Новости термоядерный холодный синтез

Верифицирован реактор холодного термоядерного синтеза.

Экспериментальные установки

  • Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака
  • Украина. Генератор Росси. Термоядерный, холодный синтез. Теория, технология.
  • Российские физики рассказали о приручении термоядерного синтеза
  • Термоядерный синтез вышел на новый уровень: подробности - Hi-Tech
  • Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы
  • Мегаджоули управляемого термоядерного синтеза

Что не так с «японским ученым» и его холодным термоядом

Статья автора «Живой Космос» в Дзене: Холодный синтез — это мечта, над исполнением которой некоторые учёные трудятся уже несколько десятилетий. Холодный термоядерный синтез новости. Термоядерный синтез — это процесс, когда два легких атомных ядра объединяются в одно более тяжелое ядро, высвобождая большое количество энергии. «Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец.

Российские физики рассказали о приручении термоядерного синтеза

Реакции термоядерного синтеза возможны в случае экстремального нагрева атомов вплоть до 100 миллионов градусов по Цельсию, что приводит к их слиянию с побочным выделением большого количества энергии. Эта установка дает надежду на светлое будущее – термоядерный синтез может обеспечить человечество чистой энергией на тысячелетия вперед. Этот метод был назван управляемым термоядерным синтезом с инерционным удержанием, и спустя множество десятилетий работы его удалось воплотить в лабораторных условиях. Холодный ядерный синтез. Поступили новости о том, что американским ученым из Национальной лаборатории Лоуренса удалось повторить термоядерный синтез, высвободив больше энергии, чем было затрачено на запуск реакции.

«Очевидно, что авторы темнят»

  • Учёным удалось получить полезную энергию в термоядерной реакции / Хабр
  • Экспериментальные установки
  • Проект Google не смог обнаружить холодный ядерный синтез
  • Холодный синтез. Миф или лженаука? | Живой Космос | Дзен
  • Главные новости

Холодный синтез. Миф или лженаука?

Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность. О том, что значит переход к термоядерному синтезу для всего человечества, и что еще Россия готова сделать для того, чтобы новый реактор заработал как можно скорее? Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа. Цель ИТЭР — доказать возможность использования термоядерного синтеза в качестве экологически чистого, безопасного и практически неисчерпаемого источника энергии. Общепринятый основан на медленном термоядерном синтезе, в рамках которого физики планируют удерживать горячую плазму с помощью магнитных полей и электрических токов.

Холодный ядерный синтез — научная сенсация или фарс?

Термоядерный синтез — это процесс, когда два легких атомных ядра объединяются в одно более тяжелое ядро, высвобождая большое количество энергии. Успешное осуществление реакций холодного термоядерного синтеза повлечет за собой переворот в энергетике и геополитические изменения в мире, но все притязания на успешную реализацию этих реакций пока представляли собой или ошибки экспериментов, или аферы. Helion Energy планирует подключить реактор мощностью минимум 50 МВт — это немного, но речь здесь идет, скорее, о самом факте первого в истории коммерческого контракта на получение энергии посредством термоядерного синтеза. Статья автора «Живой Космос» в Дзене: Холодный синтез — это мечта, над исполнением которой некоторые учёные трудятся уже несколько десятилетий. Холодный термоядерный синтез новости. Автор admin На чтение 6 мин Просмотров 4645 Опубликовано 27.04.2024. На проходящем в эти дни в Солт-Лейк-Сити съезде Американского химического общества будет представлено около тридцати работ, так или иначе связанных с. Холодный ядерный синтез или ХЯС специалисты определяют как реакцию слияния1 атомных ядер в холодном водороде, например, мюонный катализ.

Холодный синтез. Миф или лженаука?

