Новости актуальность искусственного интеллекта

AI навигатор Искусственный интеллект Российской Федерации. Новые алгоритмы и нейросети позволяют внедрить искусственный интеллект практически в любые сферы. Это объясняет высокую актуальность применения искусственного интеллекта в сфере образования.

Дмитрий Чернышенко обозначил основные тренды развития искусственного интеллекта

Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций Роскомнадзор. Отдельные публикации могут содержать информацию, не предназначенную для пользователей до 16 лет. Интернет-журнал Новая Наука каждый день сообщает о последних открытиях и достижениях в области науки и новых технологий.

В процессе исследования ученые КФУ будут изучать поведение человека, анализируя разнообразные продукты его виртуальной активности, в первую очередь авторские тексты, которые пользователи размещают на различных онлайн-платформах LiveJournal, «ВКонтакте», «Дзен» и др. По словам заведующего кафедрой информационных систем ИВМиИТ Фаиля Гафарова и заведующего кафедрой высшей математики и математического моделирования ИМиМ Александра Агафонова, на помощь психологам придут инструменты, связанные с методами искусственного интеллекта, — машинное обучение, искусственные нейронные сети, когнитивные архитектуры, большие языковые модели. С их помощью исполнители проекта хотят попробовать «разобрать» поведение человека, чтобы понять, из чего же оно состоит и что на него может оказывать влияние. В итоге ученые КФУ планируют существенно расширить исследовательские возможности современной психологии и разработать цифровые модели, которые имитировали бы содержание поведенческих действий человека, позволяя проводить разнообразные экспериментальные исследования как особенностей поведения человека, так и стимулов, которые их вызывают.

Вместе с ними мы формируем поворотные моменты в истории отдельных компаний и общества в целом. Мы добиваемся устойчивых результатов, масштабы которых выходят далеко за пределы отдельных организаций. О Яндексе Яндекс — технологическая компания, которая создаёт инновационные продукты и сервисы на основе машинного обучения и нейронных сетей. Компания объединяет более 85 пользовательских сервисов. Основные бизнес-направления — поиск и портальные сервисы, электронная коммерция, сервисы объявлений, медиасервисы, сервисы онлайн-заказа такси и заказа еды, беспилотные автомобили. Яндекс также предлагает продукты для рекламодателей и владельцев бизнеса.

Онлайн-трансляция эфирного потока в сети интернет без согласования строго запрещена. Вы можете разместить у себя на сайте или в социальных сетях плеер Первого канала. Для этого нажмите на кнопку «Поделиться» в верхнем правом углу плеера и скопируйте код для вставки.

Ключевые тенденции-2024 в области ИИ

Маркетинговая сфера. Системы искусственного интеллекта на основе изучения предыдущих продаж и глубокого изучения рынков осуществляют прогнозирование сценариев развития событий. Алгоритмами изучаются контактные данные клиентов, суммы сделок и приобретенные ими товары или услуги [20] Shkor, Sevzyuk, 2020. Кроме того, ИИ анализирует поведение конкурентов в целях сопоставления эффективных и неудачных решений и действий. Это позволяет компании разрабатывать и реализовывать грамотную маркетинговую стратегию, которая с высокой степенью вероятности завершится финансовым успехом.

Скорость обработки данных. Big Data большие данные — это основной инструмент работы искусственного интеллекта. ИИ позволяет быстро и эффективно анализировать большие объемы информации, разрабатывать пути реакции, а также осуществлять построение стратегического планирования. В качестве примера можно привести применение систем искусственного интеллекта при реализации биржевых операций.

Следует отметить, что традиционные программные алгоритмы не в состоянии самостоятельно адаптироваться к быстро меняющимся условиям и данным без предварительного обучения. Алгоритмы искусственного интеллекта предоставляют такую возможность и повышают продуктивность работы на бирже [4] Babich, Kirillova, 2019. Процессы автоматизации. Существует большое количество факторов, вызывающих возможные ошибки в работе персонала.

Искусственный интеллект, у которого отсутствуют эмоции и чувства, характерные для человека человеческий фактор , используя данные, функции и технологии, позволяет осуществлять безошибочную и точную работу [12] Lapaev, Morozova, 2020. Однако следует отметить, что уже сегодня ведется ряд исследований, которые позволяют ИИ выявлять сарказм и двойной смысл человеческих сообщений. В частности, американскими учеными из Университета Центральной Флориды на основе тренировок и обучения нейронных сетей создан искусственный эмоциональный интеллект Emotional AI. Это перспективная подсистема ИИ, которая способна распознавать и интерпретировать проявления человеческих эмоций.

