Новости термоядерная физика

Слишком часто разработчики термоядерных реакторов сталкивались с непредсказуемостью, завышенными оценками, новыми неприятными фактами из области физики плазмы. На фото: физик-теоретик, участник Манхэттенского проекта от Великобритании, передавший сведения о ядерном оружии Советскому Союзу, Клаус Фукс. Случайное открытие физиков позволяет стабилизировать реакции термоядерного синтеза 5.5. Термоядерный реактор Zap сначала вдувает газ в камеру, затем мощный импульс энергии ионизирует его в плазменную нить, проводящую сверхсильный ток.

Какие проблемы возникли на ИТЭР и почему задерживается энергопуск российского токамака

Учёные из США впервые сгенерировали больше энергии в ходе реакции управляемого термоядерного синтеза, чем потребляет топливная капсула, в которой запускается слияние. 83-летний физик Питер Хиггс, еще в 60-х предсказавший существование поля, которое отвечает за массу всех элементарных частиц, расплакался. 83-летний физик Питер Хиггс, еще в 60-х предсказавший существование поля, которое отвечает за массу всех элементарных частиц, расплакался. Как рассказал Михаил Ковальчук, для проведения фундаментальных исследований в области термоядерной физики первым делом приобретаются подобные установки. 83-летний физик Питер Хиггс, еще в 60-х предсказавший существование поля, которое отвечает за массу всех элементарных частиц, расплакался. Учёные из США впервые сгенерировали больше энергии в ходе реакции управляемого термоядерного синтеза, чем потребляет топливная капсула, в которой запускается слияние.

Выбор сделан - токамак плюс

Температура в 10 раз больше, чем в центре Солнца, и задачи космического масштаба — запустить термоядерные реакции, которые происходят в недрах звезд. Звезда по имени токамак — рукотворное Солнце на поверхности на Земле. Эта установка дает надежду на светлое будущее — термоядерный синтез может обеспечить человечество чистой энергией на тысячелетия вперед. И запуск российской установки — большой шаг на этом пути. Токамак Т-15 МД размером с небольшой дачный домик полностью спроектировали и построили в России за 10 лет. Подобный термоядерный реактор должен помочь заменить атомные электростанции и работать на безопасном и доступном топливе — дейтерии и тритии. На несколько порядков больше, чем сжигание нефти или газа того же количества, в десятки тысяч раз», — сообщил научный руководитель комплекса термоядерной энергетики и плазменных технологий НИЦ «Курчатовский институт» Петр Хвостенко. Еще в 50-х годах прошлого века советские ученые придумали установку в форме тора, или бублика, где разогретую плазму удерживает магнитное поле.

Тогда и родился термин «токамак» тороидальная камера с магнитной катушкой. Сегодня в работе с токамаками российские специалисты по-прежнему впереди планеты всей.

В 1960-х годах группа ученых-первопроходцев из LLNL выдвинула гипотезу, что лазеры можно использовать для индукции термоядерного синтеза в лабораторных условиях. Ученые развивали идею термоядерного синтеза с инерционным удержанием в лаборатории в течение почти 60 лет, пока впервые достигли успеха. Хотя текущее количество энергии, которое получает установка, лишь незначительно превышает затраты, возможность выхода в «плюс» — большой прорыв для термоядерной энергетики. Читать далее:.