В отличие от ядерной энергетики, которую человечество «приручило» для мирных целей всего через пять лет после создания и испытания ядерной бомбы, термояд — аналог солнечных реакций — оказался не так прост. Со времени взрыва первой водородной термоядерной бомбы в 1953 году прошло уже 68! Не получается у людей «зажечь» свое земное «солнце», чтобы питало бесплатной энергетикой весь мир. Ходят, конечно, разговоры, что это просто невыгодно нефтяным магнатам — вот термоядерные технологии и не продвигаются вперед. Но отбросим конспирологию. Тем более что ископаемых запасов углеводородов осталось менее чем на полвека, а потому, как ни крути, надо доводить до ума мирный атом. Как объединить необъединяемое Если в ядерных реакциях ядрам урана, плутония, тория выгодней распадаться для запуска цепной взрывной реакции, то при термоядерном варианте, наоборот, балом правит реакция объединения легких ядер изотопов водорода, гелия и бора.

Зачем нам вообще понадобилась термоядерная энергия, если у нас есть уже атомные станции, работающие на принципе распада ядерного вещества? Во-первых, термоядерный синтез более безопасный, во-вторых, перспективный — на земле неисчерпаемые запасы дейтерия, который можно бесконечно добывать в Мировом океане. Классическая термоядерная реакция происходит следующим образом: берется ядро дейтерия изотоп водорода, состоящий из 1 протона и 1 нейтрона и ядро трития 1 протон и 2 нейтрона. Оба положительно заряжены и друг от друга, естественно, отталкиваются. Но физики народ упрямый — им надо во что бы то ни стало их объединить, принудительно разогнать до сверхскоростей при высочайшей температуре и сблизить настолько, чтобы было преодолено электростатическое отталкивание. Тогда и возникнет ядерная реакция с выделением энергии.

Атомы трития и дейтерия ионизируются и образуют плазму, которую до определенного времени нужно поддерживать в активном состоянии при очень высоких температурах, измеряемых в сотнях миллионов градусов, а в идеале прийти к тому, что реакция будет энергетически поддерживать саму себя. Цель — получить «положительный выход», чтобы выделившейся энергии в итоге оказалось больше, чем вы получили от розетки на разогрев той самой плазмы. Реактор должен дать больше, чем взял. И этого до сих пор, за десятки лет работы ядерщиков, не достиг еще никто ни в одной стране мира. Токамак или дырка от бублика? Ученые постоянно находятся в поиске.

Возьмем, к примеру, изобретенный в России самый традиционный способ получения плазмы — в устройстве под названием токамак тороидальная, или бубликообразная, камера с магнитными катушками. Кстати, слово «токамак» — это один из немногих русизмов, уже вошедший в обиход ученых всего мира. Плазма в этом реакторе удерживается в торе магнитным полем, не контактируя с материальной стенкой. По принципу токамака с начала 90-х годов прошлого века создается самый большой термоядерный реактор в мире — IТER. Огромное площадью около 1 квадратного километра сооружение на окраине французского города Кадараш стоит почти 20 миллиардов долларов. Россия вносит 10 процентов от этой суммы, но не деньгами.

Мы, к примеру, создаем устройства для нагрева плазмы, магнитную систему и прочие необходимые компоненты этого реактора. Несмотря на большие вложенные средства, самый большой проект, за который многие уже успели получить премии, до сих пор не реализован.

Ученые в США приблизились к получению полностью экологически чистой энергии, впервые добившись чистого прироста энергии в реакции термоядерного синтеза с инерционным удержанием. Эксперт был проведен при помощи небольшой гранулы водородной плазмы и самого большого в мире лазера, пишет Financial Times со ссылкой на трех собеседников, ознакомившихся с предварительными результатами работы ученых. Двое источников FT отметили, что энергии было получено больше, чем планировалось, что привело к повреждению диагностического оборудования и усложнило анализ результатов, прорыв уже широко обсуждается учеными.

В частности, им не удалось по всем параметрам приблизиться к условиям, которые называют наиболее благоприятными для протекания подобных реакций. Оба эксперимента с палладием требуют дополнительной работы: есть надежда на создание образцов с высокой концентрацией дейтерия, а опыты с тритием могут вызывать слишком слабый для регистрации эффект. В любом случае проект нельзя назвать провальным, считают авторы.