Благодаря этому достигается более естественное и непринужденное взаимодействие человека и ИИ [6]. Виртуальные помощники. К примеру, чат-бот Олег, применяемый в приложении интернет-банка Тинькофф, с помощью распознавания речи общается с клиентами банка посредством цифровых устройств и выполняет стандартные банковские операции, например, осуществляет денежные переводы. Эти же функции осуществляются первым в мире семейством виртуальных ассистентов «Салют» экосистемы «Сбер» [7].

Использование виртуальных помощников — это один из ИИ-инструментов, который со временем будет более широко внедряться в бизнес-процессы и повседневную жизнь современного человека. По статистике Facebook, более 10 тысяч компаний занимаются разработкой чат-ботов [8]. К примеру, Juniper Research отмечается высокая популярность применения виртуальных помощников. Использование чат-ботов в финансовом секторе и медицине способно сэкономить до 20 млн долл.

США в год, к 2022 г. К текущему моменту времени на мощностях французской энергетической компании Engie успешно применяются дроны с программами распознавания изображений на основе машинного обучения, которые следят за оборудованием и изучают инфраструктуру в целях предотвращения технологических и иных нарушений. ИИ-системы контроля и мониторинга широко используются и в городской среде. Наиболее простой пример — система распознавания автомобильных номеров с помощью камер видеослежения, применяемая муниципальными организациями.

Кроме того, подобные алгоритмы применяются для систем распознавания лиц [17] Porokhovskiy, 2020.

Какое будущее у нейросетей? За последние 20-30 лет мы несколько раз пережили смену технологической парадигмы: персональные компьютеры и интернет, смартфоны и приложения, данные и искусственный интеллект, ML модели и нейросети.

Сейчас мы находимся в цикле доминирования нейросетей, ML моделей и АI. В трендах технологического развития 2023 год многое поменял. Нейросети открыли новые возможности перед человеком и бизнесом в области практических решений и монетизации.

Объем данных достиг достаточного уровня, чтобы появился масштаб, возросла бизнес-ценность практических кейсов, и это выстрелило. Спрос [на ML-инженеров] вырос, а уровень квалификации снизился, так как российские специалисты с высокими компетенциями ушли на международный рынок. Рост спроса на ML-инженеров в России приводит к тому, что компании готовят специалистов со студенческой скамьи, квотируя ресурсы на стадии поступления будущих специалистов в ВУЗы.

Их доход начинается на уровне 300 тыс. Ниже доход у тех, кто является бывшим аналитиком или только недавно переучился. Спрос, однозначно, растет.

Есть 2 источника пополнения ML-инженеров: бывшие аналитики данных и студенты. В B2B прогресс заметен в отрасли агрокультуре. В других бизнесах много специфики и отсутствует универсальная экспертиза B2B, поэтому здесь точно сложился дефицит специалистов, и нет готовых решений у интеграторов и цифровых экосистем.

Евгения Дёмина Аккаунт-директор IT Test Отбор кандидатов с помощью нейросетей — именно так выглядит рынок аутстафа сегодня. Цифровизация и тренд на нейронные сети вносят свои изменения в сложившийся алгоритм работы в аутстаффинге. Если раньше данные обрабатывались вручную, то сейчас уже никого не удивишь тем, что прогоняешь резюме через нейросети, чтобы те сравнили информацию о кандидате с текстом вакансии.

Наивно полагать, что, если напишешь «я опытный senior», то все навыки считаются по умолчанию: бездушная машина моментально откинет вашу кандидатуру. Конечно, рекрутеры не полностью отказываются от просмотра резюме и портфолио, но тем не менее нужно держать в голове, что информация о вас может до HR-специалистов и не дойти. Позиции лидов и руководителей подразделений особенно сложно закрывать.

И особенно в сфере разработки и тестирования. Любопытно, что вместе с тем заказчики предоставляют аутстаферам больше свободы. В IT Test нередки случаи, когда аутстаф-сотрудники приходят в команду заказчика на временное усиление, и, опираясь на свою экспертизу, предлагают нестандартные решения.

Важно не стесняться проговаривать то, что можно улучшить, не бояться индивидуальных решений. Увеличение размера моделей и числа параметров привело к совершенно фантастическому результату — нейросеть оказалась способна решать задачи, которые ранее были под силу исключительно человеку. Ответы на вопросы, написание текстов, программирование и даже создание музыки — все оказалось в сфере компетенций нейросетей.

