрактальной размерностью, встречаются довольно часто, особенно среди растений. Самый известный пример — папоротник. Листья папоротников являются типичным примером самоповторяющегося ряда. Кстати, бесконечная повторяемость невозможна в природе, поэтому все фрактальные закономерности — это только аппроксимации приближения. Например, листья папоротников и некоторых зонтичных растений например, тмин являются самоподобными до второго, третьего или четвертого уровня.
Схожие с папоротником паттерны встречаются также у многих растений брокколи, капуста сорта Романеско, кроны деревьев и листья растений, плод ананаса , животных мшанки, кораллы, гидроидные, морские звезды, морские ежи. Также фрактальные паттерны имеют место в структуре разветвления кровеносных сосудов и бронхов животных и человека. Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке в результате изучения непрерывных недифференцируемых функций например, функция Больцано, функция Вейерштрасса, множество Кантора. Термин «фрактал» введен Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы». Множество Мандельброта — классический образец фрактала Особую популярность фракталы обрели с развитием компьютерных технологий, позволивших эффектно визуализировать эти структуры.
Многоугольники — инженерный гений При достаточной наблюдательности в живой природе легко обнаружить строгую геометрию.