В частности, по их заявлениям они создали «лучший в мире калориметр», который использовали для регистрации выделений малейших количеств энергии в непростых экспериментальных условиях. Ученые собираются продолжить исследования в этом направлении. В частности, они хотят создать специфические фазовые состояния смесей элементов, которые раньше никто не получал. В частности, в России завершается подготовка эксперимента по лазерному запуску реакций с рекордной мощностью импульса. Про разнообразие существующих систем удержания плазмы мы писали в блоге «Больше токамаков» , а о проектах частных компаний — в материале «Это будет бомба». Тимур Кешелава.

Виктор Ильгисонис: Движемся по плану, скрупулезно выполняя намеченное.

Трудности, конечно, есть. Серьезный момент - заметное удорожание любого строительства в связи с известными причинами. Это может привести к смещению графика завершения строек на следующий этап проекта и к "заморозке" сооружения новых запланированных объектов. Чтобы этого избежать и обеспечить полноценное продление РТТН на период до 2030 года, как это определено Указом Президента Российской Федерации, абсолютно необходима поддержка правительства, всех вовлеченных в процесс федеральных органов исполнительной власти. Без этого, если финансирование федерального проекта и РТТН в целом будет вестись по остаточному принципу и подвергаться периодическому "обрезанию", наши амбициозные цели останутся таковыми лишь на бумаге. Токамак - это тот редкий случай, когда название научной установки, созданной в нашей стране, разошлось по миру и стало международным брендом. А что означает словосочетание "токамак с реакторными технологиями"?

И какие перспективы у такого, извините за сравнение, мутанта? Или это "токамак плюс"? Виктор Ильгисонис: Это рабочее название установки следующего поколения, сооружение которой должно было стать основной задачей программы РТТН на этапе 2025-2030 годов. Токамак с реакторными технологиями, сокращенно - ТРТ, призван совместить уже имеющиеся достижения в удержании высокотемпературной плазмы с практической отработкой технологий, необходимых для создания энергетического термоядерного реактора. Какие именно технологии и системы для этого нужны? Виктор Ильгисонис: Это инновационные разработки магнитных систем, конструктивных элементов бланкета, дивертора, первой стенки. Это оригинальные системы топливного цикла, нагрева плазмы и отвода энергии и многое другое.

Плазма в реакторе ИТЭР должна быть в десять раз горячее солнечного ядра, а температура в его криостате в 30 раз ниже, чем в морозильнике А разве этого нет в проекте ИТЭР? Виктор Ильгисонис: В том-то и дело. Наши решения оригинальны, таких нет ни в проекте ИТЭР, ни в национальных проектах зарубежных коллег. Абсолютно закономерно, что проект ТРТ возник в России - он способен вернуть нашей стране прежнее лидерство, во многом утраченное за постсоветское время. Так что ТРТ - не мутант, а, скорее, естественный продукт эволюции. И его перспективы будут зависеть от той поддержки со стороны правительства в финансировании программы РТТН, о которой мы уже говорили. К концу 2024 года планируем завершить разработку эскизного проекта и отработать ряд ключевых элементов технического проекта.

Навигация по записям

  • Холодный ядерный синтез — научная сенсация или фарс?
  • Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака
  • Прорыв в термоядерном синтезе - Телеканал "Наука"
  • Холодный ядерный синтез — научная сенсация или фарс?

В защиту холодного ядерного синтеза (ХЯС)

Впрочем, не надо переоценивать его немедленную практическую значимость. От этого результата до электростанций, работающих на реакциях термоядерного синтеза, — дистанция огромного размера». Вот и директор LLNL Ким Будил считает, что еще предстоит преодолеть «значительные препятствия» в отношении технологии термоядерного синтеза, прежде чем ее можно будет использовать в глобальных масштабах — или для начала в любом масштабе, если уж на то пошло. Такой процесс может занять годы или даже еще несколько десятилетий. Прежде всего NIF — это неимоверной сложности установка. Например, накопители конденсаторы для питания лазеров — это целое футбольное поле. Во-вторых, сейчас уже вполне отработана технология реакторов на быстрых нейтронах.