Благодаря этому внезапно оказалось, что можно почти мгновенно и без квалификации достаточно лишь правильно написать подсказки для нейросети создавать то, для чего раньше требовались время, ресурсы и деньги. Однозначно, сохранится. Кривая Гартнера для новых технологий гласит, что технология будет расти до предела популярности, чтобы далее испытать резкое снижение интереса и выход на плато эффективного использования.

В настоящий момент рынок наблюдает исключительно положительные результаты от использования нейросетей: повышение эффективности, снижение издержек, цифровизацию. Чтобы интерес стал снижаться, должна накопиться «критическая масса» негативных сценариев, когда применение нейросетей оказалось неэффективным или вообще неудачным. Однако такие кейсы на рынке сейчас отсутствуют, соответственно, в 2024 году интерес будет лишь расти.

В течение длительного времени этот рынок испытывает нехватку квалифицированных специалистов, в особенности уровня senior. Поэтому можно сказать, что спрос на такие кадры остался на прежнем, очень высоком уровне. На ИТ-рынке весь год прошел под знаком роста зарплат, и интерес к нейросетям и ML только усилил данную тенденцию.

Скорее всего, в следующем году зарплаты в этой сфере продолжат повышаться, а недавно наметившийся тренд на «перекупку» наиболее ценных специалистов и команд может дополнительно ускорить этот рост, усиливая кадровый дефицит в сегменте ML и DS, в особенности в отношении квалифицированных сотрудников. Также крайне важны навыки в области моделей и алгоритмов ML — знание разных видов моделей, а также опыт применения и совершенствования алгоритмов машинного обучения. Немаловажны и умение работать с большими массивами данных, в том числе предобрабатывать их, владение средствами визуализации данных, знание баз данных и языка SQL, а также навыки использования облачных сервисов Azure, AWS, Google Cloud.

Во-первых, все более актуальной становится задача по адаптации нейросетей общего назначения та же ChatGPT и ее аналоги к применению в узких областях, таких как эффективное написание программного кода. Во-вторых, одним из предполагаемых трендов ближайшего будущего станут нейросети узкого назначения — например, для управления рисками, управления объектами IIoT в промышленности и так далее. И если на рынке в целом наблюдается нехватка ИТ-специалистов, то в узкопрофильных областях она будет еще более ощутима.

Напоминаем, что вы можете задать свой вопрос экспертам, а мы соберём на него ответы, если он окажется интересным.

Реализованный эффект от внедрения искусственного интеллекта к 2028 году может достичь 4,2—6,9 трлн руб. Из них 0,8-1,3 трлн руб. Марина Дорохова, соавтор отчёта и руководитель проектов «Яков и Партнёры» Собственные базовые модели генеративного искусственного интеллекта в мире разрабатывают около десяти стран, в том числе Россия, при этом наша страна занимает 7-е место в мире по уровню поддержки государством сферы разработки искусственного интеллекта. Подобный фокус не случаен — внедрение искусственного интеллекта будет иметь гораздо более широкие последствия для страны, чем непосредственно экономический эффект, в частности развитие искусственного интеллекта положительно повлияет на качество и продолжительность жизни, повысит качество образования, создаст новые рабочие места. Это сократит временные затраты и позволит сотрудникам сосредоточиться на более творческих задачах. Для России такие перспективы скорее привлекательны: с учётом прогнозируемого к 2030 г.

Подробнее с выводами исследования можно ознакомиться по ссылке.

Ключевые направления для России На сегодняшний день российские компании и исследователи искусственного интеллекта могут похвастаться действительно продуктивной работой по трем направлениям. Компьютерное зрение Computer Vision Способность машины визуально распознавать объекты и анализировать их. Речь идет не только о способности понимать изображения на картинке хотя до недавнего времени ИИ не умел и этого , применение этой технологии намного шире: Дополненная реальность Беспилотные аппараты, в том числе машины Системы видеонаблюдения, в том числе камеры фиксации нарушений Системы распознавания лиц В последних трех направлениях российские разработки действительно получили хорошее развитие, а сейчас и находят применение на практике как, например, работающая система распознавания лиц в Москве.

Среди наиболее известных российских компаний, трудящихся в этой сфере, в РФ последние годы выделяют: NTechLab — создатели популярного сервиса Findface, наработки по которой легли в системы безопасности для силовых ведомств. Vision Labs, разрабатывающая системы распознавания лиц и иные решения для крупных банков «Центр речевых технологий» — компания, разработавшая ряд решений для телеком-компаний, а также создавшая систему идентификации болельщиков на стадионах. Обработка естественного языка Natural Language Processing Это особое направление математической лингвистики, которое работает над способностью искусственного интеллекта как распознавать текст на практически человеческом уровне понимания, так и генерировать его. Она применяется в ряде весьма важных отраслей, с которыми человек сталкивается почти каждый день: Перевод текста с одного языка на другой Автоматическая генерация текстов Работа чат-ботов и роботов-собеседников Распознавание и синтез речи Здесь эксперты особенно выделяют работу компании «Яндекс», уже давно обогнавшей таких титанов, как Google и Microsoft по качеству машинного перевода с русского языка на английский и с английского на русский.