Есть и физические задачи, которые также требуют решения. Когда токамак работает в режиме хорошего удержания, плазма сходит с поверхности «бублика» в специальное устройство дивертор порциями, а не сплошным потоком. И каждая такая порция несет разрушительную энергию: тепловая нагрузка на него оказывается больше, чем на внутренние стенки жидкостных ракетных двигателей. Поэтому, если не предпринимать никаких мер, материал конструкции быстро истончится. На этих установках наши специалисты занимаются не только собственными исследованиями физики плазмы, но и решают нетривиальные физические задачи для проекта ИТЭР. Как работает такой научный обмен? Возьмем физику неустойчивостей, в которой мы работаем. Явления подобной природы проявляются одинаково как в закрытых, так и в открытых системах, где есть магнитное удержание плазмы. Например, на токамаках ученые научились бороться с желобковой неустойчивостью, и эти знания мы можем использовать в открытых ловушках. Но есть вопросы, связанные, к примеру, со взаимодействием плазмы и материала, которые нельзя решить на существующих сегодня токамаках. В частности, на них нельзя достичь параметров плазменных потоков, которые будут контактировать со стенками термоядерного реактора. А вот на открытых ловушках в силу их геометрической конфигурации такие потоки получить можно. Поэтому подобные эксперименты проводятся в ИЯФ, а полученная информация используется в проекте ИТЭР Еще время от времени и по неизвестным причинам происходит так называемый срыв плазмы, когда она переходит в неустойчивое состояние и полностью изливается в дивертор. Задача распадается на несколько составляющих: какие предельные нагрузки выдерживает дивертор, как уменьшить поток плазмы и есть ли способ ее переизлучить, как ликвидировать или управлять таким срывом? Можно смело утверждать, что термоядерная энергетика начнет реально удовлетворять энергетические потребности человечества уже в последней трети текущего века — именно тогда, когда ожидается энергетический дефицит, если учитывать прогнозы по выравниванию энергопотребления среди стран. Время термоядерной энергетики действительно пришло: промышленный термоядерный реактор очень скоро будет необходим всем развитым странам мира. Важно и то, что оборудование и технологии, которые мы используем в работе для ИТЭР, помогут нам создавать установки для самостоятельных фундаментальных исследований, которые проводятся в институте. Благодаря первоклассной команде инженеров, технологов и ученых, которая десятилетиями формировалась в нашем институте, и творческому подходу к решению задач мы получаем отличные результаты» Что касается ИТЭР, то этот мировой научно-исследовательский проект явился настоящим шагом в неизведанное. Литература Кругляков Э. Шошин А. Burdakov A. Axially symmetric magnetic mirrors: history of development and future prospects.

В этих условиях атомы водорода подверглись слиянию, выделяя 1,3 мегаджоулей энергии за 100 триллионных долей секунды, что составляет 10 квадриллионов ватт мощности. Интенсивная среда, создаваемая направленными внутрь ударными волнами, создала самоподдерживающуюся реакцию ядерного синтеза. Однако за год ученые так и не смогли повторить эксперимент. В четырех аналогичных опытах удалось получить только примерно половину от энергии, полученной в первоначальном успешном эксперименте.

Академик В.П. Смирнов: термояд — голубая мечта человечества

Шесть кольцеобразных полоидальных магнитов с полевой катушкой будут окружать машину ИТЭР для формирования плазмы и обеспечения ее стабильности путем отстранения от стенок вакуумного реактора. Россия отвечает за широкий спектр электротехнических компонентов, из которых состоят коммутационные сети, блоки быстрого разряда, комплекты поставки измерительной аппаратуры. Налажено производство сборных шин и переключающих сетевых резисторов, завершается программа НИОКР для компонентов блока быстрой разгрузки. Японские инженеры и ученые также работают над магнитной системой, в частности, над дизайн-проектом катушек тороидального поля и над получением сверхпроводящих ниобий-оловянных стрендов. Получение первой плазмы на установке ИТЭР запланировано на 2025 год, выход на полную мощность — на 2035 год. Недавно о желании присоединиться к проекту заявили Австралия и Иран. Это еще одна из важнейших задач, которую должен решить ИТЭР. Кстати, бланкет и дивертор — основные плазменные компоненты. Следует отметить, что первая стенка реактора, та, что ближе всего к плазме, всего в трех метрах от нее, — неотъемлемая часть бланкета.

Идея разделения этих двух компонентов была отброшена в 1980-х годах; ученые пришли к их унификации для удобного и безопасного обслуживания. Бланкет со встроенной наработкой трития и интегрированной первой стенкой реактора обеспечит защиту от высокоэнергетических нейтронов. В ИТЭР первая стенка будет изготовлена из бериллия, а для остальной поверхностной структуры будут использоваться высокопрочные медные сплавы и нержавеющая сталь. Для удобства обслуживания защитная стенка внутри реактора модульная, состоящая из 440 сегментов. Дивертор от англ. Его главная функция — минимизировать плазменное загрязнение, а также отводить тепловые и нейтронные нагрузки от стенок реактора. Дивертор будет состоять из 54 кассетных сборок с опорной конструкцией из нержавеющей стали, бронированной вольфрамовыми плитками. Три главных плазменных звена: внутренняя и внешняя вертикальные мишени, центральный купол — составляют диверторную сборку.