Уран, который эти реакторы позволяют вовлечь в ядерно-топливный цикл, дешевый, его много. В общем, физика процесса — интересная: исследование свойств веществ при сверхвысоких давлениях и сверхвысоких температурах. Пусть занимаются. Повторяю, это очень интересная физика. Но коммерческое использование этого достижения — не раньше, чем через несколько десятилетий. Как шутят сами физики, занимающиеся термоядом, через 50 лет или, может быть, на два дня раньше».

Действительно, заявления типа «Ученые США впервые в мире смогли получить от термоядерного синтеза больше энергии, чем на него потратили», «Научные прорывы в этой сфере позволят человечеству в будущем полностью отказаться от ископаемого топлива» существенно переоценивают значение эксперимента на установке NIF. Да, полученной «сверхнормативной» энергии хватит, чтобы вскипятить 10—15 чайников. Но журнал Nature напоминает: на работу всей установки потратили 322 МДж; лазеры выдали мощность на топливо, равную 2,05 МДж; конечная реакция произвела 3,15 МДж. Но с точки зрения промышленности все остается на своих местах: потратили 322, получили 3,15», — резюмируют сотрудники Московского инженерно-физического института в Telegram-канале «Эвтектика из МИФИ». Но в этой гонке принципов — токамаки vs инерциальный термояд — как-то оказался отодвинутым на периферию научного и государственного, что важно! Этот сценарий, как бы, зеркально противоположен лазерному термояду.

Если в реакторе NIF происходит внешнее обжатие капли термоядерного топлива, то в пузырьковом варианте, наоборот, нейтроны рождаются в результате экстремального схлопывания газовых пузырьков. Любопытно, что теоретическую схему этого процесса предложил как раз академик Роберт Нигматулин в середине 1990-х. По крайней мере в 1995 году он уже выступал с докладом «Перспективы пузырькового термояда» на научной конференции в США.

Однако проекты эти буксуют и требуют все больших инвестиций.

И многие считают, что реальных результатов можно ожидать не раньше следующего столетия. Тем временем есть частные проекты, которые обещают получить подобный источник энергии уже до конца этого десятилетия. В чем причина такого разночтения? Причина выглядит анекдотичной — выяснилось , что 13 сварщиков компании-субподрядчика, работавших на стройке, предоставили фальшивые сертификаты о своей квалификации.

Ранее новый гендиректор проекта Пьетро Барабаски заявил журналистам, что запланированный на 2025 года запуск термоядерного реактора, скорее всего, будет отложен на месяцы и даже годы. И такие проблемы у колоссального проекта, реализуемого во французском Кадараше департамент Буш-дю-Рон , возникают периодически. Причина этого в том, что те, кто им занят, часто всю жизнь совершенно не заинтересованы в его завершении, убежден бывший начальник инспекции по надзору за ядерной радиационной безопасностью госатомнадзора СССР, профессор Владимир Кузнецов: Владимир Кузнецов бывший начальник инспекции по надзору за ядерной радиационной безопасностью госатомнадзора СССР, профессор «Установка строится уже 20 с лишним лет. И каждые 3-4 года меняется сумма этого проекта.

Вся сумма этого проекта оценивается в 32 миллиарда евро, а начиналось все с восьми.

Стремительный рост населения спровоцировал и дефицит энергии. Сейчас, по прогнозам специалистов, потребность человечества в электроэнергии оценивается в 10 ТВт — почти в пять раз больше, чем наука и промышленность могут предложить. В-третьих, термоядерный синтез почти сразу станет причиной освоения... Дело в том, что, несмотря на достаточное количество дейтерия и трития, идеальным топливом для термоядерных реакторов будущего является гелий-3 — самый лёгкий изотоп гелия.