И хотя экспертные оценки нередко расходятся, но многие мировые специалисты признают, что система-помощник «Алиса» действительно совершеннее многих западных аналогов.

Проект по дисциплине «Информатика» тема: «

  • Предварительный просмотр:
  • «Сократят 300 млн человек по всему миру»: людей каких профессий совсем скоро могут заменить роботы
  • Будущее искусственного интеллекта
  • Массовая безработица и безграничные возможности? Как сегодня поживает искусственный интеллект

Обзор развития ИИ-технологий: как изменится экономика, образование и общество?

Как технологии искусственного интеллекта влияют на экономику и бизнес. Погружаясь в мир искусственного интеллекта, я нахожусь на пути открытий, постоянно поражаясь быстрому прогрессу и глубокому влиянию, которое ИИ оказывает на нашу жизнь. Двенадцатиярусные стеки памяти поднимают быстродействие в задачах искусственного интеллекта на 34 % в среднем по сравнению с 8-ярусными. В каких отраслях, тесно связанных с искусственным интеллектом, Россия не только конкурирует, но и опережает Европу и США, в подробном обзоре от ФедералПресс.

​​Рейтинг искусственного интеллекта 2022. Его составила нейросеть

Код для вставки видео в блоги и другие ресурсы, размещенный на нашем сайте, можно использовать без согласования. Онлайн-трансляция эфирного потока в сети интернет без согласования строго запрещена. Вы можете разместить у себя на сайте или в социальных сетях плеер Первого канала.

Он помогает автоматизировать рутинные задачи. Например, создание цветовых палитр. Это позволяет мне сосредотачиваться на самом творческом процессе, на поиске новых идей и концепций, но, независимо от вашей сферы деятельности, ИИ меняет мир вокруг нас и предоставляет новые возможности для личного и профессионального развития", — отмечает Светлана Васина. Искусственный интеллект приносит инновации Искусственный интеллект уже укоренился в нашей повседневной жизни. Умные дома, голосовые ассистенты, медицинская диагностика, автономные автомобили — все это становится частью нашего обыденного существования.

Одним из наиболее заметных проявлений ИИ в повседневной жизни являются умные дома. При помощи ИИ мы можем управлять домом через приложения на смартфоне. ИИ даже научился предсказывать предпочтения и реагировать на них автоматически, создавая более комфортную среду для проживания. Они могут выполнять широкий спектр задач — от составления списка дел до заказа товаров онлайн. В целом искусственный интеллект становится неотъемлемой частью нашей повседневной жизни, и его влияние будет только расти в ближайшие годы. Он делает нашу жизнь более удобной, безопасной и эффективной, позволяя нам сосредотачиваться на более важных аспектах жизни. Однако, несмотря на все преимущества, важно помнить о мерах конфиденциальности и безопасности, связанных с использованием ИИ.

Светлана Васина Искусственный интеллект приносит инновации, улучшает качество жизни и расширяет возможности карьерного роста. Независимо от того, являетесь ли вы художником, ученым, студентом или просто человеком, стремящимся к удобству и совершенствованию, ИИ играет важную роль в нашем будущем. Ученые предполагают, что количество связанных устройств будет расти, а осуществляться это будет с помощью Интернета вещей и ИИ. Это позволит повысить производительность и получить конкурентные преимущества. Внедрение AIoT может положительно повлиять на различные отрасли, улучшить продуктивность сотрудников и снизить операционные расходы. Это поможет улучшить безопасность, автоматизировать процессы и обнаруживать аномальное поведение. Улучшение систем разговорного ИИ Хотя существующие версии чат-ботов все еще имеют ограничения в ответах на сложные запросы, последние тенденции в искусственном интеллекте способны значительно улучшить их функциональность.

Прогнозирование с использованием ИИ Ожидается более широкое использование ИИ для улучшения прогнозирования. Комбинирование предиктивной аналитики с последними тенденциями в искусственном интеллекте позволит достичь более точного и своевременного прогнозирования, считают эксперты. Сочетание квантовых вычислений и искусственного интеллекта Когда требуется обработка больших объемов сложных баз данных, квантовые вычисления в сочетании с ИИ могут привести к получению новых уникальных результатов. Midjourney — нейросеть, генерирующая изображения по текстовому описанию.