И для дивертора, и для бланкета будет внедрена система охлаждения, отводящая тепло от этих устройств и преобразовывающая его в электрическую энергию. Вид вакуумного сосуда с основными положениями компонентов, обращенных к плазме: первой стенки, бланкета и дивертора Рис. Вид в поперечном разрезе основных компонентов стенки токамака Рис. Схематическое изображение диверторного узла Осторожно, «горящая плазма»! Один из важнейших критериев проекта — безопасность. При осуществлении термоядерного синтеза не инициируется цепная реакция, а значит, при любом нарушении или прекращении подачи топлива плазма охлаждается в течение нескольких секунд и затухает, словно пламя. Тритий, содержащийся в топливе, будет вырабатываться в замкнутом контуре, поэтому должны строго соблюдаться меры безопасности при обращении с тритиевым топливом внутри реактора. Тритий — слабый бета-излучатель, он не проникает в человеческую кожу, но очень токсичен для организма при попадании через дыхательные пути.

ИТЭР был разработан для защиты от выброса трития и воздействия радиоактивности на работников. Также стоит учесть активацию внутренних компонентов и плазменной камеры при взаимодействии с нейтронами высокой энергии. Материалы внутри реактора могут быть загрязнены небольшим количеством радиоактивной пыли.

Наиболее распространенная конструкция термоядерных реакторов — токамаков — работает за счет перегрева плазмы.

Термоядерным реакторам требуются температуры во много раз выше, чем на Солнце, потому что они должны работать при гораздо более низком давлении. Разогреть плазму несложно, но пока не получается найти способ долго удержать ее, чтобы она не прожигала стенки реактора, не нарушая при этом процесс термоядерного синтеза.

До этого все подобные эксперименты всегда характеризовались затратами, превышающими полученную энергию. Официального объявления ещё не было. Ожидается, что это будет сделано завтра.

Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике.

Эта энергия в 2-5 раз превосходила энергию рентгеновского излучения от стенок хольраума и в 10-20 раз — энергию, переданную топливной сфере и свидетельствовала о том, что зажженная термоядерная реакция в маленькой точке в центре сжатой сферы успевает прогреть и поджечь окружающий ее относительно холодный топливный материал. Теперь ученые, работающие в NIF провели пресс-конференцию, где рассказали, что 5 декабря 2022 года, при мощности лазера в 114 процентов от номинальной командой было получено заметное превышение выхода термоядерной энергии 3,15 мегаджоулей над вложенной энергией лазера 2,05 мегаджоулей , что является рекордным достижением для всех установок термоядерного синтеза. Журнал Science добавляет несколько деталей про выстрел 5 декабря. Рекордный эксперимент потребовал заметных усилий от команды экспериментаторов. Для корпуса топливной капсулы использовался искусственный алмаз, который давал наиболее гладкую сферическую поверхность без пор. Было максимально уменьшено отверстие, через которое капсула заполняется топливом. Лазер был настроен на максимальную мощность и энергию, что позволило придать испаренной оболочке капсулы больше ускорения и сжать топливо чуть больше.

За три месяца до рекорда, команда NIF уже опробовала эти улучшения, получив энерговыход в 1,2 мегаджоуля. Проблема, как оказалась, лежала в недостаточно симметричном обжатии, на последнем этапе капсула превратилась скорее в блин, чем в плотный шарик. Путем подстройки мощности каждого из 192 лучей удалось улучшить сферичность сжатия и как итог — получить рекордную термоядерную энергию. Никаких других подробностей об эксперименте нет: команда не опубликовала научную статью о своем результате. Много это или мало? Эффективность термоядерных установок оценивают в Q — это отношение выделившейся термоядерной энергии к вложенной в плазму энергии нагрева. Сейчас Q в эксперименте на NIF достиг значения 1,54. Это значительно лучше достижений другой ветви управляемого термоядерного синтеза — магнитного удержания плазмы с помощью токамаков.