Его практически нет в чистом виде на Земле — для его наработки специальным образом обрабатывают тритий, а процесс этот стоит так дорого, что промышленное производство гелия-3 крайне невыгодно и потому лишено смысла. Идеальным местом добычи гелия-3 является именно Луна. В лунном грунте гелий-3 лежит в чистом виде, и его даже не нужно обрабатывать: достаточно просто собирать в капсулы специальным комбайном — и можно сразу отправлять на Землю ракетной экспресс-доставкой. Считается, что две тонны гелия-3, разогретые в токамаке или стеллараторе модернизированный термоядерный реактор , могут дать столько же энергии, сколько 30 млн тонн нефти, сжигаемой в печах ТЭС. Если верить специалистам в области энергетики, лунных запасов гелия-3, необходимого для термоядерного синтеза, будет достаточно для обогрева и освещения Земли в течение следующих шести-семи тысяч лет.

Правда, есть одна проблема. Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость. К китайскому опыту в этом направлении стоит приглядеться чуть внимательнее, поскольку физики из Поднебесной тестировали свой импульсный термоядерный реактор и повторяли опыты советских физиков. Однако российские учёные тем временем придумали, как из экспериментальной конструкции сделать пригодный к опытно-промышленному применению термоядерный реактор. На токамаке реакторе, в котором разогретую плазму удерживают магнитные катушки Т-15МД российские учёные будут отрабатывать все процессы.

Затем их масштабируют на реакторе ITER. Этот термоядерный реактор, строящийся сейчас на территории Франции, без опыта российских исследователей просто не запустится.

В лунном грунте гелий-3 лежит в чистом виде, и его даже не нужно обрабатывать: достаточно просто собирать в капсулы специальным комбайном — и можно сразу отправлять на Землю ракетной экспресс-доставкой. Считается, что две тонны гелия-3, разогретые в токамаке или стеллараторе модернизированный термоядерный реактор , могут дать столько же энергии, сколько 30 млн тонн нефти, сжигаемой в печах ТЭС. Если верить специалистам в области энергетики, лунных запасов гелия-3, необходимого для термоядерного синтеза, будет достаточно для обогрева и освещения Земли в течение следующих шести-семи тысяч лет. Правда, есть одна проблема. Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость. К китайскому опыту в этом направлении стоит приглядеться чуть внимательнее, поскольку физики из Поднебесной тестировали свой импульсный термоядерный реактор и повторяли опыты советских физиков. Однако российские учёные тем временем придумали, как из экспериментальной конструкции сделать пригодный к опытно-промышленному применению термоядерный реактор. На токамаке реакторе, в котором разогретую плазму удерживают магнитные катушки Т-15МД российские учёные будут отрабатывать все процессы.

Затем их масштабируют на реакторе ITER. Этот термоядерный реактор, строящийся сейчас на территории Франции, без опыта российских исследователей просто не запустится. Это значит, что без преувеличения жизни миллионов землян будущего зависят от российских физиков. Уже известно, что над проектом токамака Т-15МД трудятся лучшие специалисты Курчатовского института и Научно-исследовательского института электрофизической аппаратуры имени Ефремова, и, по сути, российские специалисты — единственные в своём роде: ни в одной другой стране мира попытки совладать с термоядерным синтезом не дошли до строительства реакторов подобного масштаба и типа, как в России. Инженер-атомщик Владимир Спиридонов в беседе с Лайфом отметил, что ни в США, ни в Европе, ни в Китае к разгадке секрета термоядерного синтеза пока не приблизились. Проблема та же, что и 30, и 40 лет назад. Нормальный источник возбуждения реакции не найден, механизм удержания — тоже. Теоретически, у того, кто первым освоит термоядерный синтез, будет монополия на всё, что связано с электричеством.