Сегмент включает разработку алгоритмов и моделей, которые могут понимать естественный язык, распознавать изображения и речь. Рынок когнитивных вычислений можно разделить на четыре сегмента: обработка естественного языка ; поиск информации; машинное обучение ; автоматизированное мышление. Сегмент обработки естественного языка NLP занял наибольшую долю рынка в 2022 г. Причина в распространении чат-ботов и виртуальных помощников и устройств с поддержкой голосовой связи.

А вот виртуальное пространство, несмотря на увеличение нагрузки, благодаря ИИ станет безопаснее. Более глубокое внедрение технологий в интернет позволит повысить эффективность борьбы с пиратами, хакерами, автоматически осуществлять регулировку доступа к мультимедийным ресурсам, качественнее искать и подавать информацию. Развлечения Еще одним шагом в борьбе с растущим недовольством населения будет развитие индустрии видеоигр. В данной сфере ИИ и без того развивается сумасшедшими темпами, но теперь на него косвенно будет возложена социальная функция. Молодые люди, которые не смогут найти работу или получить образование, будут вымещать своё недовольство перед экранами мониторов, телевизоров, мобильных устройств. То, что вчера было нарушением социального поведения, к 2030-му станет нормой. Развитие будет поддержано на самом высшем уровне, киберспорт заменит спорт физический, а системы онлайн-услуг и дешевые электронные устройства ещё больше отвлекут внимание людей от растущего кризиса. Социальная сфера С другой стороны, большее количество людей получит доступ к образовательным и информационным ресурсам, зависимость от местоположения и социального статуса будет снижена, что предоставит возможность большему количеству людей повысить свое благосостояние. Системы моделирования и прогнозирования выйдут на новый уровень; стихийные бедствия можно будет предвидеть еще раньше, социальную помощь оказывать адресно, городская инфраструктура будет развиваться эффективнее, статистические данные будут основываться на принципиально большей выборке. В 2030 для них всё ещё серьёзными проблемами будут преодоление физических препятствий вроде лестниц, бордюров и ям, взаимодействие с окружающим миром.

Как искусственный интеллект изменит нашу жизнь через 30–50 лет

Применение искусственного интеллекта в бизнес-сфере: современное состояние и перспективы К 2024 г. искусственный интеллект сократил время медицинских скрининговых исследований на 60% и в 50 раз ускорил реакцию медицинской сестры на тревожные события.
Что хотите найти? Энтузиасты искусственного интеллекта говорят о большом потенциале новых технологий, в то время как скептики напоминают о рисках и советуют не слишком спешить навстречу прогрессу.

Статьи и новости

Apple разрабатывает собственный серверный процессор для искусственного интеллекта с использованием 3-нм техпроцесса TSMC. Об актуальности искусственного интеллекта говорит и то, что сейчас им занимаются не только университеты или ИТ-компании, но и крупный бизнес. «Капсулы здоровья»: как искусственный интеллект изменит будущее медицины 18 апр. Второй разум: как развивается искусственный интеллект и что его ждёт в будущем. Будущее искусственного интеллекта Искусственный интеллект перестал быть научной фантастикой и уже сейчас основательно входит в нашу жизнь.

Что еще почитать

  • Новости национального портала искусственного интеллекта и нейросетей в РФ
  • Содержание
  • Проект по применению искусственного интеллекта
  • Новости национального портала искусственного интеллекта и нейросетей в РФ
  • Прогресс и развитие искусственного интеллекта
  • Его превосходительство ИИ: в каких направлениях искусственного интеллекта РФ опережает Запад

Искусственный интеллект и нейросети: технологическое будущее или красивый маркетинг

Нейросеть получила название Alpaca. Сейчас таких проектов стало больше и не все они основаны на LLaMA. Вот некоторые из самых интересных опенсорсных моделей, которые появились в 2023 году: Dolly от компании Databricks, специализирующейся на разработках в области больших данных. Отечественная ruGPT-3. Для неё опубликована лишь предобученная версия «претрейн» , поэтому для выполнения инструкций её нужно дообучать. Orca 2 от Microsoft. Даже из нашей скромной подборки видно, что открытые LLM разрабатывают все: крупные компании, небольшие стартапы и научные организации со всего мира. При необходимости они могут быть дообучены и настроены с учётом пожеланий заказчика и требований местного законодательства. Большинство опенсорсных моделей содержат меньшее число параметров, чем известные проприетарные сети. За счёт этого они могут быть запущены на относительно слабом «железе», иногда даже на домашнем компьютере. Сравнение возможностей опенсорсных и проприетарных LLM Инфографика: Майя Мальгина для Skillbox Media Опенсорсные модели, которые можно запустить локально на сервере или компьютере, снижают риски утечки данных и взлома инфраструктуры.