Однако с инженерной точки зрения эти показатели не очень существенны, поскольку важен баланс затраченной и полученной электроэнергии. Посмотрим, что такое эксперимент на NIF с точки зрения баланса энергии цифры взяты из эксперимента 2021 года : NIF тратит 400 мегаджоулей на работу ламп-вспышек и еще 100 мегаджоулей на другие нужды установки Лампы-вспышки накачивают примерно 50 мегаджоулей в активную среду генерации лазеров Затем 4,2 мегаджоуля инфракрасного лазерного излучения конвертируют в ультрафиолет Лазерный ультрафиолет приносит в хольраум 1,8 мегаджоуля Хольраум производит 300 килоджоулей рентгеновского излучения Капсула поглощает 40-50 килоджоулей рентгена и схлопывается, производя термоядерную энергию — 1,35 мегаджоулей. В декабрьском эксперименте термоядерной энергии выделилось более чем в два раза больше — 3,05 мегаджоулей. Цифры говорят, что инженерам еще надо долго совершенствовать установку, чтобы она научилась перекрывать начальные затраты в сотни мегаджоулей. Поэтому, хотя нам может показаться, что мы видим смену лидера — после 50 лет превосходства токамаков в Q, внезапно вперед вырывается инерциальный синтез, зрелость токамаков, как энергетических установок значительно выше. Инженерам придется ответить на множество вопросов: как оптимально поглощать и отводить на генераторы гигаджоули энергии, выделяющиеся в шарике размером несколько микрон? Как эффективно получать несуществующий на земле изотоп тритий, используемый в качестве топлива? Как дешево и массово производить мишени, требующие рекордных характеристик?

Как сделать надежной и недорогой лазерную установку, которая должна выдавать несколько мегаджоулей раз в секунду или около того, тогда как сегодня ее подготовка к одному выстрелу занимает полдня, и как быстро устранять ее неисправности? Многие десятилетия результаты установок с инерциальным удержанием вызывали скепсис и уныние, а строительство новых установок финансировалось только военными. Казалось, что это направление никогда не перейдет в рост.

Искусственное солнце: как первый в мире термоядерный реактор изменит мир

Новый термоядерный рекорд: китайский токамак удерживал плазму 403 секунды - Телеканал "Наука" Актом термоядерной реакции является слияние двух тяжелых ядер водорода (дейтерия с дейтерием или дейтерия с тритием) в ядро гелия.
Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить Китайский термоядерный реактор поставил рекорд в ядерной энергетике.
Искусственное солнце: как первый в мире термоядерный реактор изменит мир // Новости НТВ «Команда физиков, работающих на установке NIF, провела первый в истории контролируемый эксперимент по термоядерному синтезу, достигнув энергетической безубыточности.

Ученые в США провели третий успешный эксперимент с ядерным синтезом

Прототип российского термоядерного реактора: для чего он необходим? Концептуальный термоядерный синтез Термоядерный реактор работает на топливе, состоящем из смеси дейтерия и трития.
Выбор сделан - токамак плюс Российские ученые совершили рывок к "главной задаче физики XXI века" — управляемой термоядерной реакции.
Учёным удалось получить полезную энергию в термоядерной реакции / Хабр С середины прошлого века физики всего мира ищут возможность воспроизвести реакцию термоядерного синтеза, происходящую в центре звезд.

Новосибирские физики ускорили плазму в установке - основе термоядерного ракетного двигателя

Российские ученые совершили рывок к "главной задаче физики XXI века" — управляемой термоядерной реакции. Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба". К 1990-м стало ясно, что без принципиально новых технологий и углубления теоретических знаний по ядерной физике термоядерное пламя приручить не удастся.

Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы

Управляемый термоядерный синтез — голубая мечта физиков и энергетических компаний, которую они лелеют не одно десятилетие. Заключить искусственное Солнце в клетку. К 1990-м стало ясно, что без принципиально новых технологий и углубления теоретических знаний по ядерной физике термоядерное пламя приручить не удастся. Термоядерный синтез представляет собой процесс, во время которого два лёгких атомных ядра объединяются в одно более тяжёлое с высвобождением большого количества энергии.