Выбор сделан - токамак плюс

Атомы водорода состоят из протонов и электронов, и поскольку электроны довольно легкие, их физические размеры составляют порядка 10-10 метра. Вы можете собрать множество атомов вместе достаточно близко, но их ядра, размер которых порядка 10-15 метра, никогда не сойдутся достаточно близко при таких низких температурах, чтобы их волновые функции перехлестнулись достаточно, чтобы запустить синтез. Но если вы замените электрон мюоном, нестабильной частицей со временем жизни в 2,2 микросекунды, атом водорода станет в сотни раз меньше. И тогда волновые функции смогут накладываться и начнется низкоэнергетический синтез. И это был бы замечательный источник энергии, если бы производство и управление мюонами не стоило так дорого само по себе. Из всех прочих идей, механизмов и устройств, нет такого эксперимента, который можно провести с протеканием синтеза и получить больше энергии, чем вы затратите. Не было опубликовано ничего, что проверила бы и одобрила группа авторитетных и независимых ученых. И нет никаких устройств, несмотря на бесконечные демонстрации, которое можно было бы купить, исследовать, использовать или просто разбить без помощи так называемых изобретателей. Несмотря на заявления, которые вы могли услышать от энтузиастов холодного синтеза типа Андреа Росси или Defkalion, никто из них так и не сделал работающего устройства, которое можно было бы пощупать самостоятельно или провести независимый эксперимент.

Любое утверждение об обратном не выдержит никакой критики. Это не говорит о том, что они лгут, что LENR невозможен или что все это глобальный обман. Но доказывать, что кто-то нас обманывает, это не задача науки; это задача хорошего ученого — доказывать, что мы не обманываем сами себя, когда делаем экстраординарные заявления. Как только это прояснится и люди, которые пытаются доказать возможность холодного синтеза, как говорится, «начнут с себя», тогда мы им поверим. Но до тех пор мы будем оставаться скептиками. Ведь как сказал Ричард Фейнман: «Первый принцип — ты не должен обманывать себя. А тебя обмануть проще всех».

Евгений Александров считает, что нет. Мюонный катализ явление синтеза слияния ядер изотопов водорода, происходящее при существ. Мюоны, образуя с ядрами мезомолекулы, способствуют сближению ядер на расстояния, достаточные для протекания ядерной реакции. Освобождаясь после акта реакции, мюоны могут повторить этот процесс т.

Но эта величина все же меньше, чем энергетические затраты на производство самого мюона 5-10 ГэВ. Таким ообразом мюонный катализ пока энергетичеки невыгодный процесс. Другое дело, что «мюонный катализ» нерентабелен.

О других и не говорим… Виктор Ильгисонис: Так вот: уже упомянутый мною Институт прикладной физики в Нижнем Новгороде разрабатывает и производит лучшие в мире гиротроны - специальные устройства для мощного нагрева электронной компоненты плазмы. Новосибирский ИЯФ создает источники ионов и нейтральных атомов высокой энергии, которые приобретаются всеми ведущими мировыми лабораториями. Санкт-Петербургский физтех - признанный авторитет в методах высокочастотного нагрева плазмы… Список можно продолжать. И сказанное в полной мере относится не только к институтам РАН, но и к организациям НИЦ "Курчатовский институт", к вовлеченным в проект университетам.

Какие риски здесь можно и должно прогнозировать с учетом нарастающих антироссийских санкций? Виктор Ильгисонис: Вопрос о пользе нашего участия задают уже лет пятнадцать - с того момента, как проект стартовал. Очевидная и главная польза - это ожидаемое появление в мире уникального экспериментального устройства, создание которого оказалось непосильным ни для одной страны. Причем не только в денежном или техническом плане, но и в интеллектуальном. А практическая польза - это освоение здесь, на родине, новых технологий и производства высочайшего качества. ИТЭР - это легитимная возможность "приземлить" у себя дома современные, в том числе уникальные зарубежные технологии, в создание которых вложились ведущие мировые разработчики. Мы получаем законное право использовать их в национальных целях.