Но возрастает опасность, что такие нейросети могут использоваться в противозаконной деятельности. Например, для воссоздания голоса и внешнего вида реальных людей с их использованием для получения доступа к банковским счетам или социальной инженерии. Стоит быть осторожным при внедрении опенсорсных разработок от малоизвестных коллективов, поскольку они могут быть обучены на неполных или предвзятых данных и иметь недокументированные проблемы в работе. Точность их работы будет низкой. Читайте также: Коварный Open Source: какие опасности кроются в открытом и свободном ПО Основные тренды в развитии опенсорсных моделей Компании работают над опенсорсными моделями, схожими с аналогичными в проприетарными проектами: снижение числа галлюцинаций, увеличение длины контекста, повышение скорости и точности ответов, добавление мультимодальных возможностей и так далее. Разработчики ведут поиск архитектур, способных преодолеть недостатки популярных нейросетей типа «трансформер». На рынке существуют сотни открытых LLM, которые уже соревнуются между собой на виртуальных тестовых аренах, подобных Chatbot Arena Leaderboard от Hugging Face. Число опенсорсных проектов и их конкуренция продолжит расти. Стоимость внедрения и дообучения LLM снижается. Так, доработка и запуск нейросети Alpaca обошлись в 600 долларов.

Один из механизмов снижения стоимости — использование «синтетических» данных, созданных ИИ. Французский стартап Mistral AI в первый год своего существования привлёк 385 миллионов евро инвестиций. Это может стать прецедентом финансирования опенсорсных моделей за счёт инвесторов. Чего ждать в 2024 году Главное — появления ещё большего числа дешёвых и эффективных моделей с открытым исходным кодом от небольших стартапов и крупных компаний. Отрасль ИИ станет меньше зависеть от IT-гигантов. В новом году ждём от них самых навороченных нейронок. Опенсорсные модели займут нишу простых и доступных по стоимости решений. На их основе будут созданы персональные ИИ-ассистенты нового поколения, способные работать в смартфонах и других гаджетах. Мы ждём, что рост конкуренции в опенсорс-сообществе приведёт к появлению прорывных технологий, а не только к количественному усложнению моделей. Например, могут появиться новые способы обучения или архитектуры нейросетей, лишённые недостатков предшественников.

Не стоит забывать про опасности Open Source. В отсутствие контроля хакеры и интернет-мошенники начнут использовать генеративный интеллект для противозаконных действий.

Искусственный интеллект в космических системах Один из примеров — робот NASA Curiosity, предназначен для исследования состава марсианских почв и компонентов атмосферы.

Благодаря наличию ИИ, Curiosity может не только изучать местность, но и запоминать безопасные пути, а также прокладывать новые маршруты с учетом ранее полученных знаний о характере почвы или грунта. Другой робот, работающий на базе искусственного интеллекта, — Lauron. Он разработан в Технологическом институте Карлсруэ.

Этот пешеходный робот был разработан для статически стабильной ходьбы по неровной местности. Благодаря гибкой системе управления адаптируется к разным ландшафтам. Особенность робота состоит в наличии шести ног со специальными зацепами.

Lauron используется для исследования зон на космических объектах. Машина собирает информацию об окружающей среде и автономно планирует путь к цели. Во время передвижения Lauron «видит» препятствия, а затем либо проходит над ними, либо обходит их, если препятствия слишком высоки.

Пешеходный робот предназначен для осмотра и обслуживания сложных и опасных для человека зон. Так, среди его задач исследование поверхностей вулканов и других планет. Искусственный интеллект в спорте Организаторы команд по бейсболу, футболу и баскетболу анализируют индивидуальные данные игроков, их технику, физическое состояние.

Искусственный интеллект, используя эти данные, помогает предсказать потенциал спортсменов. Другой пример использования ИИ-технологий — прогнозирование результатов матчей. При проведении расчетов учитываются многие факторы, например, опыт и физическое состояние игроков, погодные условия, место проведения встреч.

Все это используется для составления спортивных прогнозов. Искусственный интеллект в системе муниципального управления Внедрение ИИ в муниципальное управление призвано сделать его более эффективным, правильно влиять на аудиторию, повышая шансы на получение нужного результата. Барака Обама, на вторых президентских выборах, нанял команду профессионалов, которая использовала ИИ.