Термоядерный запуск. Как Мишустин нажал на большую красную кнопку

Термоядерный синтез вышел на новый уровень: подробности - Hi-Tech Двигатель на термоядерной тяге разгонит космический корабль до 800 000 километров в час.
Термоядерный синтез новости • AB-NEWS Случайное открытие физиков позволяет стабилизировать реакции термоядерного синтеза 5.5.
Российский инженер рассказала о значении термоядерного прорыва американских ученых Американские физики утроили энергетическую эффективность экспериментального термоядерного реактора NIF.

Ученые в США провели третий успешный эксперимент с ядерным синтезом

Темы Это интереснейший физический процесс, который пока в теории может избавить мир от энергетической зависимости от ископаемых источников топлива. В основе процесса лежит синтез атомных ядер из более легких в более тяжелые с выделением энергии. В отличие от другого использования атома — выделение из него энергии в ядерных реакторах в процессе распада — термоядерный синтез на бумаге практически не будет оставлять радиоактивных побочных продуктов.

Работа физиков из Ливерморской национальной лаборатории Лоуренса в Калифорнии была опубликована в журнале Physical Review Letters. Термоядерная реакция позволяет звездам генерировать огромные объемы энергии, однако на Земле ее крайне трудно воспроизвести, так как для поддержания такой реакции требуется чрезвычайно высокоэнергетическая среда. Для этого ученым необходимо обеспечить стабильное «зажигание», которое выводит реакцию на самоподдерживающийся уровень.

Физики потратили более десяти лет на создание технологии воспламенения термоядерной реакции, и в августе 2021 года они смогли успешно провести эксперимент.

Одно из построенных решений представлено ИТЭР, ранее известным как Международный термоядерный экспериментальный реактор, который строится с 2010 года в Карадаше, Франция. Первые эксперименты, первоначально запланированные на 2018 год, были перенесены на 2025 год.

Работа физиков из Ливерморской национальной лаборатории Лоуренса в Калифорнии была опубликована в журнале Physical Review Letters. Термоядерная реакция позволяет звездам генерировать огромные объемы энергии, однако на Земле ее крайне трудно воспроизвести, так как для поддержания такой реакции требуется чрезвычайно высокоэнергетическая среда. Для этого ученым необходимо обеспечить стабильное "зажигание", которое выводит реакцию на самоподдерживающийся уровень. Физики потратили более десяти лет на создание технологии воспламенения термоядерной реакции, и в августе 2021 года они смогли успешно провести эксперимент.

Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER

Учёные из США впервые сгенерировали больше энергии в ходе реакции управляемого термоядерного синтеза, чем потребляет топливная капсула, в которой запускается слияние. Зачем на самом деле строится самый большой термоядерный реактор. — Валентин Пантелеймонович, понятно, что получение термоядерной плазмы — предел мечтаний физиков-ядерщиков.

Российские физики рассказали о приручении термоядерного синтеза

Дело в том, что условия, создающиеся в топливной капсуле и хольрауме очень похожи на то, что происходит в термоядерном боеприпасе в момент срабатывания. И изначально NIF создавался как большой стенд для верификации нового поколения программ, симулирующих поведение ядерного оружия, а энергетическое направление было приятным бонусом, на который выделялось меньше трети фондирования. Но команда термоядерщиков LLNL продолжала совершенствовать режимы работы лазеров, конструкцию хольраума и капсулы. Вместе это позволило поднять симметричность и стабильность сжатия капсулы, побороть лазерно-плазменные неустойчивости на хольрауме, увеличить эффективность передачи энергии от лазеров на хольраум и от хольраума на сжатие капсулы. Как работает NIF Специально профилированный во времени затравочный импульс «мастер-лазера» расщепляется на 192 луча, каждый из которых проходит 4 раза через 192 усилителя лазерного излучения и направляется на систему преобразования частоты, где исходное инфракрасное превращается в рабочий ультрафиолет. Через систему фокусировки 192 луча с точностью в 10 микрон проходят через окна в хольрауме, попадая на его внутренние стенки, за 10 наносекунд разогревая их до 3 миллионов градусов. Сфера с топливом, «купаясь» в излучаемом хольраумом рентгеновском излучении начинает испаряться снаружи, а реактивная сила отдачи начинает сжимать внутренние слои к центру симметрии капсулы.