Сегодня ИТЭР - реальный драйвер технологического развития. И я искренне рад, что мировое термоядерное сообщество оказалось способным отделить решение глобальной задачи человечества от сиюминутной политической риторики. Когда говорят о термоядерных исследованиях и пытаются объяснить назначение сложнейших систем того же ИТЭР, приводят для сравнения процессы внутри Солнца и других звезд. Заголовок в газете "Солнце в морозильнике" - это не сильное преувеличение к тому, что всем миром строят и обещают показать во французском Кадараше? Виктор Ильгисонис: Имеется в виду, полагаю, сравнение температур горячей плазмы внутри токамака и сверхпроводника в его магнитной системе? Если так, то это образное сравнение серьезно не дотягивает до итэровских реалий: плазма ИТЭРа должна быть в десять раз горячее солнечного ядра, а температура в его криостате - в тридцать раз ниже, чем в морозильнике! А в космосе, если сумеем "приручить" термояд, он какие открывает для человека возможности?

Виктор Ильгисонис: Здесь вы, что называется, бьете в самую точку. Я уверен, что истинное место термояда - как раз в космосе. Просто его там будет легче осуществить! Нам не понадобятся ни громоздкие вакуумные камеры со сложной системой откачки, ни дорогостоящий криостат со всеми сопутствующими системами.

Опровержения Флейшмана и Понса появились достаточно быстро, и, возможно, даже слишком быстро. Сергей Цветков, главный ученый Deneum, писал о том, что выделение тепла в эксперименте ученых начиналось через 40 дней — а первые опровержения появились уже через 30 дней.

В любом случае, на сегодняшний день не существует ни одного убедительного эксперимента, который бы однозначно доказывал достоверность результатов Флейшмана и Понса. С этим тезисом могут поспорить ученые, которые занимаются холодным ядерным синтезом, но к их мнению мало кто прислушивается. И после неудачных попыток повторить эксперимент научное сообщество пришло к выводу , что это невозможно. Холодный ядерный синтез перешел из области экспериментальной науки в сферу, где вроде бы еще не лженаука, но и доказательной базы процесса не существует при этом. Тем не менее, откровенный скепсис научного сообщества не остановил эксперименты. Коммерческие эксперименты Холодный ядерный синтез получил новое название — низкоэнергетические ядерные реакции LENR и работа продолжилась.

Химики, инженеры и инвесторы продолжают попытки генерации избыточного тепла, надеясь на ошеломительные коммерческие прибыли. Миллс еще в 1991 году представил свою теорию, согласно которой электрон в водороде может переходить в новые состояния, высвобождая огромное количество энергии. Он назвал новый тип водорода «гидрино» и основал компанию Brilliant Light Power BLP , которая пыталась использовать технологию с коммерческой стороны. BLP до сих пор представляют прототипы своих устройств, но трудно сказать, что происходит в них на самом деле. У него даже был заключен контракт с американской армией, но, по некоторым сообщениям , устройства не работали согласно своим спецификациям. Самойловских говорит, что они знакомы с Росси: «Мы не заглядывали внутрь, но у нас есть достаточно веские основания полагать, что у него этот продукт есть.

И он рано или поздно будет в какой-то мере реализован». За годы исследований сфера получила достаточно большой объем инвестиций, но ни одного работающего аппарата, прошедшего независимые экспертизы и доказавшего свою работоспособность, представлено не было. Новая старая технология Deneum, в свою очередь, уже представила концепт своего модуля — электростанции с капсулой, содержащей рабочее тело. Принцип действия основан на взаимодействии веществ внутри рабочего тела при нагревании.

Мегаджоули управляемого термоядерного синтеза

объяснения поддерживали в новостях то, что называлось "холодным термоядерным синтезом" или "путаницей термоядерного синтеза".[32. Главная» Новости» Холодный ядерный синтез новости последние. На протяжении десятков лет холодный синтез проявлял поразительную капризность и упорно продолжал мучить своих исследователей неповторяемостью экспериментов. Если весь этот изотоп использовать в термоядерном реакторе, выделится столько же энергии, как при сжигании 300 л бензина. В термоядерном синтезе ядра разгоняются до высоких скоростей (в токамаках и в Солнце — из-за высокой температуры). Холодный термоядерный синтез в обыкновенной кружке.

Похожие новости:

Оцените статью
Добавить комментарий