Искусственный интеллект в культуре В октябре 2018 года была продана первая картина, над которой работал искусственный интеллект. При создании произведения использовался специальный алгоритм генеративной состязательной сети, который проанализировал более 15 000 портретов художников XV- XX веков. В музыкальной сфере звукозаписывающая студия Warner Music заключила долгосрочный контракт с робо-исполнителем Endel.

Всего будет выпущено 20 альбомов. Особенность Endel состоит в том, что он создан на базе искусственного интеллекта со специальным алгоритмом. Нейросеть способна не только писать обычную музыку, но и создавать индивидуальные композиции в зависимости от настроения слушателя.

В последнем случае анализируются личные данные человека, его самочувствие, местонахождение и другая информация. На основе этого для конкретного человека создается неповторимый трек, способный улучшить настроение и уменьшить чувство тревоги. Искусственный интеллект в образовании За счет внедрения ИИ в будущем система образования будет развиваться в двух направлениях.

Первое из них — адаптивное. Его главная задача состоит в том, чтобы решить проблему разной успеваемости у учеников. ИИ будет анализировать результаты обучающихся и на их основе адаптировать порядок курсов, дополнительно информируя преподавателей о степени усвоения материала.

Второе направление — прокторинг. Цель заключается в обеспечении контроля учеников во время прохождения тестов и экзаменов. Система отслеживает, разговаривают ли между собой школьники или студенты, как часто отводят глаза от тетради или компьютера, пользуются ли карманными гаджетами.

При выявлении нарушений ИИ сразу отправляет оповещение проктору — специалисту, отвечающему за мониторинг прохождения тестирований. Искусственный интеллект в судебной системе В числе первых ИИ стал использовать Китай. Нейросети пока используются в качестве помощников.

Они анализируют большие массивы данных из государственных хранилищ, берут во внимание характеристики конкретного человека, после чего выносят решение о его виновности или невиновности. Некоторые машины на базе искусственного интеллекта способны на основе статистической информации прогнозировать правонарушения людей в будущем.

Диалоговые приложения чат-боты и голосовые помощники TalkBank Platform. Версия 2. Медицина ПО для работы с цифровыми медицинскими изображениями Retina. Интеллектуальная настройка оборудования, контроль поставщиков, мониторинг информации о контрагентах, автоматическая оценка имущества, голосовые помощники и многое другое уже активно применяется в бизнесе. Одних только медицинских решений насчитывается около 40.

Светлана Захарова,.

Данная система анализирует данные медицинских полисов по операциям и процедурам в целях вычисления размеров страховых выплат. Еще одно направление применения алгоритмов искусственного интеллекта — это предиктивная аналитика. ИИ-алгоритмические технологии способны обрабатывать огромные массивы данных, выявлять закономерности и осуществлять прогностические функции. Система анализирует характеристики покупателей и товаров и на основании данного анализа автоматически составляет качественные рекомендации [18] Sergeev, 2020. Другой пример применения искусственного интеллекта в бизнесе — это Expedia, крупнейшая в мире онлайн-платформа по планированию путешествий.

В рамках этой платформы осуществляется целый ряд процедур от бронирования отелей до аренды транспорта. Компанией довольно эффективно используется сеть машинного обучения для персонализации процесса планирования поездки каждого клиента. В отличие от традиционных типов прогнозирования, предиктивная аналитика легко адаптируется к изменениям поведения, используя массивы вновь поступающих данных. В результате применения возможностей анализа неструктурированных данных с помощью ИИ-сервисов в процессе распространения мобильного контента, в частности сообщений в мессенджерах, электронных писем, фото и видео, осуществляется структурирование сгенерированных данных и сведений в целях получения возможностей их дальнейшей обработки. Указанный принцип заложен в основе работы сервиса Siri, который с помощью алгоритмов программы позволяет обрабатывать и структурировать человеческую речь, обеспечивая тем самым ее подготовку к проведению дальнейшего анализа. В системах анализа неструктурированных данных заложен огромный потенциал для производственных и ресурсодобывающих предприятий, которые накапливают массивы смешанной информации в течение долгого периода времени.

Такой анализ способен облегчить работу инженеров, в том числе сэкономить время на сортировку и организацию данных перед тем, как оценить их и выявить важные взаимосвязи. Кроме того, искусственный интеллект — это возможность делегировать роботам утомительные и трудоемкие для человека задачи. Например, роботизированный онлайн-ритейлер Ocado разработал систему компьютерного зрения и сеть роботов в целях замены процесса сканирования баркодов на своих торговых складах. Это позволяет ускорить поиск и выдачу нужных товаров [21] Alizada, Muradli, 2020. Внедрение искусственного интеллекта в различные бизнес-сферы начинается, как было показано выше, со сбора и обработки необходимых данных, трансформирования и систематизации их в нужный структурированный вид. Следующим шагом является разработка ИИ-алгоритмов, которые будут способны к самообучению.