Примерно за 2 наносекунды при давлении в 200 миллиардов атмосфер размер сферы уменьшается в 30 раз, а плотность топлива возрастает до 1000-1300 грамм на кубический сантиметр — примерно в 100 раз плотнее свинца. В момент максимального сжатия, в разогретой центральной части начинается термоядерная реакция, которая, как пожар, распространяется от центра к периферии. Всего несколько десятков пикосекунд продолжается горение, мощность которого в этот короткий миг сравнимо с потоком солнечной энергии на всю планету Земля и в десятки тысяч раз превосходит всю остальную мощность человеческой цивилизации. Как итог — в 2019-2020 году выход термоядерной энергии в экспериментах NIF начал заметно расти, перешагнул порог 100 килоджоулей, а весной 2021 года несколько выстрелов дали энергии от 400 до 700 килоджоулей и наконец 8 августа 2021 года — 1350 килоджоулей. Эта энергия в 2-5 раз превосходила энергию рентгеновского излучения от стенок хольраума и в 10-20 раз — энергию, переданную топливной сфере и свидетельствовала о том, что зажженная термоядерная реакция в маленькой точке в центре сжатой сферы успевает прогреть и поджечь окружающий ее относительно холодный топливный материал. Теперь ученые, работающие в NIF провели пресс-конференцию, где рассказали, что 5 декабря 2022 года, при мощности лазера в 114 процентов от номинальной командой было получено заметное превышение выхода термоядерной энергии 3,15 мегаджоулей над вложенной энергией лазера 2,05 мегаджоулей , что является рекордным достижением для всех установок термоядерного синтеза.

Журнал Science добавляет несколько деталей про выстрел 5 декабря. Рекордный эксперимент потребовал заметных усилий от команды экспериментаторов. Для корпуса топливной капсулы использовался искусственный алмаз, который давал наиболее гладкую сферическую поверхность без пор. Было максимально уменьшено отверстие, через которое капсула заполняется топливом. Лазер был настроен на максимальную мощность и энергию, что позволило придать испаренной оболочке капсулы больше ускорения и сжать топливо чуть больше. За три месяца до рекорда, команда NIF уже опробовала эти улучшения, получив энерговыход в 1,2 мегаджоуля.

Проблема, как оказалась, лежала в недостаточно симметричном обжатии, на последнем этапе капсула превратилась скорее в блин, чем в плотный шарик. Путем подстройки мощности каждого из 192 лучей удалось улучшить сферичность сжатия и как итог — получить рекордную термоядерную энергию. Никаких других подробностей об эксперименте нет: команда не опубликовала научную статью о своем результате. Много это или мало? Эффективность термоядерных установок оценивают в Q — это отношение выделившейся термоядерной энергии к вложенной в плазму энергии нагрева. Сейчас Q в эксперименте на NIF достиг значения 1,54.

Это значительно лучше достижений другой ветви управляемого термоядерного синтеза — магнитного удержания плазмы с помощью токамаков.

Критерием служит потребность страны в решении конкретной проблемы, чтобы сосредоточить на ней мощь "Росатома" - техническую и интеллектуальную. Но браться стоит только за высокотехнологичные и наукоемкие направления. Наши профессиональные компетенции слишком дороги, чтобы расходовать их на обычные бизнесы, как бы прибыльны они ни были. Одно из таких направлений - термоядерные исследования и плазменные технологии. Это третий федеральный проект внутри РТТН - комплексной программы развития техники, технологий и научных исследований в области использования атомной энергии. Он третий по важности, срочности, ожиданиям? Виктор Ильгисонис: Он просто один из пяти, по порядку.