Здесь необходимы квалифицированные ИТ-специалисты, которые смогут научить систему искусственного интеллекта всем необходимым для компании или бизнеса действиям. Сегодня на рынке создано достаточно большое количество готовых ИИ-решений, которые помогут настроить алгоритмы искусственного интеллекта быстрее и качественнее. После получения необходимой информации от системы искусственного интеллекта осуществляется перестройка всех технологических и бизнес-процессов, на которые оказывают влияние алгоритмы ИИ. На этом этапе, бесспорно, требуется участие не только машин, но и человека. Однако в дальнейшем ИИ с помощью нейронных сетей способен оптимизировать свою работу самостоятельно. Применение цифровых продуктов и моделей искусственного интеллекта в компаниях по нефтепереработке В качестве примера применения возможностей искусственного интеллекта в различных сферах бизнеса в данном исследовании представлены результаты работы IT-компании DD, функционирующей в г.

Екатеринбурге Свердловская область. Указанная компания занимается созданием моделей оптимизации процессов принятия ИИ-решений с 2018 г. В основе цифровых систем, разрабатываемых и внедряемых в проектах нефтепереработки, лежит цифровая платформа dataCORE. Этот объект интеллектуальной собственности создан непосредственно IT-специалистами компании [10]. Рассматриваемый цифровой продукт dataCORE представляет собой систему базовых IT-моделей, посредством которых возможно описание кинетических, физико-химических и термодинамических процессов, происходящих в производственных установках нефтеперерабатывающего цикла. Следует отметить, что сегодня dataCORE содержит в себе как отдельно функционирующие IT-элементы, так и готовые модули установки.

При этом заказчик в качестве итогового цифрового продукта получает IT-решение, представляющее собой цифровую систему, которая решает конкретную проблему, но не набор кодов.

1. OpenAI GPT-4

  • 1. OpenAI GPT-4
  • Заключение
  • Все свое, родное
  • Искусственный интеллект в действии - «Ведомости. Импортозамещение»
  • Искусственный интеллект, нейронные сети, квантовые компьютеры: AI Новости

Значимость искусственного интеллекта и нейронных сетей в современном мире

Искусственный интеллект (ИИ, AI) открыл перед человечеством новые возможности. Ученые Пермского Политеха объяснили, что такое нейросети, как они работают, какие перспективы открывают, чем опасен ИИ и как диалог с AI меняет мышление людей. Обучили нейросеть на данных открытых источников, в основном это новости СМИ и публикации открытых Telegram-каналов, посвященные теме искусственного интеллекта, за 2022 год. Технологии искусственного интеллекта (ИИ) стремительно развиваются. Вспоминаем всё, что случилось в мире нейросетей и искусственного интеллекта за 2023 год, и пытаемся понять, чего от них ждать в ближайшем будущем.

Ученые рассказали о пользе, опасности и перспективах искусственного интеллекта

Искусственным интеллектом пользуются уже свыше 90% российских компаний. Искусственный интеллект сегодня — В России роботы будут разрабатывать затопленные рудники. В торгово-финансовом секторе искусственный интеллект так же хорошо себя показывает в работе. Неужели искусственный интеллект оказался таким же бестолковым хайпом, как NFT? Искусственный интеллект — это базовая технология, которая будет главной движущей силой мировой экономики в ближайшие десятилетия, поэтому отношение государства к нему особое. Неужели искусственный интеллект оказался таким же бестолковым хайпом, как NFT?

Будущее сейчас. Как технологии искусственного интеллекта влияют на экономику и бизнес

Конец года — время подводить итоги. Редакция проекта «Мир 2051» подготовила для вас целую серию видео про технологические достижения, впечатлившие нас в 2023. В 2024 году 62,3% россиян стали чаще использовать технологии искусственного интеллекта (ИИ), прежде всего в смартфонах. Энтузиасты искусственного интеллекта говорят о большом потенциале новых технологий, в то время как скептики напоминают о рисках и советуют не слишком спешить навстречу прогрессу. искусственный интеллект — самые актуальные и последние новости сегодня. В статье узнаете, какие возможности сегодня появились благодаря ИИ в сфере EdTech, как искусственный интеллект может помочь преподавателям и учащимся повысить эффективность и результативность учебного процесса в 2024 году.

Похожие новости:

Оцените статью
Добавить комментарий