Не следует придавать нумерации какое-либо значение. Но если говорить о числе вовлеченных в проект организаций вне контура "Росатома", то термоядерный проект - однозначно первый. Его масштабность, широта охвата, многообразие ожидаемых результатов и их применений в значительной степени обусловили причисление всей программы РТТН к числу национальных проектов. Самой дорогостоящей частью "термоядерного" федерального проекта, как и всей программы РТТН, принято считать модернизацию существующей инфраструктуры и создание новых экспериментальных установок. Что тут в приоритетах? Где и на каких площадках уже ведутся такие работы? Виктор Ильгисонис: В действующей версии программы главный приоритет - это вывод на рабочие режимы токамака Т-15МД в Национальном исследовательском центре "Курчатовский институт", который должен быть оснащен различными системами дополнительного нагрева плазмы, диагностики, сбора и обработки данных, генерации тока и другими современными элементами. Осуществляются поддержка и развитие экспериментальной базы термоядерных исследований на площадках Физико-технического института имени Иоффе в Санкт-Петербурге, Института ядерной физики имени Будкера в Новосибирске, Национального исследовательского ядерного университета МИФИ в Москве.

Серьезные "задельные" работы по развитию инфраструктуры, ориентированные на следующий до 2030 года этап реализации федерального проекта, ведутся в научном центре ТРИНИТИ в Троицке. Год назад вы говорили о 110 контрольных точках по этому проекту, на 2023-й их в полтора раза больше. Как продвигаетесь по маршруту и что требует особого внимания? Виктор Ильгисонис: Движемся по плану, скрупулезно выполняя намеченное. Трудности, конечно, есть. Серьезный момент - заметное удорожание любого строительства в связи с известными причинами. Это может привести к смещению графика завершения строек на следующий этап проекта и к "заморозке" сооружения новых запланированных объектов.

Вакуумная камера, где и обитает плазма. Инжектор нейтрального луча и радиочастотный нагрев плазмы до 150 млн градусов. Сверхпроводящие магниты, которые обуздают плазму. Бланкеты, защищающие камеру и магниты от бомбардировки нейтронами и нагрева. Дивертор, который отводит тепло и продукты термоядерной реакции. Инструменты диагностики для изучения физики плазмы. Включают манометры и нейтронные камеры. Криостат — огромный термос с глубоким вакуумом, который защищает от нагрева магниты и вакуумную камеру А вот так выглядит «маленькая» вакуумная камера с моделями работников внутри. Она 11,4 метра в высоту, а вместе с бланкетами и дивертором будет весить 8,5 тыс. Внутри них циркулирует вода. Вырывающиеся из плазмы свободные нейтроны попадают в эти бланкеты и тормозятся водой. Из-за чего она нагревается. Сами бланкеты защищают всю остальную махину от теплового, рентгеновского и уже упомянутого нейтронного излучения плазмы. Такая система необходима для того, чтобы продлить срок работы реактора. Каждый бланкет весит порядка 4,5 тонны, их будет менять роботизированная рука примерно раз в 5—10 лет, так как этот первый ряд обороны будет подвержен испарению и нейтронному излучению. Но это далеко не все. К камере присоединяется внутрикамерное оборудование, термопары, акселерометры, уже упомянутые 440 блоков бланкетной системы, системы охлаждения, экранирующий блок, дивертор, магнитная система из 48 элементов, высокочастотные нагреватели плазмы, инжектор нейтральных атомов и т. И все это находится внутри огромного криостата высотой 30 метров, имеющего такой же диаметр и объем 16 тыс. Криостат гарантирует глубокий вакуум и ультрахолодную температуру для камеры токамака и сверхпроводящих магнитов, которые охлаждаются жидким гелием до температуры —269 градусов по Цельсию. Одна третья часть основания криостата. Всего этот «термос» будет состоять из 54 элементов А так выглядит криостат на рендере. Его производство поручено Индии. Внутри «термоса» соберут реактор Криостат уже собирают. Тут, например, вы можете видеть окошко, через которое в реактор будут забрасывать частицы для нагрева плазмы Производство всего этого оборудования разделено между странами-участницами. Например, над частью бланкетов работают в России, над корпусом криостата — в Индии, над сегментами вакуумной камеры — в Европе и Корее. Но это отнюдь не быстрый процесс. К тому же права на ошибку у конструкторов нет. Команда ITER сперва моделирует нагрузки и требования к элементам конструкции, их испытывают на стендах например, под воздействием плазменных пушек, как дивертор , улучшают и дорабатывают, собирают прототипы и опять тестируют перед тем, как выдать финальный элемент. Первый корпус тороидальной катушки. Первый из 18 гигантских магнитов. Одну половину сделали в Японии, другую — в Корее 18 гигантских магнитов D-образной формы, расставленные по кругу так, чтобы образовать непроницаемую магнитную стену. Внутри каждого из них заключены 134 витка сверхпроводящего кабеля Каждая такая катушка весит примерно 310 тонн Но одно дело собрать.

Вторая — с дешевыми, всего 6 американских центов за 1 квт-час электроэнергии, и 1,6-2,0 метров большого радиуса, и это можно сделать на сферических токамаках, на одном из которых мы и работаем, разрабатывая для него системы управления плазмой. Но можно говорить об их разнообразии? Да, существуют различные сферические токамаки. Они сферические в том плане, что у них аспектное отношение, то есть отношение большого радиуса токамака к малому, составляет, примерно, 1,5, а все другие, конвенциальные, имеют аспектное отношение, приблизительно, 3-4 и выше, и это, в отличие от сферических, не может дать дешевую электроэнергию. Можно строить небольшие установки модульного типа, а потом их наращивать, допустим, вместо одного модуля сделать 10. Модуль — это небольшая часть всей термоядерной установки, это одна независимая небольшая термоядерная электростанция. Это приведет к снижению цены за электроэнергию по современным представлениям. Когда стали создаваться термоядерные установки, возникла большая наука — это физика высокотемпературной плазмы. Большая, серьезная наука, не все могут ее понимать и осваивать. Тем более, что теория не всегда совпадает с экспериментом, и адекватное понимание эксперимента очень часто основывается на так называемых скейлингах, то есть экспериментальных формулах. В мире сейчас около 40 действующих установок типа токамак, три работающие установки находятся в России. Они никакой термоядерной энергии не производят, они экспериментальные, на них исследуют плазму, материалы, системы управления плазмой и т. На некоторых установках делали эксперименты с тритием. На них было показано, что термоядерная реакция в принципе возможна, но коэффициент усиления был не больше единицы. Тем не менее, она возможна, потому что возникают нейтроны именно термоядерного происхождения, которые улавливались внешней оболочкой. Здесь сомнений нет. Вопрос только технологический — можно ли построить термоядерную электростанцию, так, чтобы она действительно давала термоядерную электроэнергию, и чтобы там реально функционировали все системы, которые туда входят. Это сильная альтернатива. У атомных станций два серьезных недостатка. Первое: они производят отходы, у которых период полураспада сотни и тысячи лет, их нужно где-то хранить, и их много, они накапливаются. Второй недостаток — они могут взрываться. Взрывы были сначала в Чернобыле, и затем на Фукусиме. В токамаках принципиально невозможен взрыв. Очень просто. Когда работает токамак, в его камеру постоянно поступает газообразное топливо, например, смесь трития и дейтерия. Имеются специальные быстродействующие клапаны, через которые поступает топливо. Если на термоядерной электростанции образуется внештатная, аварийная ситуация, то мгновенно закрываются клапаны, топливо прекращает поступать, той энергии, которая накоплена, для взрыва недостаточно, она может только сломать установку, прожечь камеру. Токамаки, конечно, нельзя считать полностью безопасными. Опасность заключается в том, что, когда сливаются ядра легких элементов, в частности, дейтерия и трития, образуется ядро гелия и быстрый нейтрон. Нейтроны поглощаются внешней оболочкой. Какая бы оболочка ни была, она становится радиоактивной. Эту радиоактивную оболочку через 20-30 лет надо менять. Но период полураспада там лет 15-20. Роботы убирают эту оболочку, заменяют на другую, радиоактивную где-то кладут — не хоронят, а кладут, и через 20 лет ее можно использовать снова. Период полураспада прошел, она становится нерадиоактивной. Снова можно использовать в установке. Это другие элементы.

Академик В.П. Смирнов: термояд — голубая мечта человечества

Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа. Ученые развивали идею термоядерного синтеза с инерционным удержанием в лаборатории в течение почти 60 лет, пока впервые достигли успеха. Китайский термоядерный реактор поставил рекорд в ядерной энергетике. На термоядерной установке в Национальной лаборатории им. Лоуренса в Ливерморе, США за несколько месяцев энергопроизводительность выросла в 8 раз.

Похожие новости:

Оцените статью
Добавить комментарий